Keysight Technologies
M9068A Phase Noise
X-Series Measurement Application for PXI Vector Signal Analyzers

Technical Overview

- One-button, easy-to-use, fast phase noise measurements with log plot and spot frequency views
- Spectrum and IQ waveform monitoring for quick signal checks in frequency or time domain
- Supports the M9391A and M9393A PXIe Vector Signal Analyzers
- Softkey manual user interface or SCPI remote user interface
- Built-in, context-sensitive help
- Transportable license supports up to four PXI VSA channels in one mainframe
Phase Noise Measurement Application for Modular Instruments

Expand the capabilities of your M9391A and M9393A PXIe vector signal analyzers (PXI VSAs) with Keysight Technologies’ library of measurement applications - the same applications used to increase the capability and functionality of its X-Series signal analyzers. Twelve of the most popular applications are now available for use with Keysight’s new M9393A PXIe performance VSA and the M9391A PXI VSA. When you combine the raw hardware speeds of the PXI VSAs and the X-Series measurement applications for modular instruments, you can test more products in less time, while ensuring measurement continuity from design to manufacturing. The phase noise measurement application is an ideal tool for design verification and troubleshooting as well as production line testing. This application is built upon Keysight’s best-selling Option 226 phase noise measurement personality used in ESA and PSA spectrum analyzers and includes enhancements in measurement algorithms for optimized speed and dynamic range.

Proven algorithms and a common user interface across the X-Series analyzers and modular PXI VSAs create a consistent measurement framework for signal analysis that ensures repeatable results and measurement integrity so you can leverage your test system software through all phases of product development. The phase noise measurement application is one in a common library of several measurement applications. You can further extend your test assets by utilizing up to four PXI VSAs with one software license.

Keysight’s X-Series applications for modular instruments also include a unique “Resource Manager” that provides direct access to PXI VSA hardware drivers for the fastest power and spectrum-based measurements, while simultaneously using the X-Series applications for fast phase noise measurements and the 89600 VSA software for fast spectrum measurements.

Figure 1. A complete solution for phase noise measurements

Figure 2. Resource manager included with all X-Series measurement applications for modular instruments
Phase Noise Measurement Application for Modular Instruments

As wireless communication technologies evolve in the commercial and aerospace and defense industries, it is clear that the driver to meet demand for higher data rates, better spectrum efficiency, and lower power consumption is the digital technology, such as digital signal processing (DSP). It does not, however, devalue the importance of high-purity, high-stability signals—signal stability is fundamental to successful modern digital wireless communication systems. Phase noise is still one of the most important characteristics when evaluating the short-term stability of a signal. Pressure to bring products to market more quickly than ever does not allow time for executing multiple measurements across several instruments. An accurate, fast, and easy-to-use phase noise measurement tool is critical in the R&D and manufacturing environments.

A variety of measurement techniques have been developed to meet various requirements for phase noise measurements. The three most widely adopted techniques are: direct spectrum, phase detector, and two-channel cross-correlation. Among them, the direct spectrum technique is the simplest and perhaps oldest technique for making phase noise measurements.

Keysight’s X-Series phase noise measurement application is based on the direct spectrum technique. The most obvious advantage using the direct spectrum technique for phase noise measurements is that it can be realized with a general-purpose signal/spectrum analyzer. However, the analyzer’s settings, such as resolution bandwidth (RBW) and internal phase noise optimization loops, will need to be adjusted based on offset frequency to achieve the highest measurement accuracy and speed. Manually implementing phase noise measurements with a signal analyzer can be tedious and time consuming. The X-Series phase noise measurement application automates the optimization processes for the signal analyzer settings with one-button measurements without user interference.

Phase Noise Measurements

With the PXI VSAs and the phase noise measurement application, you can easily perform phase noise analysis on various devices, such as local oscillators and signal sources. The analysis includes:

- Log plot: Single-sideband (SSB) phase noise view in frequency domain
- Spot frequency: Phase noise view in time domain including carrier frequency drift measurement
- Monitor spectrum: Easy-to-use simple spectrum view for a quick check of your signal
- IQ waveform: Easy-to-use simple time domain view

Measurement details

Log plot phase noise

Log plot measures SSB phase noise (in dBc/Hz) versus offset frequencies expressed in logarithmic scale.

This allows you to view the phase noise behavior of the signal under test across decades of offset frequencies.

Figure 3. Log plot phase noise with a smoothed trace and decade table turned on (taken from an MXA with N9068A)

View the entire phase noise behavior across a wide range of offset frequencies (1 Hz to the difference between the maximum frequency of the analyzer and carrier frequency) and measure phase noise with a user-specified number of averages. Perform trace smoothing with user-adjustable smoothing segment length (Figure 3).

The log plot measurement function also includes:

- AM rejection, which works for offsets equal to or less than 1 MHz so that you observe only the phase component
- Overdrive function, which maximizes the dynamic range at offsets beyond 1 MHz, improving measurement accuracy by reducing the adverse effect of broadband noise
- A suite of advanced marker functions optimized for detailed log plot trace analysis
- Display of tabular readings (the decade table) in addition to the graphic presentation
- Automatic search of carrier function with Auto Tune
- Multi-level video filtering
Spot frequency phase noise

After a particular frequency offset has been identified for further analysis, the spot frequency measurement provides the time domain behavior of phase noise at that particular offset (Figure 4).

The spot frequency measurement can be used to:

– Monitor phase noise fluctuation versus time at a user-specified single offset frequency
– Take advantage of improved carrier frequency tracking range with faster signal tracking
– View graphic and numeric list formats
– Find the signal from the full range of frequency with the Auto Tune feature

The spot frequency signal tracking feature provides:

– A simultaneous view of phase noise and delta frequency in time domain
– SSB, average SSB, carrier power, carrier frequency, carrier frequency (initial), and carrier frequency delta in a table

Figure 4. Carrier frequency drift view with phase noise vs. time
Monitor spectrum

In addition to the phase noise measurements, you can verify the quality of the signal of interest without having to switch from the phase noise mode to the spectrum analyzer mode. The monitor spectrum measurement provides a simple frequency domain view for a quick signal check (Figure 5).

IQ waveform

The phase noise X-Series measurement application employs IQ analysis, which maintains both amplitude and phase information of the signal under test. The IQ waveform measurement enables you to view the signal in time domain without having to switch modes between the phase noise and the IQ analyzer. This can significantly decrease your measurement time.

Advanced marker functions for log plot trace

The log plot measurement provides a wide range of advanced markers and marker functions so that you can analyze various aspects of the trace, such as integrated noise, averaged noise density, and residual FM across the applied band marker span, as well as multiple spurious-peak search functions and absolute, octave slope, and decade slope scale delta markers. See Figure 6 and the following table for more detail.

<table>
<thead>
<tr>
<th>Marker number</th>
<th>Marker functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 3</td>
<td>Normal markers, spurious search</td>
</tr>
<tr>
<td></td>
<td>(#1: peak spur, #2: next spur right, #3: next spur left)</td>
</tr>
<tr>
<td>4</td>
<td>Band marker, RMS integrated phase deviation in degree</td>
</tr>
<tr>
<td>5</td>
<td>Band marker, RMS integrated phase deviation in radian</td>
</tr>
<tr>
<td>6</td>
<td>Band marker, RMS integrated jitter in radian</td>
</tr>
<tr>
<td>7</td>
<td>Band marker, RMS integrated phase noise in dBC per marker bandwidth Hz</td>
</tr>
<tr>
<td>8</td>
<td>Band marker, residual FM in Hz</td>
</tr>
<tr>
<td>9</td>
<td>Band marker, RMS averaged phase noise density in dBC per Hz</td>
</tr>
<tr>
<td>10Δ9</td>
<td>Delta marker, absolute (x) scale</td>
</tr>
<tr>
<td>11Δ9</td>
<td>Delta marker, octave slope (2x) scale</td>
</tr>
<tr>
<td>12Δ9</td>
<td>Delta marker, decade slope (10x) scale</td>
</tr>
</tbody>
</table>

Figure 5. Monitor spectrum to check the signal coming from the DUT

Figure 6. Apply a wide variety of advanced markers and marker functions, optimized for log plot trace analysis
Integrated noise measurement

Different applications require different measures for evaluating phase noise behaviors. In the digital world, root-mean-square (rms) phase deviation/jitter (in degrees or radians) and rms phase jitter (in seconds) are used more frequently to evaluate the stability of a high-frequency clock. On the other hand, residual FM is more important to amplifier designers and manufacturers.

The band marker functions enable you to:

– Characterize phase noise related behaviors from different angles for various applications
– Adjust bandwidth for integrating noise power (in dB/bandwidth Hz) or averaging noise power density (in dB/Hz) by using advanced band markers on the log plot
– Calculate rms phase deviation (or residual PM) in degrees or radians
– Calculate rms jitter in seconds
– Calculate the residual FM in Hz
– View numeric marker readings for calculated results
– View readings of multiple markers

Multiple spurious peak search

The marker menu supports the spurious peak search function, peak, next peak, right peak, and left peak. The “raw” trace (yellow) indicates that spurious signals are automatically detected and separated. The “smoothed” trace (light blue) remains after the spurious products are removed from the “raw” trace.

Advanced scaled delta markers

The delta marker menu enables you to select various scales of:

– Absolute/normal (x Hz)
– Octave slope (2x Hz)
– Decade slope (10x Hz)
Other measurement features

Displayed average noise level (DANL) measurements

The DANL floor of a signal/spectrum analyzer sets limitations for measuring the smallest input signal because it may negatively affect phase noise measurement accuracy at the far-out offset frequencies. When the amplitude of a signal under test gets closer to the DANL floor, a significant measurement error can occur, invalidating the measurement. To help ensure the measurement is valid, the phase noise measurement application measures the DANL floor noise plot (Figure 7).

The DANL measurement mode allows you to:
- Measure and reference the DANL of the PXI VSA to the carrier amplitude
- Display the DANL floor together with the log plot phase noise to determine the valid measurement range
- Easily store and recall traces

Reference trace subtractions

By using the trace subtraction function, you can subtract the DANL floor or phase noise of the PXI VSA.

DANL subtraction

Subtract the signal analyzer’s internal broadband noise from the compounded measurement result to see the phase noise of the DUT at the offset frequency where the noise level of the signal analyzer and DUT is close. Recall the stored DANL data to subtract from measured data (Figure 8).

Phase noise subtraction

The PXI VSAs also feature phase noise subtraction. Using a source with low phase noise, you can eliminate the influence of the signal analyzer’s internal phase noise on measurement results for close-in offset frequencies.

- Use reference trace subtractions to:
 - Improve measurement accuracy and sensitivity
 - Make the best trade-off between cancellation effectiveness and computation time with user-selectable thresholds

By using the trace subtraction function, you can subtract the DANL floor or phase noise of the PXI VSAs.
Ordering Information

Software licensing and configuration

Transportable, perpetual license

This allows you to run the application using an embedded PXI PC controller or external PC, plus it may be transferred from one controller or PC to another. One software license supports up to four modular PXI VSA channels in one PXI mainframe.

Phase noise X-Series measurement application

<table>
<thead>
<tr>
<th>Description</th>
<th>Model-Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase noise</td>
<td>M9068A-2TP</td>
</tr>
</tbody>
</table>

www.keysight.com/find/M9068A

Try before you buy!

Free 30-day trials of X-Series measurement applications provide unrestricted use of each application’s features and functionality on your modular PXI VSA. See www.keysight.com/find/M90XA for more information.

Choosing between X-Series measurement applications and 89600 VSA software

X-Series measurement applications provide format-specific, one-button measurements for X-Series analyzers and modular PXI VSAs. With fast measurement speed, SCPI programmability, pass/fail testing and simplicity of operation, these applications are ideally suited for design verification and manufacturing. The 89600 VSA is the industry-leading measurement software for evaluating and troubleshooting signals for R&D and design validation. Supporting numerous measurement platforms and multiple measurement channels, the 89600 VSA provides flexibility and sophisticated measurements tools essential to find and fix signal problems. Recent enhancements for the modular PXI VSA platforms (89601B-SSA) provide fast spectrum measurements with benchtop analyzer SCPI programming compatibility.

www.keysight.com/find/89600_vsa
Hardware configuration

M9391A PXIe vector signal analyzer configuration

<table>
<thead>
<tr>
<th>Model-Option</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>M9391A-F03, -F06</td>
<td>3 GHz or 6GHz frequency range</td>
<td>One required</td>
</tr>
<tr>
<td>M9391A-B04, -B10, or -B16</td>
<td>40 MHz, 100 MHz, or 160 MHz analysis bandwidth</td>
<td>One required. -B16 recommended for fastest spectrum measurements with 89600 VSA software Option SSA.</td>
</tr>
<tr>
<td>M9391A-300</td>
<td>PXIe frequency reference</td>
<td>Recommended</td>
</tr>
<tr>
<td>M9391A-UNZ</td>
<td>Fast tuning</td>
<td>Recommended. Highly recommended for fastest spectrum measurements with 89600 VSA software Option SSA.</td>
</tr>
<tr>
<td>M9391A-M01, -M05, or -M10</td>
<td>Memory options (512 MB, 2 GB, or 4 GB)</td>
<td>Recommended 1 Gsa/4 GB memory</td>
</tr>
</tbody>
</table>

M9393A PXIe performance vector signal analyzer configuration

<table>
<thead>
<tr>
<th>Model-Option</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>M9393A-F08, -F14, -F18, or -F27</td>
<td>8 GHz, 14 GHz, 18 GHz, or 27 GHz frequency range</td>
<td>One required</td>
</tr>
<tr>
<td>M9393A-B04, -B10, or -B16</td>
<td>40 MHz, 100 MHz, or 160 MHz analysis bandwidth</td>
<td>One required. -B16 recommended for fastest spectrum measurements with 89600 VSA software Option SSA.</td>
</tr>
<tr>
<td>M9393A-300</td>
<td>PXIe frequency reference</td>
<td>Recommended</td>
</tr>
<tr>
<td>M9393A-UNZ</td>
<td>Fast tuning</td>
<td>Recommended. Highly recommended for fastest spectrum measurements with 89600 VSA software Option SSA.</td>
</tr>
<tr>
<td>M9393A-M01, -M05, or -M10</td>
<td>Memory options (512 MB, 2 GB, or 4 GB)</td>
<td>Recommended 1 Gsa/4 GB memory</td>
</tr>
</tbody>
</table>

Related Literature

<table>
<thead>
<tr>
<th>Literature number</th>
<th>Literature number</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9068A & W9068A phase noise measurement application measurement guide</td>
<td>N9068-90011</td>
</tr>
<tr>
<td>Phase noise measurement selection guide</td>
<td>5990-5729EN</td>
</tr>
</tbody>
</table>
Web

Product page:
www.keysight.com/find/M9068A

X-Series measurement applications:
www.keysight.com/find/M90XA

M9391A PXIe vector signal analyzer:
www.keysight.com/find/M9391A

M9393A PXIe performance vector signal analyzer:
www.keysight.com/find/M9393A

X-Series signal analyzers:
www.keysight.com/find/X-series

Application pages:
www.keysight.com/find/lte
www.keysight.com/find/lteadvanced
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805363
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001:2015 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2015
Published in USA, December 1, 2017
5992-0438EN
www.keysight.com