Keysight Technologies
Five Tips for Optimizing Battery Drain on IoT Devices

Application Note
Tip 1. View Current Drain Waveforms for Deep Insights into Battery Run Time

Gain deeper insights into device operation to optimize battery run time.

To simply validate battery run time, you can either measure the run time directly or measure current drain for a prolonged period and extrapolate based on stated battery capacity. However, optimizing run time requires several tests to gain additional insights. You must test and characterize the device, its sub-circuits and the battery, both independently and in combination. Detailed battery drain analysis offers deeper insights into device operation that enable you to optimize run time.

High-speed, high-resolution current drain digitization yields deeper insights for optimizing battery run time.

Digitizing the battery current drain at 50 kSa/s or greater and with a wide dynamic measurement range yields deep insights into battery run time. Each approach has advantages and limitations:

- Current probes such as the Keysight N2820A, used with digital oscilloscopes, provide high-speed current waveform digitization. However, accuracy and noise performance depend on the oscilloscope to which the current probe is attached.
- A high-end DMM, such as the Keysight 34470A, can provide several digits of precision with good accuracy, but the small display may not show waveform details. You may have to move the data to a computer for full-resolution analysis.
- A fast data acquisition system and an accurate current shunt can provide better accuracy and wider range than a current probe and oscilloscope. However, you must minimize the current shunt peak voltage drop so that it does not unduly affect the DUT, keeping in mind that a very small shunt voltage drop limits the measurement dynamic range and accuracy.
- Some specialized source/measure units (SMUs), such as the Keysight N6781A and B2900 Series, combine DC sourcing with a high-speed digitizing, wide-dynamic-range measurement system that can accurately characterize current drain without the voltage burden of an external shunt resistor.
- A device current waveform analyzer, such as the Keysight CX3300 Series, has exceptional precision, accuracy, and bandwidth. These features, combined with a large display, let you see waveform features that were never visible on other devices.

Example of deep insights from a device’s current drain waveforms:

As one example, Figure 1 shows the current drain on an operating wearable fitness monitor measured by the Keysight N6781A SMU. The N6781A is a battery emulator tailored for powering mobile devices up to 20 W and measuring current drain from nA to A at over 195 kSa/s. Its wide dynamic measurement range and high-speed digitizing quickly yield deep insights for optimizing battery run time. The N6785A SMU module has the same capabilities, but can provide 80 W.

The insights gained include:

- Idle current base level value
- Idle period duration
- Current drain values and durations of activities during the idle period
- Transmit current value and RF power amp power added efficiency (PAE)
- Transmit current duration

Accurate current drain measurements yield deep insights that enable exceptional battery run time for your devices.
Tip 2. Improve Measurement Accuracy to Ensure Longer Battery Run Time in Power-saving Modes

Evaluating a device’s current drain in sleep modes is fundamental to optimizing battery run time.

Most IoT devices spend the majority of their time in standby or other low-power modes. The device occasionally wakes up and briefly enters an active state to process data or communicate. The resulting current drain has the following characteristics:

- Long period of tenths of seconds to tens of hours
- Extremely low duty cycle, often much less than one percent
- Extremely high crest factor (100 or more)
- Wide dynamic range (up to 600,000:1 current ratio between operating and sleep modes)

Although the sleep/standby power consumption is very low, these low-power modes consume much of the battery’s capacity. The long times spent in low-power modes require unprecedented accuracy to optimize battery run time, which can be challenging for conventional test equipment. Even if the instrument (including digitizing data acquisition equipment) can adequately integrate the measurement over an appropriate duration, its fixed measurement range may not have sufficient dynamic range to accurately measure both the peak pulse and baseline sleep currents. Because of waveform’s relatively high peak value, the instrument’s offset error for the required measurement range is often comparable to the average value, resulting in unacceptably high measurement error. Workarounds may improve some measurement aspect, but they usually have other tradeoffs, such as limiting bandwidth.

Current drain measurement example for a power-savings mode

Consider a wireless temperature transmitter’s pulsed current drain with the following characteristics:

- Period of 4 seconds
- Duty cycle of 0.17%
- Crest factor of 400

Because the power level is under 20 W, a Keysight N6781A DC SMU was used to power and measure the temperature transmitter’s current drain. The SMU includes a high-speed digitizer for measuring current drain on wireless devices. The current drain was first measured using the SMU’s fixed 100-mA measurement range, as shown in Figure 2. This is comparable to using conventional test equipment. However, the N6781A also includes an innovative, seamlessly ranging measurement system that continuously digitizes a device’s current drain from nanoamps to amps at more than 195 KSa/sec. This provides accurate measurements over a greatly extended dynamic range. Figure 3 captures the improved result with the N6781A’s seamless ranging.

The seamless ranging yielded the following results:

- 100x improvement in sleep current base measurement error, from 115% to 1.15%
- 75x improvement in overall average current measurement error, from 18.9% to 0.245%
- 5x improvement in the noise floor, from 47 µA to 10 µAp-p

Furthermore, the high-speed digitizing yielded greater insights into both sleep and transmit activities. Combined with seamless measurement ranging, this provides useful insights for evaluating power-savings operating modes when optimizing battery run time.

Figure 2. Wireless temperature transmitter current drain measurement shown using the 14585A software and an N6781A set to a fixed measurement range

Figure 3. Wireless temperature transmitter current drain, measurement shown using the 14585A software and an N6781A using seamless ranging
Tip 3. Analyze Distribution Profiles to Quickly Optimize Battery Run Time

To optimize battery run time, you need to quickly and easily visualize and quantify impact of design changes on a wireless mobile device's long-term current drain.

The activities of various sub-circuits in IoT devices may vary widely, depending on user behavior, program settings, the wireless environment, and the complexity of the device itself. The associated sub-circuit current drain varies correspondingly. Validating improvements from design changes requires you to log current drain over a substantial duration to average out random behavior. However, you need more detail about the impact of design changes when to optimize battery run time. Did you get the expected improvement? How do you determine which sub-circuits and activities were impacted? You can manually scroll through the data logs to estimate levels and durations of specific current bursts, but this approach has several drawbacks:

- It is extremely time consuming.
- Many values are estimates at best, due to the long-term random nature.
- It is easy to reach incorrect conclusions because of the difficulty of examining and quantifying countless millisecond-duration activities in up to hours-long data logs.

While long-term logging of a device’s current drain is necessary, visual inspection of data log details is problematic. You need alternate methods to quickly and effectively analyze long-term current drain logs.

Analyzing probability distribution function profiles quickly and concisely illustrates and quantifies detail differences in long-term current drain resulting from design changes.

You can analyze the probability distribution function (PDF) of the long-term current drain to quickly and concisely visualize and quantify the impact of design changes. A PDF plots the current drain over time against the relative frequency of occurrence of the given current level, with the total being 100%. Histograms are the most common form of PDF, but complementary cumulative distribution functions (CCDFs) work particularly well for quickly illustrating long-term current drain and quantifying the impact of design changes.

What is a CCDF?

- Cumulative distribution function (CDF) = ∫PDF (area under curve = 1 or 100%).
- Complementary cumulative distribution function (CCDF) = 1-CDF.
A CDF profile goes from 0% to 100% probability, while a CCDF profile goes from 100% to 0%, as shown in Figure 4. This image was captured using a Keysight N6781A with 14585A software. The X-axis is the current drain's amplitude and the Y-axis is its relative frequency of occurrence. Horizontal shifts in the profile are amplitude-related, and vertical shifts are time-related. You can use these shifts to quickly analyze and quantify detail differences of long-term current drain resulting from design changes.

The CX3300 Series device current waveform analyzer also has a CCDF feature, and you can optionally display it with the FFT graph, as shown in Figure 5.
Evaluating CCDF profiles to analyze power savings for a mobile phone’s standby operation.

To extend battery run time for standby, mobile phones often employ discontinuous receive (DRX) operation. Compared to continuous receive, the power savings depends on, among other things, the level of sleep current you can achieve during inactive periods and how much you can minimize the receive activity time.

To evaluate a mobile phone’s power savings, we used the N6781A DC SMU and 14585A software to log long-term current drain for continuous and discontinuous RX standby operation. As shown in Figure 6, we used the 14585A software to display and compare CCDF profiles of the two current drains to quickly and easily identify and analyze details of the power savings. By quantifying the vertical and horizontal shifts between the two profiles we found:

- A (vertical) change of 2.8% of RX activity at 128 mA returned 18% power savings
- A (horizontal) change of 11.9 mA in idle current returned 55% power savings
- The remaining 27% power savings came from reduced baseband activity
- The total power savings was 85.5%

As you can see, the CCDF helps you quickly and visually identify, and quantify the detailed impact of design changes on sub-circuits and associated activities, which would be tedious with traditional approaches.
Tip 4. Emulate the Battery for More Realistic Device Test Results

A key consideration when powering a device with a DC source is to get current drain test results comparable to a battery.

Batteries are very non-ideal energy sources because they interact with the device, influencing its resultant current drain. Accurate current drain results are essential for optimizing your device’s battery run time. You must take the battery’s characteristics into consideration when powering your device with a DC source to ensure your current drain results properly simulate battery current drain.

Figure 7 shows the pulsed current drain and voltage response on a battery-powered device. This shows that a battery has substantial series output impedance, causing its output voltage to drop proportionally to the device’s current drain. Many devices adapt and adjust accordingly to compensate for the battery’s characteristics. Specifically, the battery drops proportionally with current and the battery resistance is 150 mΩ.

A general purpose DC source strives to be an ideal voltage source with zero output impedance by using remote sensing feedback to keep its output voltage fixed. Unlike a battery, however, its voltage does not drop with load current. Also, feedback regulation has finite response time, which leads to voltage drop and overshoot during loading and unloading transitions. A substantially large transient voltage drop can even trigger a device’s low battery voltage shutdown. Figure 8 shows the same measurements made in Figure 7 using a general purpose DC source instead of the battery. The very different voltage response results in a current drain 10% higher than when using the battery.
A battery emulator DC source produces device current drain comparable to an actual battery.

DC sources tailored for battery emulation have these characteristics:

- Current sinking and sourcing, to emulate a battery’s charging current capabilities
- Programmable series output resistance to emulate a battery’s impedance
- Extremely fast load transient response to minimize voltage drops and overshoots, similar to a battery’s voltage response

Figure 9 shows the same measurements made in Figure 7 using a Keysight N6781A SMU with battery emulation capabilities instead of the battery. The SMU’s series output resistance was set to match the battery’s 150 mΩ value. Both the voltage response and resultant current drain were comparable to those of the battery.

When powering your device with a DC source, emulate the battery’s characteristics for current drain results comparable to those of a battery. A general purpose DC source does not behave like a battery, but a DC source with battery emulation capabilities helps ensure more accurate results. Both the N6781A (up to 20 W) and N6785A (up to 80 W) have programmable output resistance.
Tip 5. Simplify Validation of a Battery’s Capacity and Energy Ratings

A key part of determining a device’s run time is validating the battery’s capacity and energy ratings.

If you determine a device’s run time based solely on a manufacturer’s data sheet, your results will likely be inaccurate. The data sheet capacity is often based on ideal conditions and represents the maximum possible charge. Actual capacity usually ends up being less when used in a real application.

Battery capacity is the charge in ampere-hours (Ah) the battery is specified to hold. This differs from the battery’s energy rating, which is in watt-hours (Wh). The energy rating is usually the battery’s capacity (Ah) times its stated nominal voltage (V). Depending on your application, one value may be more important than the other, so it is important to validate both values. Temperature and battery age also affect the charge obtained from the battery, so you must also take these into account when measuring run time.

Validating a battery’s capacity and energy rating requires accurate voltage and current logging under precisely controlled conditions.

Very small differences in charging (for rechargeable batteries) and discharging conditions can lead to large differences in the capacity and energy obtained from a battery. It is paramount to precisely replicate and control all conditions for best results. One key condition is the discharge rate, usually stated as a constant current at some ratio of the Ah capacity rating, referred to as the C rate. The C rate is the reciprocal of the battery run time. Higher discharge rates lead to lower capacity and energy delivery, so a C rate of 0.3 would theoretically fully discharge the battery in 3.33 hours. For a 2-Ah battery, a C rate of 0.3 would be 0.6 A constant current discharge. The measured energy rating may differ from that based on the stated nominal voltage, as the actual battery run down voltage profile may slightly change the result. Precisely controlling test conditions while accurately logging the battery’s current and voltage ensures accurate, consistent results when determining the battery’s capacity and energy ratings.

Example of validating a battery’s capacity and energy ratings:

We used the setup depicted in Figure 10 to discharge a rechargeable lithium ion battery at a fixed C rate. The full 2-quadrant capability on the Keysight N6781A and N6785A source/measure units makes them well suited for use as a precision high-performance electronic load and a precision DC source. We quickly configured a constant current discharge of 0.3 A with 3.0-V cutoff voltage and long-term data logging to validate the capacity and energy ratings using the companion Keysight 14585A software. The validation results and energy ratings of the battery are shown in Figure 11. Placing measurement markers at the start and cutoff voltage points on the data log revealed the battery delivered 879 mA and 3.32 Wh, both significantly lower than the 1 Ah and 3.6 Wh ratings on the battery’s data sheet. The next steps are to identify what factors lead to the difference and to assess whether additional capacity can be extracted from the battery. As this example shows, you should validate the battery’s capacity and energy content rather than relying on the product’s data sheet.
One tool particularly well-suited for this task is the Automatic Current and Power Profiler of the CX3300 device current waveform analyzer. It automatically divides the waveform into segments and provides a complete analysis of each waveform segment in both graphical and tabular format.

Figure 12. Using the Automatic Current and Power Profiler on the CX3300 to analyze current drain
Evolving

Our unique combination of hardware, software, support, and people can help you reach your next breakthrough. We are unlocking the future of technology.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.

Keysight Infoline
www.keysight.com/find/Infoline
Keysight’s insight to best in class information management. Free access to your Keysight equipment company reports and e-library.

KEYSIGHT SERVICES

Keysight Services
www.keysight.com/find/service
Our deep offering in design, test, and measurement services deploys an industry-leading array of people, processes, and tools. The result? We help you implement new technologies and engineer improved processes that lower costs.

Three-Year Warranty
www.keysight.com/find/ThreeYearWarranty
Keysight’s is committed to superior product quality and lower total cost of ownership. Keysight is the only test and measurement company with three-year warranty standard on all instruments, worldwide. And, we provide a one-year warranty on many accessories, calibration devices, systems and custom products.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea (82) 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 596270
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353
United Kingdom 0800 0280637

For other unlisted countries:
www.keysight.com/find/contactus

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System