Keysight Technologies
RF Testing for Civil Unmanned Aerial Vehicles

Application Note
RF Testing for Civil Unmanned Aerial Vehicles

An unmanned aerial vehicle (UAV), also known as a drone, is an aircraft without a human pilot aboard. The flight of UAVs is manually controlled by the remote control of a pilot on the ground, or autonomously controlled by onboard computers. In the past, UAVs have mostly been used for military and special operation applications. But it is gaining more civil applications now in the areas such as commercial aerial surveillance, journalism, commercial and motion picture filming, search and rescue, and nonmilitary security work, such as inspection of grid system.

Main components of a civil UAV usually include the frame, propellers (either fixed-pitch or variable-pitch), electric motors, flight controller, stabilization gimbal, camera, and wireless communication.
Wireless Communication in a Civil UAV

Civil UAV is usually remotely controlled by a pilot on the ground, and wireless communication is adopted between the UAV and its remote controller. The wireless communication system on a civil UAV usually works in the ISM bands (Industrial, Scientific and Medical bands), e.g. 433 MHz, 815 MHz, 2.4 GHz and 5.8 GHz. Figure 2 shows the typical communication links between a UAV and its remote controller.

- **Uplink** is from the remote controller to the UAV and is used to transmit control signals. Uplink communications need to be stable and robust to overcome interference signals, so spread spectrum techniques such as frequency hopping spread spectrum (FHSS) or direct sequence spread spectrum (DSSS) are utilized.

- **Downlink** is from the UAV to the remote controller and is used to transmit data from the onboard sensors and real-time image/video data from the onboard cameras. Downlink needs to provide higher data throughput, so Wi-Fi or proprietary standards based on orthogonal frequency-division multiplexing (OFDM) are typically considered. Some vendors may even consider multiple-input and multiple-output (MIMO) antennas for better data throughput and immunity to interference.

![Figure 2. Communication links between a UAV and its remote controller](image-url)
Testing Wireless Communication Modules in Civil UAVs

Most civil UAVs work in the ISM bands, as it is free and does not require a license to use. Like the other electronic products working in the same bands, the UAVs have to comply with the various radio emission standards defined by each government, such as the European EN 300 328 and the USA FCC part 15.249. Most civil UAV vendors adopt off-the-shelf FHSS/OFDM/Wi-Fi chipsets or modules to develop their own products and have to test the UAVs from design phase to production phase to make sure their UAVs are transmitting wireless signals compliant to the various radio emission standards.

More importantly, UAV vendors need to optimize their product design for better end user experience. For example, EN 300 328 specifies the maximum RF output power shall not exceed 20 dBm. In order to get a wider and more reliable remote control range, UAV vendors need to optimize the antenna design so that the antenna return loss is 14 dB (VSWR 1.5) or even 20 dB (VSWR 1.2).

Table 1 lists RF transmitter test items defined in EN 300 328. EN300 328 defines two categories of the 2.4 GHz transmitter: Category 1 refers to transmitters adopting frequency hopping spread transmitter (FHSS) technologies, and category 2 refers to transmitters adopting non-frequency-hopping technologies such as orthogonal frequency-division multiplexing (OFDM) and direct sequence spread spectrum (DSSS). The two transmitter categories have different test items and test methods. For example, 4.3.1.3 is dwell time, minimum frequency occupation and hopping sequence is a compulsory test for a category 1 transmitter, and 4.3.2.2 Power Spectral Density is a compulsory test for a category 2 transmitter.

Table 1 EN 300 328

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Requirement conditionality</th>
<th>Test specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RF output power</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>2 Power spectral density</td>
<td>C</td>
<td>Only for modulations other than FHSS</td>
</tr>
<tr>
<td>3 Duty cycle, Tx-sequence, Tx-gap</td>
<td>C</td>
<td>Only for non-adaptive equipment</td>
</tr>
<tr>
<td>4 Dwell time, minimum frequency occupation & hopping sequence</td>
<td>C</td>
<td>Only for FHSS</td>
</tr>
<tr>
<td>5 Hopping frequency separation</td>
<td>C</td>
<td>Only for FHSS</td>
</tr>
<tr>
<td>6 Medium utilisation</td>
<td>C</td>
<td>Only for non-adaptive equipment</td>
</tr>
<tr>
<td>7 Adaptivity</td>
<td>C</td>
<td>Only for adaptive equipment</td>
</tr>
<tr>
<td>8 Occupied channel bandwidth</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>9 Transmitter unwanted emissions in the OOB domain</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>10 Transmitter unwanted emissions in the spurious domain</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>11 Receiver spurious emissions</td>
<td>U</td>
<td>E</td>
</tr>
<tr>
<td>12 Receiver blocking</td>
<td>C</td>
<td>Only for adaptive equipment</td>
</tr>
</tbody>
</table>
A Cost-Effective Solution to Test UAV RF Performance

The civil UAV industry is rapidly growing and many vendors are small to medium size, including start-ups. Since FHSS/DSSS/OFDM are mature technologies, these small to medium size vendors often prefer to test several key RF specifications instead of a comprehensive RF test, especially in the production phase. A cost-effective RF test solution based on the Keysight’s N9320B and N9322C basic spectrum analyzers (BSAs) is ideal in this case.

Transmitter RF test

The device under test (DUT) is set to test mode so it will only transmit in a pre-defined frequency. Frequency hopping is disabled. The N9320B and N9322C BSAs can make quick measurements of the following items:

- Max RF output power and power spectral density (not for FHSS transmitters)
- Occupied bandwidth
- Spectrum emission mask (masks are different for frequency hopping transmitters and non-frequency-hopping transmitters)
Antenna test

The N9322C BSA offers a built-in VSWR bridge to enable one-port return loss, VSWR, insertion loss, and distance-to-fault measurement capabilities for frequencies up to 7 GHz. The valley point of return loss measurement represents the resonant frequency of the antenna. Figures 6 and 7 depict a 2.4 GHz antenna measurement using an N9322C.
Conclusion

The N9320B and N9322C BSAs present cost-effective test solutions for civil UAVs because:

- Both N9320B and N9322C BSAs offer basic performance and functions required to make essential RF tests for civil UAVs
- The N9322C BSA offers cable and antenna test capability to verify the antenna performance and cable installation quality

For more information about the N9320B and N9322C BSAs, please visit the following web addresses:

www.keysight.com/find/n9320b
www.keysight.com/find/n9322c
www.keysight.com/find/iotrf
Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology. From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 692255
Switzerland 0800 805363
Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO9001 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 1, 2017
5992-1299EN
www.keysight.com