Introduction

This application note describes a workspace that features several load pull and DC I-V simulations of a Cree Field-Effect Transistor (FET). The workspace may be used to see what performance (e.g., output power, gain and power-added efficiency (PAE)) could be obtained, and what source and load impedances should be used to attain a desired level of performance (or make trade-offs). Using the schematics and data displays, you will be able to determine things like:

• How much output power can be attained? At what level of gain or gain compression?
• At a desired output power, what gain, gain compression, power-added efficiency, bias current, adjacent channel power ratio (ACPR), and error vector magnitude (EVM) can be attained? At what source and load impedances?
• How sensitive is the performance to the load impedance?
• How do the optimal load impedances vary with frequency or bias, or some other parameter like parasitic source inductance?
• How does performance depend on the source impedance?
• How does performance depend on the 2nd and 3rd harmonic impedances at the load or source?
• What trade-offs can be made between output power and power-added efficiency?

The device simulated is the CGHV1J025_r7_cree_v440_die, which can be downloaded from Cree’s device model and PDK webpage (login required): https://portal.cree.com/human.aspx. However, the simulation setups and data displays should be suitable for other devices with a few modifications to the parameter settings.

Table of Contents

- Simulating Device I-V Curves ... 4
- Preliminary Load Pull Simulations ... 5
- Load Pull with a Source Power Sweep .. 9
- Contours and Data at a Specific Output Power 10
- Contours and Data at a Specific Available Source Power 12
- Contours and Data at a Specific X-dB Gain Compression Point 12
- Performance Variation Due to 2nd and 3rd Harmonic Loads 13
- Re-Running Swept-Power Load Pull with Better Harmonic Loads 16
- Load Pull Data at a Specific Amount of Output Power Back-Off 17
- Plotting ACPR, EVM and Other Data Using a Modulated Signal 19
- Simultaneous Fundamental and Harmonic Source and Load
 Reflection Coefficient Optimization ... 21
The **Device I-V Curve Simulations** folder contains a setup **FET_IV_Gm_PowerCalc**s for simulating a FET's I-V curves and transconductance at a particular input frequency. Figure 1 shows the I-V curves.

Figure 1. Device I-V curves and two different load lines that assume Class A operation.

Figure 2 shows how the AC transconductance varies with gate bias, with VDS=40 V.

Figure 2. Device AC transconductance versus gate-to-source bias, at one drain-to-source bias voltage.
Preliminary Load Pull Simulations

The **1. Preliminary Load Pull Simulations** folder contains a load pull setup `HB1Tone_LoadPull` for running load pull at a single bias point, input frequency and available source power. This setup is good for initial simulations because it is relatively simple.

With **Sweep_RectangularRegion=no**, a circular region of reflection coefficients will be sampled. Note that when this is set to **yes**, a rectangular region of reflection coefficients will be sampled. With **Specify_Load_Center_S=yes**, the center of the circle of reflection coefficients is specified as a reflection coefficient. If this is set to **no**, the center of the circle is specified as an impedance. Similarly, this Boolean variable applies to the harmonic loads as well.

With **Swept_Harmonic_Num=1**, a fundamental load pull will run (Figure 3). If you set this to 2 or 3, you will sweep the load at the 2nd or 3rd harmonic, respectively.

![One Tone Load Pull Simulation; output power and PAE found at each fundamental or harmonic load](image)

Initially, with $Z_0=50$, and the radius of the circle of reflection coefficients $S_{\text{Load_Radius}}$ set to 0.5, the results in Figure 4 are obtained.
Preliminary Load Pull Simulations (continued)

If we move the center of the circle $\text{S_Load_Center_Fund}$ over towards a short and make the radius S_Load_Radius smaller, as shown in Figure 5, we obtain better results (Figure 6).

```plaintext
Swept_Harmonic_Num=1
S_Load_Baseband=0*exp(j*0*pi)
S_Load_Center_Fund=0.6*exp(j*0.9*pi)
S_Load_Center_2nd=1*exp(j*0*pi)
S_Load_Center_3rd=1*exp(j*0*pi)
S_Load_Radius=0.35
```

Figure 4. Power delivered and PAE contours from a preliminary simulation.

Figure 5. Parameter settings to sample more optimal load reflection coefficients.
Preliminary Load Pull Simulations (continued)

Figure 6. Better contours, after adjusting the sampled region of the Smith chart.

Figure 7. Finer resolution contours obtained by specifying a non-50-Ω reference impedance, which allows the center of the Smith chart to be nearer the optimal reflection coefficient.
Preliminary Load Pull Simulations (continued)

The same contours may be plotted on an impedance plot, as shown in Figure 8.

These simulations can be repeated after changing the gate bias. As expected, a more negative gate bias produces higher efficiency, but lower gain.
Load Pull with a Source Power Sweep

The simulations in the previous section were performed with a single source power. Consequently, we don’t know how far into compression the device is operating. Next, let’s sweep the available source power. The **Load Pull with a Power Sweep** has a load pull HB1Tone_LoadPull_PSweep_ZSweep that includes a sweep of the available source power. In this case, instead of sweeping a circular region of reflection coefficients (as previously shown), the real and imaginary parts of the load impedance are swept, which some designers may prefer (Figure 9).
Set desired_Pdel_dBm = to desired power delivered in dBi.

\[
\begin{align*}
\text{desired}_P_{\text{del}} & \text{ dBm} \\
\text{indep(} \text{desired}_P_{\text{del}}) & = 42.000
\end{align*}
\]

Because we have swept the available source power, we can interpolate the data in post-processing and plot contours at a specific output power, which you select with a marker (Figures 10 and 11).

Figure 10. Marker to select the desired power delivered (Note that contours are immediately updated when a different power level is selected).

Figure 11. Contours of gain and gain compression at 42 dBm power delivered.
Contours and Data at a Specific Output Power (continued)

Contours of constant PAE, simulated load reflection coefficients and corresponding input reflection coefficients

Figure 12. Contours of PAE at 42 dBm power delivered, with thick dots indicating loads at which the desired power was not achieved, given the maximum available source power in the sweep.

The thick dots in Figure 12 indicate reflection coefficients where the power delivered does not reach the value you have requested.

You can choose the load based on a trade-off between gain and power-added efficiency, as shown in Figure 13.

Figure 13. A different page in the data display that helps you make trade-offs between gain and PAE while delivering 42 dBm.
Contours and Data at a Specific Available Source Power

You may also plot contours at a specific available source power, and choose a load that is a trade-off between the power delivered and power-added efficiency (Figure 14).

Contours and Data at a Specific X-dB Gain Compression Point

The HB1Tone_LoadPull_PSweep_ZSweep_wXdb data display allows you to see contours and data at a specific level of gain compression, based on interpolation.
Performance Variation Due to 2nd and 3rd Harmonic Loads

With high-power devices driven well into compression, the load impedances at the harmonic frequencies will have an effect on the performance. The 3. Sweeping the Phase of the 2nd and 3rd Harmonic Loads folder contains a setup HB1Tone_Load_Harmonic_Phase_Sweep that allows you to see the performance variation due to the load at the 2nd and 3rd harmonics (Figure 15).

Here, the load impedances at the fundamental and all harmonics are fixed, except for the 2nd harmonic because Swept_Harmonic_Num=2, and the phase of the 2nd harmonic reflection coefficient is swept (its magnitude Rho_Mag=0.95 is held constant). The simulation results in Figure 16 show significant variation in PAE and power delivered as the phase of the 2nd harmonic load is varied.
We can repeat the simulation, this time setting the second harmonic load impedance to 0.28+j*5.5 (found previously), and sweeping the phase of the 3rd harmonic load (Figure 17).

We can repeat the simulation, this time setting the second harmonic load impedance to 0.28+j*5.5 (found previously), and sweeping the phase of the 3rd harmonic load (Figure 17).

Swept Harmonic Num=3

- **Z_Load_Baseband** = 50+j*0
- **Z_Load_Fund** = 2+j*7.14
- **Z_Load_2nd** = 0.28+j*5.5
- **Z_Load_3rd** = 0+j*0

Figure 16. Variation in the PAE and power delivered as the phase of the reflection coefficient at the 2nd harmonic is swept.

Figure 17. Specifying load impedances in preparation for sweeping the phase of the 3rd harmonic reflection coefficient; in this case, Z_Load_3rd is not used in the simulation.
Performance Variation Due to 2nd and 3rd Harmonic Loads (continued)

In this case, the variation due to the 3rd harmonic is smaller (Figure 18).

Figure 18.
Variation in PAE and power delivered due to the phase of the 3rd harmonic reflection coefficient.
Re-Running Swept-Power Load Pull with Better Harmonic Loads

We can now return to the swept-power load pull simulation schematic HB1Tone_LoadPull_PSweep_ZSweep and re-run the load pull simulations. This time, however, we use the better 2nd and 3rd harmonic loads. By doing so, we obtain a somewhat higher efficiency and output power (Figure 19).

Figure 19. Plots showing somewhat better performance from a fundamental load pull, while using more optimal 2nd - and 3rd -harmonic loads.

Figure 20 shows data from the same simulation, with the available source power set to 35 dBm.

Figure 20. Plots that show the trade-off between power delivered and PAE for a specific available source power.
Load Pull Data at a Specific Amount of Output Power Back-Off

The HB1Tone_LP_Psweep_Zsweep_wXdB_wOBO data display in Figures 21 to 23 shows contours and data at a specific amount of gain compression and at a specific output power, as well as at a specific amount of back-off relative to the gain compression point that you specify.

Figure 21. Plots showing the responses if (at X-dB gain compression) the maximum efficiency load is chosen (on the left) or if the maximum power delivered load is chosen (on the right); black X’s show data corresponding to the X-dB gain compression point, while blue and red X’s show data at a specified amount of back off.

Figure 22. A different page in the data display: numeric data corresponding to the blue and red X’s in Figure 21.
Load Pull Data at a Specific Amount of Output Power Back-Off (continued)

Figure 23. A different page in the data display; data corresponds to the load selected by the “loadZ” marker and the desired X-dB gain compression specified (on a different page).
Plotting ACPR, EVM and Other Data Using a Modulated Signal

You may also plot ACPR and EVM data, computed from the 1-tone, swept-power load pull simulation data. The `HB1Tone_LP_ZSweep_ACPR_EVM_Pavs_Swp` data display plots contours of modulated output power, ACPR, EVM, bias current, and efficiency (Figure 24). You must specify the modulated signal dataset. In this case, an LTE dataset from a Ptolemy Wireless Library example is used.

Specify modulated signal to be used in the calculations. Adding syntax like `[0:1000]` forces only the first 1001 time points to be used, which speeds up the calculations.

\[
\text{Vin_fund}=\text{LTE_UL_TxSpectrum_Waveform}[0:500]
\]

![Modulated Input Signal Spectrum](image)

You also must specify the available source powers of the modulated input signal (Figure 25).

Specify the ranges of modulated input signal powers (dBm):

\[
\text{EqnInputSigPowers1}=[20::2.5::30]
\]
\[
\text{EqnInputSigPowers2}=[31::1::33]
\]
\[
\text{EqnInputSigPowers}=[\text{InputSigPowers1, InputSigPowers2}]
\]

Figure 24. Specifying the modulated input signal data to be used in ACPR and EVM calculations.

Figure 25. Specifying the ranges of modulated input signal powers; the amplitude of the modulated input signal is scaled according to these values.
Plotting ACPR, EVM and Other Data Using a Modulated Signal (continued)

Figure 26 shows the data, which is keyed (via a marker) to one of the specified input signal powers.

It is also possible to plot data at the X-dB gain compression point. This is shown in the HB1Tone_LP_ZSweep_ACPR_EVM_wXdB data display, which depicts the main channel power and gain data at the 2-dB gain compression point (Figure 27).

Figure 26. Contours of main channel power, efficiency, EVM, ACPR, and bias current at one of the available source powers with black traces corresponding to data of one particular load that you select with a marker.

Figure 27. Plots that allow you to make a trade-off between main channel power delivered and gain at the X-dB gain compression point.
Plotting ACPR, EVM and Other Data Using a Modulated Signal (continued)

Figure 28 shows main channel power and EVM data at the 2-dB gain compression point.

The load pull simulation setups previously shown are from the ADS 2014 Load Pull DesignGuide.

Supported ADS customers using ADS 2012 or 2013 may download and install this version of the Load Pull DesignGuide from the Keysight EEsof Knowledge Center: http://edadocs.software.keysight.com/display/eesofkcads

Content+from+ADS+Power+Amplifier+Hands-on+Workshop

Note that there are many more load pull simulation capabilities than what have been shown. Also, while the simulations shown here use just one tone, you can plot contours of intermodulation distortion from two-tone load pull simulations.

Simultaneous Fundamental and Harmonic Source and Load Reflection Coefficient Optimization

It is also possible to simultaneously optimize the source and load impedances at the fundamental and harmonic frequencies, which is an alternative to load pull. This is shown in the HarmGammaOpt1tone schematic and data display in the 6. Simultaneous Source and Load Gamma Optimization folder. You can specify goal power delivered, power-added efficiency and bias current values, or add different goals. The results you obtain will depend on what variables you allow to be optimized and the ranges of values you allow.