Keysight Technologies

Photodiode Test Using the Keysight B2980A Series
B2981A/83A Femto/Picoammeter
B2985A/87A Electrometer/High Resistance Meter

Application Note
Introduction

A photodiode (PD) is a semiconductor device that converts light into current. When the PD is reverse-biased, a current is generated as the PD absorbs photons. The PD also produces a small amount of current when no light is present; this is known as dark current. Since the output current is directly proportional to the light intensity applied to the PD junction, it can be used to detect small quantities of light. This makes PDs useful in a wide range of applications such as optical communication, light detection, and consumer electronics.

When the PD is reverse-biased, the output current consists of dark current (no light) and photocurrent (caused by light). Dark current is a small leakage current induced by applied voltage. Photocurrent is typically constant as a function of applied voltage. The dark current is caused by thermal leakage in the PN junction, so it is frequently characterized as a function of temperature. The photocurrent and dark current measurements should be made with an instrument that can sweep voltage and measure current over a wide range (such as an electrometer or source measure unit).

Avalanche photodiodes (APDs) are high-speed photodiodes with high sensitivity, and they exhibit internal current gain when a large reverse bias is applied. By varying the magnitude of the reverse bias voltage, the gain of the APD can be controlled. In general, a larger reverse bias voltage results in higher gain. However, APDs can require high voltages (many hundreds of volts) to fully characterize them.

APDs are used in a variety of applications requiring high sensitivity to light (such as fiber optic telecommunication and laser rangefinders). Common APD electrical parameters include responsivity, breakdown voltage, and reverse bias current. The current rating for a typical APD under reverse bias is 100 µA to 10 mA, while the dark current can be as low as 1 pA or less. The maximum reverse bias voltage varies with the material from which the APD is fabricated, and for Si devices it can be as high as 500 V.

The Keysight Technologies, Inc. B2980A Series Femto/Picoammeters and Electrometer/High Resistance Meters are the world’s only graphical picoammeters and electrometers that can confidently measure down to 0.01 fA and up to 10 PΩ (10^16 Ω). These capabilities give them the ability to evaluate a variety of PDs. The B2980A Series’ ammeter provides 0.01 fA current resolution and multiple current measurement ranges (from 2 pA to 20 mA), which can meet all existing and future PD low-current measurement needs. The voltage source of the B2980A Series’ electrometers has 1,000 V voltage sourcing capability that can support PD evaluation requiring high voltage (such as APDs). Unlike conventional picoammeters and electrometers, the B2980A series possesses a 4.3" color LCD-based graphical user interface (GUI) that provides multiple options for viewing data. In addition to numeric format, data can also be viewed as a graph, as a histogram and as a trend chart. These unique front-panel capabilities facilitate the capture of transient behavior and provide the ability to make quick statistical analyses without the need for a PC. The B2980A Series also has external trigger in and out terminals that allow it to receive and send trigger signals from and to external instruments. This makes it easy to synchronize the B2980A Series with other instruments to make light-current-voltage (L-I-V) sweep tests to determine the operating characteristics of a laser diode (LD).

This technical overview shows how to use the B2985A/87A to evaluate PD characteristics and explains how to synchronize the B2980A Series with other instruments using the example of an L-I-V sweep test on a LD.
Photodiode Characterization Example

This section explains how to perform PD dark current measurements using the B2985A/87A.

Test System

Figure 1 shows the circuit diagram to evaluate PD characteristics using the B2985A/87A Electrometer/High Resistance Meter. The B2985A/87A's voltage source high terminal is connected to the cathode of the PD to supply a reverse bias voltage, and its ammeter is connected to the anode of the PD to measure the PD current. The voltage source’s low terminal and the ammeter common are connected together internally.

Since the B2985A/87A's voltage source has the capability to sweep voltage while its ammeter synchronously measures current, the PD's current – voltage (IV) characteristics can easily be obtained. In addition, the B2985A/87A's ability to display the results as an X-Y graph permits quick examination of the results.

The following example will show how to make a silicon photodiode dark current measurement. The key measurement parameters are summarized in Table 1. The PD current is measured by the B2985A/87A's ammeter as the B2985A/87A's voltage source applies a reverse-bias voltage. The voltage is swept from 10 mV to 5 V in 10 mV steps. A fixed range of 20 pA range is used to measure the PD current since the maximum expected current is several picoamps, and using the 20 pA range provides better accuracy. The measurement trigger delay time is set at 1 s to give the measured current sufficient time to stabilize.

Of course, since the dark current measurement has to be made without light the PD is tested in an enclosed test fixture.

Table 1. Photodiode characterization key measurement conditions

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Voltage Swept</td>
<td>Start 10 mV</td>
</tr>
<tr>
<td></td>
<td>Stop 5 V</td>
</tr>
<tr>
<td></td>
<td>Points 500</td>
</tr>
<tr>
<td>PD Current</td>
<td>Range 20 pA Fixed</td>
</tr>
<tr>
<td>Aperture Time (SPEED)</td>
<td>Normal</td>
</tr>
<tr>
<td>Trigger</td>
<td>Source AUTO</td>
</tr>
<tr>
<td></td>
<td>Count 500</td>
</tr>
<tr>
<td></td>
<td>Measure Delay 1 s</td>
</tr>
<tr>
<td></td>
<td>Period 1.2 s</td>
</tr>
</tbody>
</table>

Figure 1. Circuit diagram to evaluate photodiode characteristics
The following instructions describe how to set up the B2985A/87A to perform PD dark current measurements on the instrument front panel.

A file containing the setup used in the example can be downloaded at the following link: www.keysight.com/find/SensitiveMeasurement

A sample VBA program using SCPI commands to make this measurement is also available at the above link.

Setting up the B2985A/87A from its front panel

1. Set “Dual Measure Result Display” off to make the instrument measure only current.
 a. Open the Display Preference dialog by pressing the function keys.
 b. Press to edit “Dual Measure Result Display”. After that, the field pointer is highlighted in green (EDIT).
 c. Press OFF, and then press OK to apply the settings.
Setting up the B2985A/87A from its front panel (continued)

2. Select the current measurement range operation and set the current measurement range.

a. Press `More of 3` and then press `RANGE` to show the Range Parameters.

![Image of RANGE parameters]

b. Press `Range` and press `FIXED` to set the current measurement range operation to “FIXED”.

c. Press `RANGE` repeatedly until `20pA` is displayed to set the current measurement range to 20 pA range.

![Image of RANGE parameters set to 20pA]
Setting up the B2985A/87A from its front panel (continued)

3. Set the Sweep Parameters to make the instrument perform a voltage sweep.
 a. Press and then press to show Sweep Parameters.
 b. Press and press to turn on Single Linear Sweep Source Mode.
 c. Rotate to select Sweep Parameters and fill in the values as shown below.
 Use the arrow keys to move to the digit you want to edit.
 (Start: 10 mV, Stop: 5 V, Points: 500)
Setting up the B2985A/87A from its front panel (continued)

4. Set the Trigger Parameters to configure the Measurement Delay Time.
 a. Press → and then press → to show the Trigger Parameters.
 b. Press → and press → to set the Trigger Parameters.
 c. Rotate → to select the Trigger Parameters and fill in the values as shown below.
 (Count: 500, Measure Delay: 1 s, Period: 1.2 s)
Setting up the B2985A/87A from its front panel (continued)

5. Select the Graph View and configure it to show results graphically.

 a. Press \(\text{View} \) to show the function keys for View Modes, and then press \(\text{View} \) to show the Graph View.

 b. Rotate and press \(\text{LOG} \) to show Y-axis graph scaling, and then press \(\text{LOG} \) to set it to LOG scale.

 c. Rotate and press \(\text{LOG} \) to show X-axis graph scaling, and then press \(\text{LOG} \) to set it to LOG scale.

The Auto Scale function is available both during and after measurement in Graph View.
Setting up the B2985A/87A from its front panel (continued)

6. Enable the Voltage Source and Ammeter.
 a. Press Voltage Source "On/Off" to enable the Voltage Source.
 b. Press Ammeter "On/Off" to enable the Ammeter.

Why is a measurement delay time required?

In general, measurement paths have stray impedance that can cause leakage currents and dielectric absorption when a voltage is applied. To obtain accurate results it is necessary to wait for these transients to die away before starting measurements (especially in the case of ultra-low current measurements). The required wait time for a given measurement depends on the magnitude of the applied voltage step. Larger voltage steps require longer wait times.

Controlling the B2985A/87A using SCPI commands

If you prefer to control the B2985A/87A remotely using SCPI commands, then the following material explains how to do this.

The series of commands shown in group “A” configure measurement parameters such as measurement auto-ranging (turned off), measurement range, and aperture time, and they should be sent first. Next the series of commands shown in group “B” should be sent to set up the voltage source. Finally, the series of the commands shown in group “C” should be sent to set up the B2985A/87A's trigger parameters.

```
B2985A/87A SCPI command example

*RST
:DISP:ENAB OFF

:SENS:FUNC "CURR"
:SENS:CURR:RANG:AUTO OFF
:SENS:CURR:RANG 2.E-11
:SENS:CURR:APER:AUTO ON
:SENS:CURR:APER:AUTO:MODE MED

:SOUR:FUNC:MODE VOLT
:SOUR:VOLT:MODE SWE
:SOUR:VOLT:STAR 0.01
:SOUR:VOLT:STOP 5
:SOUR:VOLT:POIN 500

:TRIG:SOUR AIN
:TRIG:COUN 500
:TRIG:ACQ:DEL 1
:TRIG:TIM 1.2

:OUTP:STAT ON
:INP ON
```

```
A
B
C
```
Performing photodiode dark current measurements

After configuring the instrument, perform the following procedures to execute PD dark current measurements.

If you are using the front panel, trigger the B2985A/87A to start sweeping the reverse-bias voltage to the PD by pressing

If you are controlling the instrument remotely using SCPI commands, then send the ":INIT (@1)" command to the instrument to start the dark current measurement.

The measurement results can be displayed on the B2985A/87A’s graphical user interface as shown in Figure 2. The Graph View function allows you examine the measurement results quickly.

![Figure 2. Photodiode dark current measurement results](image)

The APD dark current measurements are performed by the same procedures as shown in Figure 3.

![Figure 3. Avalanche photodiode dark current measurement results](image)
L-I-V Test Example

This section explains how to synchronize the B2980A Series with other instruments using the example of a laser diode (LD) L-I-V sweep test using a photodiode (PD).

Test System

Figure 4 shows a system diagram example to evaluate the L-I-V characteristics of a LD using the B2900 Precision Instrument Family. The Keysight B2911A Precision Source/Measure Unit (SMU) is used to apply drive current to the LD and to measure the LD’s voltage. The B2911A can cover currents from 10 fA to 3 A (DC)/10.5 A (pulsed) and voltages from 100 nV to 210 V. The SMU has the capability to source and measure both positive and negative voltages and currents, so it can easily characterize the LD’s DC parameters. Since the currents supplied to the LD can be quite large, a 4-wire connection (remote sensing) configuration is commonly used.

The B2985A/87A’s ammeter input terminal is connected to the PD’s anode and the B2985A/87A’s voltage source high terminal is connected to the PD’s cathode. Since the ammeter’s and voltage source’s low terminals are connected internally to the circuit common, the PD current can be measured by applying voltage to the PD from its voltage source.

In order to synchronize the B2985A/87A with the B2911A during the LD current sweep operation, a trigger signal is sent from the B2911A to the B2985A/87A. The N1294A-031 GPIO-BNC Trigger Adapter converts the B2911A’s digital I/O output to BNC outputs. The N1294A-031 allows you to synchronize the triggering of the two units using an inexpensive coaxial cable.
Test System (continued)

A distributed feedback (DFB) laser diode is used in this example. The key measurement conditions are summarized in Table 2. The PD current is measured by the B2985A/87A as the drive current to the LD is swept from 0 A to 50 mA in 250 µA steps by the B2911A. In order to step currents to the LD at regular intervals, timed triggering is selected, the trigger period is set to 500 µsec and fixed measurement ranging is used. Since laser diode characteristics can be affected by self-heating, for accurate results it is essential to carefully control the LD measurement time and make it as short as possible. In this example a 500 µs trigger period and 200 µs aperture time are used.

A trigger signal is sent from the B2911A's digital I/O port 9 to the B2985A/87A's BNC trigger-in terminal immediately after each B2911A current step completes as shown in Figure 5.

The following example describes how to set up the B2985A/87A and the B2911A to perform LIV testing on a LD.

The setup used in the example can be downloaded from the following link: www.keysight.com/find/SensitiveMeasurement

A VBA sample program using SCPI commands is also available at the link above.

Table 2. Summary of measurement conditions for L-I-V Testing

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>B2911A</th>
<th>Values</th>
<th>B2985A/87A</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD Current Swept</td>
<td>Start</td>
<td>0 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stop</td>
<td>50 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points</td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD Voltage Limit</td>
<td></td>
<td>2.5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture Time (SPEED)</td>
<td></td>
<td>0.01 PLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Type</td>
<td></td>
<td>TIMER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Delay</td>
<td></td>
<td>100 µsec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period</td>
<td></td>
<td>500 µsec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td>Digital I/O Port 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD Voltage Constant</td>
<td></td>
<td>0.1 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD Current Measurement Range</td>
<td></td>
<td>2 mA Fixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aperture Time (SPEED)</td>
<td></td>
<td>0.01 PLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger Type</td>
<td></td>
<td>Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Delay</td>
<td></td>
<td>100 µsec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
<td>TRIGGER IN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Triggering the B2985A/87A from the B2911A
Setting up the B2985A/87A from its front panel

1. Set “Dual Measure Result Display” off to make the instrument measure only current (if this has not already been done).
 a. Open the Display Preference dialog by pressing the function keys.
 b. Press to edit “Dual Measure Result Display”. The field pointer should then be highlighted in green (EDIT).
 c. Press and then press to apply the settings.

2. Set the current measurement range operation to FIXED.
 a. Press to show the Meter View function keys and then press to set the current measurement range operation to FIXED.
 b. Press repeatedly until is shown on the function key. Note: In this example the 2 mA range is best because the expected maximum current is around several hundred micro amps.
Setting up the B2985A/87A from its front panel (continued)

3. Select Manual Aperture Mode and set the Aperture Time
 a. Press \(\text{ to select the manual aperture mode.} \)
 b. Press \(\text{ to show } \text{, where } \text{ stands for Power Line Cycle. 0.01 PLC is the desired aperture time in this example, which is short enough to suppress self-heating affects and long enough to provide the required accuracy.} \)

4. Set “Triggered Voltage Source” to the desired PD voltage.
 a. Hide the condensed Roll View by pressing \(\text{.} \)
 b. Rotate \(\text{ to select “Triggered Voltage Source” and press } \text{ to edit it.} \)
 c. Set the voltage value to the desired PD voltage, which is 0.1 V in this example. Use the arrow keys to move to the digits that you want to edit.
Setting up the B2985A/87A from its front panel (continued)

5. Set the Trigger Parameters to make the instrument perform measurements whenever it receives a trigger signal from the B2911A.
 a. Press \[\text{Show Trigger} \] to show Trigger Parameters.
 b. Press \[\text{MANUAL} \] and press \[\text{OK} \] to select the manual trigger setting mode.

 ![Image of Trigger Parameters]

 c. Rotate \[\text{Select} \] to select Trigger Parameters and fill in the values as shown below.
 (Measure Count: 201, Measure Delay: 100 µs, Measure Trigger: TIN)

 ![Image of Trigger Parameters with values]

 d. Press \[\text{System Menu} \] to open the BNC Configuration dialog, which defines the trigger signal properties.
 e. Make sure that “Input Polarity” is set to “NEGATIVE” and then press \[\text{OK} \].
 If not, set it to “NEGATIVE”.

 ![Image of BNC Configuration dialog]
Setting up the B2985A/87A from its front panel (continued)

6. Enable the Voltage Source and Ammeter.
 a. Press Voltage Source \[\text{On/Off}\] to enable the Voltage Source.
 b. Press Ammeter \[\text{On/Off}\] to enable the Ammeter.

Controlling the B2985A/87A using SCPI commands

If you prefer to control the B2985A/87A remotely using SCPI remote commands, then the following material explains how to do this.

The series of commands shown in group “A” configure measurement parameters such as measurement range and aperture time. Next the series of commands shown in group “B” should be sent to set up the voltage source. Finally, the series of commands shown in group “C” should be sent to set up the B2985A/87A’s trigger parameters.

```
B2985A/87A SCPI command example

*RST
:DISP:ENAB OFF
:SENS:FUNC "CURR"
:SENS:CURR:RANG:AUTO OFF
:SENS:CURR:RANG 0.002
:SENS:CURR:NPLC:AUTO OFF
:SENS:CURR:NPLC 2E-4
:SOUR:FUNC:MODE VOLT
:SOUR:VOLT:TRIG 0.1
:TRIG:SOUR TIN
:TRIG:COUN 201
:TRIG:ACQ:DEL 1E-4
:SYST:TIN:POL NEG
:OUTP:STAT ON
:INP:STAT ON

C
```

A

B

C
Set up the B2911A via front panel operation

1. Set the Source Function to Current
 a. Press repeatedly until Single View for Channel 1 is shown.
 b. Press and then press to set the Channel 1 Source Function to Current.
 c. Press and then set the Channel 1 Source Value to 0 A.

2. Set the Voltage Limit Value
 a. Press and then set the Channel 1 Limit Value to 2.5 V as shown.

3. Set the Aperture Time
 a. Press , and then press to set the Aperture Time to SHORT (0.01 PLC).

4. Enable remote sensing
 a. Press , , to open the Output Connection dialog.
 b. Press to select Sensing Type and then press to enable remote sensing.
 c. Then press to apply the changes.
Set up the B2911A via front panel operation (continued)

5. Set up the Sweep Parameters to make the instrument perform a current sweep.
 a. Press to show the Sweep Parameters.
 b. Press and press to turn on Single Linear Sweep Source Mode.
 c. Rotate to select Sweep Parameters and fill in the values as shown below. (Start: 0 A, Stop: 50 mA, Points: 201)
Set up the B2911A via front panel operation (continued)

6. Set the Trigger Parameters to make the instrument step current at regular intervals.
 a. Press \(\text{Show Trigger} \) to show the Trigger Parameters.
 b. Press \(\text{Trigger} \) and press \(\text{Timer Trigger Setting Mode} \) to select Timer Trigger Setting Mode.
 c. Rotate \(\text{Trigger Parameters} \) to select Trigger Parameters and fill in the values as shown below.
 (Measure Count: 201, Source Count: 201, Measure Delay: 100 \(\mu \)s,
 Measure Period: 500 \(\mu \)s, Source Count: 500 \(\mu \)s)
Set up the B2911A via front panel operation (continued)

7. Set the Trigger Parameters to make the instrument output a trigger signal each time the channel steps current.
 a. Press Trigger to open the Trigger Configuration dialog.
 b. Press to select Layer and then press to select ACTION for Layer.
 c. Rotate to select Trigger Output and fill in the entries as shown below.
 d. Then press OK to apply the changes.
 e. Press More... I/O DIO and then press Config to open the DIO Configuration.
 f. Press to edit Pin # and then select to set it to Pin 9.
Set up the B2911A via front panel operation (continued)

g. Rotate \(\text{\textbullet} \) to select parameters and fill in the entries as shown below. (Function: TRIGGER OUT, Output Trigger Timing: AFTER)

![B2911A Configuration Screen](image)

h. Then press \(\text{\textbullet} \) to apply the changes.

Controlling the B2911A using SCPI commands

If you prefer to control the B2911A remotely using SCPI commands, then the following material explains how to do this.

The series of commands shown in group “A” configure the source function parameters such as source mode and sweep source condition. After that the commands shown in group “B” are sent to set the measurement parameters. Next the commands shown in group “C” are sent to set up the B2911A’s trigger condition. Finally, the series of commands shown in group “D” should be sent to configure the instrument to send a trigger signal each time the channel steps current.

<table>
<thead>
<tr>
<th>B2911A SCPI command example</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
</tr>
<tr>
<td>:DISP:ENAB OFF</td>
</tr>
<tr>
<td>:SOUR:FUNC:MODE CURR</td>
</tr>
<tr>
<td>:SOUR:Curr:MODE:SWEP</td>
</tr>
<tr>
<td>:SOUR:Curr:0</td>
</tr>
<tr>
<td>:SOUR:Curr:STAR 0</td>
</tr>
<tr>
<td>:SOUR:Curr:STOP 0.05</td>
</tr>
<tr>
<td>:SOUR:SWE:POIN 201</td>
</tr>
<tr>
<td>:SENS:VOLT:PROT 2.5</td>
</tr>
<tr>
<td>:SENS:VOLT:NL:CAUTO OFF</td>
</tr>
<tr>
<td>:SENS:VOLT:NL:PLC 2E-4</td>
</tr>
<tr>
<td>:SENS:REM ON</td>
</tr>
<tr>
<td>:TRI:G:SOUR TIM</td>
</tr>
<tr>
<td>:TRI:G:COUNT 201</td>
</tr>
<tr>
<td>:TRI:G:TIM 5E-4</td>
</tr>
<tr>
<td>:TRI:G:ACQ:DEL 1E-4</td>
</tr>
<tr>
<td>:SOUR:TOUT ON</td>
</tr>
<tr>
<td>:SOUR:TOUT:SIGN EXT9</td>
</tr>
<tr>
<td>:SOUR:DIG:EXT9:FUNC TOUT</td>
</tr>
<tr>
<td>:SOUR:DIG:EXT9:POL NEG</td>
</tr>
<tr>
<td>:SOUR:DIG:EXT9:TOUT:POS AFT</td>
</tr>
<tr>
<td>:SOUR:DIG:EXT9:TOUT:WIDT 1E-4</td>
</tr>
<tr>
<td>:OUTP:STAT ON</td>
</tr>
</tbody>
</table>
Perform LIV Sweep Measurement

After configuring each instrument, execute the following procedures to perform laser diode LIV sweep measurements.

Initiate the B2985A/87A to receive trigger signals from the B2911A by pressing

![Trigger][Initiate][ALL]

Initiate the B2911A to start sweeping drive current to the LD and send trigger signals after each current step by pressing

![Trigger][Initiate][ALL][On 1]

If you prefer to initiate the instruments using SCPI commands, send an “.INIT (@1)” command to the B2985A/87A first, and then send an “.INIT (@1)” command to the B2911A to start the LIV sweep measurement.

The measurement results can be seen from the graphical user interfaces of the B2985A/87A and B2911A as shown in Figure 6. The Graph View function allows you to quickly examine measurement results.

![Figure 6. LD voltage and PD current measurement results](image-url)
Using the instruments’ USB connections, a CSV file containing the measurement results can be exported to a flash drive and imported into a PC. This allows you to analyze the measurement results in detail using a spreadsheet application and to plot the results of both the PD current and the LD current measurements as shown in Figure 7.

![LIV Test Result](image)

Conclusion

The Keysight B2985A/87A Electrometer/High Resistance Meter has a number of features that make it ideal for photodiode (PD) characterization. These include: a 0.01 fA current measurement resolution, a wide selection of current measurement ranges (from 2 pA to 20 mA) and a 1,000 V voltage sourcing capability that supports the evaluation of high-voltage devices such as avalanche photodiodes (APDs). These measurement capabilities meet virtually all existing and future low-current PD characterization needs.

Besides its impressive current and voltage specifications, the B2980A series has a number of other capabilities that aid in the evaluation of PDs. One helpful feature is its 4.3” color LCD-based graphical user interface (GUI) that provides multiple options for viewing data in different formats, including graphs, histograms and trend charts. These unique front-panel capabilities facilitate the capture of transient behavior and provide the ability to make quick statistical analyses without the need for a PC.

In addition, the B2980A Series has the ability to send trigger signals to and receive trigger signals from external instruments. This makes it easy to synchronize the B2980A series with other instruments (such as the B2900A series of SMUs), which is important when performing light-current-voltage (L-I-V) sweep tests to characterize laser diodes (LDs).
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

www.keysight.com/find/precisionMEASURE

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 509286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 803563
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO 9001:2015 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2015, 2017
Published in USA, December 1, 2017
5992-0603EN
www.keysight.com