Front Panel Display and Softkeys

Mode / Parameter Area
Use the CURSOR keys to move the entry focus to a mode, parameter format, or parameter value.

Modify / Enter Area
Use the KNOB to select a mode or modify parameters and formats.
Press ENTER or a UNIT key to confirm parameter changes.

Entry Focus
Press a SOFTKEY to access the required entry screen.

Screen Selection Area
Press MORE key to access the additional screen menus:
LIMITS TRG-LEV MEMCARD CONFIG
Reference Guide

Agilent 81130A 400/660 MHz Pulse/Data Generator
Notice

Copyright
© 1998 Agilent Technologies 1998, 2000. All rights reserved.
No part of this manual may be reproduced in any form or by any means
(including electronic storage and retrieval or translation into a foreign
language) without prior agreement and written consent from Agilent
Technologies Inc. as governed by United States and international
copyright laws.

Notice
The material contained in this document is subject to change without
notice. Agilent Technologies makes no warranty of any kind with regard
to this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent
Technologies shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty
This Agilent Technologies product has a warranty against defects in
material and workmanship for a period of three years from date of
shipment. During the warranty period, Agilent Technologies will, at its
option, either repair or replace products that prove to be defective. For
warranty service or repair, this product must be returned to a service
facility designated by Agilent Technologies. The Buyer shall pay Agilent
Technologies round-trip travel expenses. For products returned to
Agilent Technologies for warranty service, the Buyer shall prepay
shipping charges to Agilent Technologies and Agilent Technologies shall
pay shipping charges to return the product to the Buyer. However, the
Buyer shall pay all shipping charges, duties and taxes for products
returned to Agilent Technologies from another country.
Notice

Agilent Technologies warrants that its software and firmware designated by Agilent Technologies for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument software, or firmware, will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance. No other warranty is expressed or implied. Agilent Technologies specifically disclaims the implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies supplied are the Buyer's sole and exclusive remedies. Agilent Technologies shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort or any other legal theory.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment. Agilent Technologies further certifies that its calibration measurements are traceable to the United States Institute of Standards and Technology, to the extent allowed by the Institute's calibrating facility, and to the calibration facilities of other International Standards Organization members.

Services and Support

Any adjustment, maintenance, or repair of this product must be performed by qualified personnel. Contact your customer engineer through your local Agilent Technologies Service Center. You can find a list of local service representatives on the Web at:

http://www.agilent.com/Service/English/index.html
Safety Summary

The following general safety precautions must be observed during all phases of operation of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies Inc. assumes no liability for the customer's failure to comply with these requirements.

General

This product is a Safety Class 1 instrument (provided with a protective earth terminal). The protective features of this product may be impaired if it is used in a manner not specified in the operation instructions.

All Light Emitting Diodes (LEDs) used in this product are Class 1 LEDs as per IEC 60825-1.

Environmental Conditions

This instrument is intended for indoor use in an installation category II, pollution degree 2 environment. It is designed to operate at a maximum relative humidity of 95% and at altitudes of up to 2000 meters. Refer to the specifications tables for the ac mains voltage requirements and ambient operating temperature range.

Before Applying Power

Verify that the product is set to match the available line voltage, the correct fuse is installed, and all safety precautions are taken. Note the instrument's external markings described under “Safety Symbols” on page 8.
Safety Summary

Ground the Instrument
To minimize shock hazard, the instrument chassis and cover must be connected to an electrical protective earth ground. The instrument must be connected to the ac power mains through a grounded power cable, with the ground wire firmly connected to an electrical ground (safety ground) at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.

Fuses
Only fuses with the required rated current, voltage, and specified type (normal blow, time delay, etc.) should be used. Do not use repaired fuses or short-circuited fuse holders. To do so could cause a shock or fire hazard.

Do Not Operate in an Explosive Atmosphere
Do not operate the instrument in the presence of flammable gases or fumes.

Do Not Remove the Instrument Cover
Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made only by qualified service personnel.

Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel.
Safety Summary

Safety Symbols

⚠️ Caution (refer to accompanying documents)

ıldığı (ground) terminal

In the manuals:

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.
This guide provides reference information primarily for programming the Agilent 81130A via remote control.

Chapter 1 “General Programming Aspects” on page 13 gives general hints for programming instruments like the Agilent 81130A using SCPI commands.

Chapter 2 “Programming Reference” on page 25 provides detailed information on the SCPI commands supported by the instrument.

Chapter 3 “Specifications” on page 95 lists the instrument's technical specifications and provides exact definitions for the instrument's parameters.

For an introduction and information on the Agilent 81130A's user interface, please refer to the Quick Start Guide, p/n 81130-91020.
About this Book

Conventions Used in this Book

This book uses certain conventions to indicate elements of the Agilent 81130A’s user interface. The following table shows some examples:

<table>
<thead>
<tr>
<th>Softkeys</th>
<th>Press the MODE/TRG softkey to access the Mode/Trigger screen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardkeys</td>
<td>Press the MORE key to switch to the alternative softkey layout.</td>
</tr>
<tr>
<td>Alternate Keys</td>
<td>Press SHIFT + 0 (ON/OFF1) to switch on output1. The alternate key label—which is selected by pressing the SHIFT key—is given in parentheses.</td>
</tr>
<tr>
<td>Screen Quotes</td>
<td>Move the entry focus down to PULSE-PERIOD and turn the knob to select INTERNAL PLL.</td>
</tr>
<tr>
<td>Entry Focus</td>
<td>The highlight field, that can be moved with the cursor keys, to change modes, parameters, or parameter formats.</td>
</tr>
<tr>
<td>:VOLTage:HIGH 3V</td>
<td>Full command for programming a 3 V high level. The upper case letters represent the short form of the command, which results in faster programming times.</td>
</tr>
<tr>
<td>*RST</td>
<td>Common IEEE 488 command, to reset instrument to default status.</td>
</tr>
</tbody>
</table>
Contents

Notice .. 4
Safety Summary ... 6
About this Book ... 9

Chapter 1 General Programming Aspects

The GP-IB Interface Bus ... 14
Agilent 81130A Remote Control ... 15
Programming Recommendations ... 16
Common Command Summary .. 18
Status Model ... 19

Chapter 2 Programming Reference

Agilent 81130A SCPI Command Summary 26
Default Values, Standard Settings ... 34
Programming the Instrument Trigger Modes 38
SCPI Instrument Command List ... 42

Chapter 3 Specifications

Declaration of Conformity ... 96
Contents

Agilent 81130A Specifications ... 97
General .. 97
Timing Specifications ... 99
Main Output Level Specifications .. 102
External Input, External Clock/PLL Reference Input 103
Trigger Modes .. 105
Output Modes .. 106
Human Interface ... 108
Memory ... 109
Remote Control .. 109

Pulse Parameter Definitions ... 111
This chapter provides general information on writing GP-IB/SCPI programs for instruments like the Agilent 81130A.

Detailed information on programming the Agilent 81130A can be found in Chapter 2 “Programming Reference” on page 25.
The GP-IB Interface Bus

The GP Interface Bus is the interface used for communication between a controller and an external device, such as the Agilent 81130A. The GP-IB conforms to IEEE standard 488-1987, ANSI standard MC 1.1, and IEC recommendation 625-1.

If you are not familiar with the GP-IB, please refer to the following books:

Agilent 81130A Remote Control

GP-IB Address
You can only set the GP-IB address from the front panel of the instrument (refer to the *Quick Start Guide*).

The default GP-IB address is 10.

Modes of Operation
The Agilent 81130A has two modes of operation:

- **Local**
 The instrument is operated using the front panel keys.

- **Remote**
 After receiving the first command or query via the GP-IB, the instrument is put into remote state. The front panel is locked.
 To return to local operating mode, press `SHIFT (LOCAL)`.
Here are some recommendations for programming the instrument:

- Start programming from the default setting. The common command for setting the default setting is:

 *RST

- Switch off the automatic update of the display to increase the programming speed. The device command for switching off the display is:

 :DISPlay OFF

- The SCPI standard defines a long and a short form of the commands. For fast programming speed it is recommended to use the short forms. The short forms of the commands are represented by upper case letters. For example the short form of the command to set 100 ns delay is:

 :PULS:DEL 100NS

- To improve programming speed it is also allowed to skip optional subsystem command parts. Optional subsystem command parts are depicted in square brackets, e.g.: set amplitude voltage of output 1:

 [SOURce]:VOLTage[1][:LEVel][:IMMediate][:AMPLitude]. Sufficient to use: VOLT 1.2V

- For the commands to set the timing and level parameters, except of period/frequency, you can explicitly specify the output to be programmed (for compatibility reasons). If there is no output specified, the commands will set the default output 1.

 So, for setting a high level of 3 Volts for output 1 the commands are:

 :VOLT:HIGH 3V # sets high level of 3 V at out 1
 :VOLT1:HIGH 3V # sets high level of 3 V at out 1
• It is recommended to test a new setting that will be programmed on the instrument by setting it up manually. Enable the outputs so that the instrument’s error check system is on and possible parameter conflicts are immediately displayed. When you have found the correct setting, then use this to create the program. In the program it is recommended to send the command for enabling outputs (for example, :OUTPut ON) as the last command.

• Selftest of the instrument can be invoked by the common command *TST

• If it is important to know whether the last command is completed, then send the common command *OPC?
Common Command Summary

This table summarizes the IEEE 488.2 common commands supported by the Agilent 81130A:

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>–</td>
<td>Clear the status structure</td>
</tr>
<tr>
<td>*ESE</td>
<td><0–255></td>
<td>Set the Standard Event Status register mask</td>
</tr>
<tr>
<td>*ESE?</td>
<td>–</td>
<td>Read the state of the Standard Event Status enable register</td>
</tr>
<tr>
<td>*ESR?</td>
<td>–</td>
<td>Read the state of the Standard Event Status event register</td>
</tr>
<tr>
<td>*IDN?</td>
<td>–</td>
<td>Read the Instrument's Identification string</td>
</tr>
<tr>
<td>*LRN?</td>
<td>–</td>
<td>Read the complete Instrument Setting</td>
</tr>
<tr>
<td>*OPC</td>
<td>–</td>
<td>Set the Operation Complete bit when all pending actions are complete</td>
</tr>
<tr>
<td>*OPC?</td>
<td>–</td>
<td>Read the status of the Operation Complete bit</td>
</tr>
<tr>
<td>*OPT?</td>
<td>–</td>
<td>Read the installed options</td>
</tr>
<tr>
<td>*RCL</td>
<td><0–4></td>
<td>Recall a complete Instrument Setting from memory</td>
</tr>
<tr>
<td>*RST</td>
<td>–</td>
<td>Reset the instrument to standard settings</td>
</tr>
<tr>
<td>*SAV</td>
<td><1–4></td>
<td>Save the complete Instrument Setting to memory</td>
</tr>
<tr>
<td>*SRE</td>
<td><0–255></td>
<td>Set the Service Request Enable Mask</td>
</tr>
<tr>
<td>*SRE?</td>
<td>–</td>
<td>Read the Service Request Enable Mask</td>
</tr>
<tr>
<td>*STB?</td>
<td>–</td>
<td>Read the Status Byte</td>
</tr>
<tr>
<td>*TRG</td>
<td>–</td>
<td>Trigger</td>
</tr>
<tr>
<td>*TST?</td>
<td>–</td>
<td>Execute instrument's selftest</td>
</tr>
<tr>
<td>*WAI</td>
<td>–</td>
<td>Wait until all pending actions are complete</td>
</tr>
</tbody>
</table>
The instrument has a status reporting system conforming to IEEE 488.2 and SCPI. The above figure shows the status groups available in the instrument.

Each status group is made up of component registers, as shown in the following figure.
Condition Register

A condition register contains the current status of the hardware and firmware. It is continuously updated and is not latched or buffered. You can only read condition registers. If there is no command to read the condition register of a particular status group, then it is simply invisible to you.

Transition Filters

Transition filters are used to detect changes of state in the condition register and set the corresponding bit in the event register. You can set transition filter bits to detect positive transitions (PTR), negative transitions (NTR) or both. Transition filters are therefore read/write registers. They are unaffected by *CLS.

Event Register

An event register latches transition events from the condition register as specified by the transition filters or records status events. Querying (reading) the event register clears it, as does the *CLS command. There is no buffering, so while a bit is set, subsequent transition events are not recorded. Event registers are read only.
Enable Register

The enable register defines which bits in an event register are included in the logical OR into the summary bit. The enable register is logically ANDed with the event register and the resulting bits ORed into the summary bit. Enable registers are read/write, and are not affected by *CLS or querying.

Although all status groups have all of these registers, not all status groups actually use all of the registers. The following table summarizes the registers used in the instrument status groups.

<table>
<thead>
<tr>
<th>Status Group</th>
<th>Registers in Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONDition</td>
</tr>
<tr>
<td>QUESTIONable</td>
<td>√</td>
</tr>
<tr>
<td>OPERation¹</td>
<td>x</td>
</tr>
<tr>
<td>Standard Event Status</td>
<td>x</td>
</tr>
<tr>
<td>Status Byte</td>
<td>x</td>
</tr>
</tbody>
</table>

1 Present, but not used. COND and EVEN always 0.
2 Use *ESR? to query.
3 Use *ESE to set, *ESE? to query
4 Use *STB? to query
5 Use *SRE to set, *SRE? to query
Status Byte

The status byte summarizes the information from all other status groups. The summary bit for the status byte actually appears in bit 6 (RQS) of the status byte. When RQS is set it generates an SRQ interrupt to the controller indicating that at least one instrument on the bus requires attention. You can read the status byte using a serial poll or *STB?

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>1</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>2</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>3</td>
<td>QUESTionable Status Summary Bit</td>
</tr>
<tr>
<td>4</td>
<td>MAV—Message AVailable in output buffer</td>
</tr>
<tr>
<td>5</td>
<td>Standard Event Status summary bit</td>
</tr>
<tr>
<td>6</td>
<td>RQS; ReQuest Service</td>
</tr>
<tr>
<td>7</td>
<td>OPERation Status summary Bit, unused</td>
</tr>
</tbody>
</table>

Standard Event Status Group

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation Complete, set by *OPC</td>
</tr>
<tr>
<td>1</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>2</td>
<td>Query Error</td>
</tr>
<tr>
<td>3</td>
<td>Device Dependent Error</td>
</tr>
<tr>
<td>4</td>
<td>Execution Error</td>
</tr>
<tr>
<td>5</td>
<td>Command Error</td>
</tr>
<tr>
<td>6</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>7</td>
<td>Power On</td>
</tr>
</tbody>
</table>
OPERation Status Group

This Status Group is not used in the instrument.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>1</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>2</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>3</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>4</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>5</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>6</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>7</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>8</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>9</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>10</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>11</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>12</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>13</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>14</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>15</td>
<td>Always 0</td>
</tr>
</tbody>
</table>
QUESTionable Status Group

<table>
<thead>
<tr>
<th>Bit</th>
<th>QUESTionable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Voltage warning</td>
</tr>
<tr>
<td>1</td>
<td>Current warning</td>
</tr>
<tr>
<td>2</td>
<td>Time warning</td>
</tr>
<tr>
<td>3</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>4</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>5</td>
<td>Frequency warning</td>
</tr>
<tr>
<td>6</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>7</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>8</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>9</td>
<td>Pattern warning</td>
</tr>
<tr>
<td>10</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>11</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>12</td>
<td>Unused, always</td>
</tr>
<tr>
<td>13</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>14</td>
<td>Unused, always 0</td>
</tr>
<tr>
<td>15</td>
<td>Always 0</td>
</tr>
</tbody>
</table>

The QUESTionable Status group is used to report warning conditions amongst the voltage, current, pulse timing, frequency and pattern parameters. Warnings occur when a parameter, although not outside its maximum limits, could be causing an invalid signal at the output because of the actual settings and uncertainties of related parameters.
This chapter provides reference information on the following topics:

- “Agilent 81130A SCPI Command Summary” on page 26
- “Default Values, Standard Settings” on page 34
- “Programming the Instrument Trigger Modes” on page 38
- “SCPI Instrument Command List” on page 42

For general programming information, please refer to Chapter 1 “General Programming Aspects” on page 13.
Agilent 81130A SCPI Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
<th>Description</th>
<th>see page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ARM</td>
<td></td>
<td>(Trigger mode and source)</td>
<td>see page</td>
</tr>
<tr>
<td>[:SEQuence[1]</td>
<td>:STARt]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:LAYer[1]]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:LEVel</td>
<td><value></td>
<td>Set/read threshold level at EXT INPUT</td>
<td>43</td>
</tr>
<tr>
<td>:THReshold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:TERMination</td>
<td><value></td>
<td>Set/read the termination voltage at EXT INPUT</td>
<td>43</td>
</tr>
<tr>
<td>:MODE</td>
<td>GATed</td>
<td>STARted</td>
<td>43</td>
</tr>
<tr>
<td>:SENSe</td>
<td>POSitive</td>
<td>NEGative</td>
<td>44</td>
</tr>
<tr>
<td>:SOURce</td>
<td>EXT1</td>
<td>IMM</td>
<td>MAN</td>
</tr>
<tr>
<td>:INITiate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CONTInuous</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:CHANnel1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MATH</td>
<td>OFF</td>
<td>DIGital</td>
<td>45</td>
</tr>
</tbody>
</table>

44

43
Agilent 81130A SCPI Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
<th>Description</th>
<th>see page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIGital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STIMulus]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PATTERN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:LOOP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:INfinite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATE]</td>
<td>ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:START</td>
<td>SEGM1</td>
<td>SEGM2</td>
<td>SEGM3</td>
</tr>
<tr>
<td>[:LEVEL[1]]</td>
<td><value></td>
<td>Set/read the segment loop count</td>
<td></td>
</tr>
<tr>
<td>[:COUNT]</td>
<td><value></td>
<td>Set/read the segment loop count</td>
<td></td>
</tr>
<tr>
<td>:START</td>
<td>SEGM1</td>
<td>SEGM2</td>
<td>SEGM3</td>
</tr>
<tr>
<td>:LENGTH</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>:PRBS</td>
<td><base></td>
<td>Set/read the PRBS base (the same for all PRBS segments!)</td>
<td>48</td>
</tr>
<tr>
<td>:SEGMENT[1</td>
<td>2</td>
<td>3</td>
<td>4]</td>
</tr>
<tr>
<td>:DATA[1</td>
<td>2]</td>
<td><data></td>
<td>Set/read pattern data</td>
</tr>
<tr>
<td>:LENGTH</td>
<td><segment-length></td>
<td>Set/read the length of the segment (if the length is increased, '0' bits are appended)</td>
<td>52</td>
</tr>
<tr>
<td>:PRESet[1</td>
<td>2]</td>
<td>[<n>,<length></td>
<td>Set preset pattern with frequency CLOCK n</td>
</tr>
<tr>
<td>:TYPE[1</td>
<td>2]</td>
<td>DATA</td>
<td>PRBS</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>OFF</td>
<td>ON</td>
<td>OFFONCE</td>
</tr>
<tr>
<td>:UPDATE</td>
<td>OFF</td>
<td>ONCE</td>
<td>Update the hardware with pattern data</td>
</tr>
<tr>
<td>:SIGNal[1</td>
<td>2]</td>
<td>RZ</td>
<td>R1</td>
</tr>
</tbody>
</table>

27
<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
<th>Description</th>
<th>see page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DISPlay</td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>[:WINDow]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATe]</td>
<td>ON/OFF/1/0</td>
<td>Set/read frontpanel display state</td>
<td></td>
</tr>
<tr>
<td>:MMEMory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CATalog?</td>
<td>[A:]</td>
<td>Read directory of memory card</td>
<td>56</td>
</tr>
<tr>
<td>:CDIrectory</td>
<td>[<name>]</td>
<td>Change directory on memory card</td>
<td>56</td>
</tr>
<tr>
<td>:COPY</td>
<td><source>,[A:],<dest>[A:]</td>
<td>Copy a file on memory card</td>
<td>57</td>
</tr>
<tr>
<td>:DELete</td>
<td><name>[A:]</td>
<td>Delete a file from memory card</td>
<td>57</td>
</tr>
<tr>
<td>:INITialize</td>
<td>[A:[DOS]]</td>
<td>Initialize memory card to DOS format</td>
<td>58</td>
</tr>
<tr>
<td>:LOAD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:STATe</td>
<td><n>,<name></td>
<td>Load file from memory card to memory n</td>
<td>58</td>
</tr>
<tr>
<td>:STORe</td>
<td><n>,<name></td>
<td>Store memory n to memory card</td>
<td>58</td>
</tr>
<tr>
<td>:OUTPut[1</td>
<td>2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:NORMal]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATe]</td>
<td>OFF/OFF/1/0</td>
<td>Set/read normal output state</td>
<td>59</td>
</tr>
<tr>
<td>:COMPlement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:STATe]</td>
<td>OFF/OFF/1/0</td>
<td>Set/read complement output state</td>
<td>59</td>
</tr>
<tr>
<td>Command</td>
<td>Parameter</td>
<td>Description</td>
<td>see page</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>[:SOURce]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CORRection[1</td>
<td>2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:EDELay</td>
<td></td>
<td>Set/read channel delay deskew</td>
<td>60</td>
</tr>
<tr>
<td>[:TIMe]</td>
<td><value></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CURRent[1</td>
<td>2]</td>
<td></td>
<td>The CURRent and VOLTage subsystem cannot be used at the same time. Use the :HOLD command to select between them.</td>
</tr>
<tr>
<td>[::IMMediate]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:AMPLitude]</td>
<td><value></td>
<td>Set/read channel amplitude current</td>
<td></td>
</tr>
<tr>
<td>:OFFSet</td>
<td><value></td>
<td>Set/read channel offset current</td>
<td>61</td>
</tr>
<tr>
<td>:HIGH</td>
<td><value></td>
<td>Set/read channel high-level current</td>
<td>62</td>
</tr>
<tr>
<td>:LOW</td>
<td><value></td>
<td>Set/read channel low-level current</td>
<td>63</td>
</tr>
<tr>
<td>:LIMit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:HIGH</td>
<td><value></td>
<td>Set/read maximum current limits</td>
<td>63</td>
</tr>
<tr>
<td>:LOW</td>
<td><value></td>
<td>Set/read minimum current limits</td>
<td>64</td>
</tr>
<tr>
<td>:STATe</td>
<td>ON/OFF/10</td>
<td>Enable/Disable the current limits</td>
<td>64</td>
</tr>
<tr>
<td>:FREQency</td>
<td><value></td>
<td>Set/read frequency of pulses</td>
<td>65</td>
</tr>
<tr>
<td>[::CW]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:FIXed]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AUTO</td>
<td>ONCE</td>
<td>Do a frequency measurement at CLK IN</td>
<td>66</td>
</tr>
<tr>
<td>:HOLD[1</td>
<td>2]</td>
<td>VOLT/CURR</td>
<td>Switch between VOLTage and CURRent command subtrees</td>
</tr>
</tbody>
</table>
Agilent 81130A SCPI Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Parameter</th>
<th>Description</th>
<th>see page</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PHASe[1</td>
<td>2]</td>
<td><value></td>
<td>Set/read channel phase</td>
</tr>
<tr>
<td>[:ADJJust]</td>
<td><value></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FULSe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DCYCle[1</td>
<td>2]</td>
<td><value></td>
<td>Set/read channel dutycycle</td>
</tr>
<tr>
<td>:DELay[1</td>
<td>2]</td>
<td><value></td>
<td>Set/read channel delay (to leading edge)</td>
</tr>
<tr>
<td>:HOLD</td>
<td>TIME</td>
<td>PRATio</td>
<td>Hold absolute delay/delay as period fixed with varying frequency</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:UNIT</td>
<td>S</td>
<td>SEC</td>
<td>PCT</td>
</tr>
<tr>
<td>:HOLD[1</td>
<td>2]</td>
<td>WIDTH</td>
<td>DCYCle</td>
</tr>
<tr>
<td>:PERiod</td>
<td><value></td>
<td>Set/read pulse period</td>
<td>70</td>
</tr>
<tr>
<td>:AUTO</td>
<td>ONCE</td>
<td>Measure pulse period at CLK IN</td>
<td>71</td>
</tr>
<tr>
<td>:TDelay[1</td>
<td>2]</td>
<td><value></td>
<td>Set/read trailing edge delay</td>
</tr>
<tr>
<td>:TRANsition[1</td>
<td>2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:UNIT</td>
<td>S</td>
<td>SEC</td>
<td>PCT</td>
</tr>
<tr>
<td>[:LEADing]</td>
<td><value></td>
<td>Set/read leading-edge transition</td>
<td></td>
</tr>
<tr>
<td>:TRAiling</td>
<td><value></td>
<td>Set/read trailing-edge transition</td>
<td>73</td>
</tr>
<tr>
<td>:TRIGger[1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MODE</td>
<td>CONTinuous</td>
<td>STARt</td>
<td>Set/read the mode of the trigger output signal generation (ignored if not in pattern mode)</td>
</tr>
<tr>
<td>:POSitiOn</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>:VOLTage</td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>[:LEVel]</td>
<td>TTL</td>
<td>PECL</td>
<td>SYM</td>
</tr>
<tr>
<td>:WIDTH[1</td>
<td>2]</td>
<td><value></td>
<td>Set/read channel pulse-width</td>
</tr>
<tr>
<td>Command</td>
<td>Parameter</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>[:SOURce]</td>
<td>:ROSCillator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:SOURce</td>
<td>INTernal/EXTernal</td>
<td>Set/read PLL reference source</td>
<td>76</td>
</tr>
<tr>
<td>:EXTernal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FREQuency</td>
<td><value></td>
<td>Set/read frequency of external PLL reference. Value will be rounded to 1 MHz, 2 MHz, 5 MHz or 10 MHz.</td>
<td>76</td>
</tr>
<tr>
<td>:VOLTage[1</td>
<td>2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:LEVe1]</td>
<td>[:IMMediate]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:AMPLitude]</td>
<td><value></td>
<td>Set/read channel amplitude voltage</td>
<td></td>
</tr>
<tr>
<td>:OFFSet</td>
<td><value></td>
<td>Set/read channel offset voltage</td>
<td>77</td>
</tr>
<tr>
<td>:HIGH</td>
<td><value></td>
<td>Set/read channel high-level voltage</td>
<td>78</td>
</tr>
<tr>
<td>:LOW</td>
<td><value></td>
<td>Set/read channel low-level voltage</td>
<td>79</td>
</tr>
<tr>
<td>:LIMit</td>
<td>[:HIGH]</td>
<td><value> Set/read maximum voltage limit</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>:LOW</td>
<td><value> Set/read minimum voltage limit</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>:STATE</td>
<td>ON/OFF/10 Enable/Disable the voltage limits</td>
<td>81</td>
</tr>
<tr>
<td>Command</td>
<td>Parameter</td>
<td>Description</td>
<td>see page</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>:STATus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OPERation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:EVENt]?</td>
<td></td>
<td>Read Operation event register</td>
<td>81</td>
</tr>
<tr>
<td>:CONDition</td>
<td></td>
<td>Read Operation condition register</td>
<td>81</td>
</tr>
<tr>
<td>:ENABLE</td>
<td>Numeric</td>
<td>Set/Read Operation enable register</td>
<td>81</td>
</tr>
<tr>
<td>:NTRANSition</td>
<td>Numeric</td>
<td>Set/Read Operation negative-transition register</td>
<td>81</td>
</tr>
<tr>
<td>:PTRANSition</td>
<td>Numeric</td>
<td>Set/Read positive-transition register</td>
<td>81</td>
</tr>
<tr>
<td>:PRESet</td>
<td></td>
<td>Clear and preset status groups</td>
<td>82</td>
</tr>
<tr>
<td>:QUESTIONable</td>
<td></td>
<td>Read Questionable event register</td>
<td>82</td>
</tr>
<tr>
<td>[:EVENt]?</td>
<td></td>
<td>Read Questionable condition register</td>
<td>82</td>
</tr>
<tr>
<td>:CONDITION?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ENABLE</td>
<td>Numeric</td>
<td>Set/Read Questionable enable register</td>
<td>82</td>
</tr>
<tr>
<td>:NTRANSition</td>
<td>Numeric</td>
<td>Set/Read Questionable negative-transition register</td>
<td>82</td>
</tr>
<tr>
<td>:PTRANSition</td>
<td>Numeric</td>
<td>Set/Read Questionable positive-transition register</td>
<td>82</td>
</tr>
<tr>
<td>Command</td>
<td>Parameter</td>
<td>Description</td>
<td>see page</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>:SYSTem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ERRor?</td>
<td></td>
<td>Read error queue</td>
<td>84</td>
</tr>
<tr>
<td>:KEY</td>
<td>Numeric</td>
<td>Simulate key press or read last key pressed</td>
<td>84</td>
</tr>
<tr>
<td>:PRESet</td>
<td></td>
<td>no function</td>
<td>87</td>
</tr>
<tr>
<td>:SECurity</td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>ON/OFF</td>
<td>Switch security on and off</td>
<td></td>
</tr>
<tr>
<td>:SET</td>
<td>Block data</td>
<td>Set/read complete instrument setting</td>
<td>88</td>
</tr>
<tr>
<td>:VERSION?</td>
<td></td>
<td>Read SCPI compliance setting</td>
<td>88</td>
</tr>
<tr>
<td>:WARNING</td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>[:COUNt]?</td>
<td></td>
<td>Read number of active warnings</td>
<td>89</td>
</tr>
<tr>
<td>:STRing?</td>
<td></td>
<td>Read active warnings as concatenated string</td>
<td>89</td>
</tr>
<tr>
<td>:BUFFer?</td>
<td></td>
<td>Read maximum possible length of concatenated string</td>
<td>89</td>
</tr>
<tr>
<td>:TRIGger</td>
<td></td>
<td>(Pulse mode and period source)</td>
<td></td>
</tr>
<tr>
<td>[:SEQuence [1]]</td>
<td>:START]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:COUNT</td>
<td><value></td>
<td>Set/read number of triggered periods to be generated per ARM event (BURST period)</td>
<td>89</td>
</tr>
<tr>
<td>:PULSes[1</td>
<td>2]</td>
<td><value></td>
<td>Set/red the number of pulses within the triggered periods at OUTPUT 1 or OUTPUT 2</td>
</tr>
<tr>
<td>:LEVEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:TERmination</td>
<td><value></td>
<td>Set/read termination voltage level at CLK IN</td>
<td>92</td>
</tr>
<tr>
<td>:SOURce</td>
<td>IMM</td>
<td>Set/read trigger source (Immediate</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>INT[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>*RST, Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ARM</td>
<td>[LEVEL][:THReshold]</td>
</tr>
<tr>
<td></td>
<td>+1.0 V</td>
</tr>
<tr>
<td></td>
<td>:TERM</td>
</tr>
<tr>
<td></td>
<td>+0.0 V</td>
</tr>
<tr>
<td>:MODE</td>
<td>STARted</td>
</tr>
<tr>
<td>:SENSe</td>
<td>POS</td>
</tr>
<tr>
<td>:SOURce</td>
<td>IMM</td>
</tr>
<tr>
<td>:INITiate</td>
<td>:CONTInuous</td>
</tr>
<tr>
<td>:CHANnel</td>
<td>:MATH</td>
</tr>
<tr>
<td>:DIGital</td>
<td>:PATTern:</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>:LOOP:INFinite</td>
<td>ON</td>
</tr>
<tr>
<td>:LOOP:INFinite:STARt</td>
<td>SEGM1</td>
</tr>
<tr>
<td>:LOOP</td>
<td>1</td>
</tr>
<tr>
<td>:LOOP:STARt</td>
<td>SEGM1</td>
</tr>
<tr>
<td>:LOOP:LENGth</td>
<td>1</td>
</tr>
<tr>
<td>:PRBS</td>
<td>7</td>
</tr>
<tr>
<td>:SEG:DATA</td>
<td>see page 49</td>
</tr>
<tr>
<td>:SEG:LENGth</td>
<td>32, 0, 0, 0</td>
</tr>
<tr>
<td>:SEG:PRESet</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SEG:TYPE</td>
<td>DATA</td>
</tr>
<tr>
<td>:UPDate</td>
<td>ON</td>
</tr>
<tr>
<td>:SIGNa</td>
<td>:FORMat</td>
</tr>
<tr>
<td></td>
<td>RZ</td>
</tr>
<tr>
<td>:DISPlay</td>
<td>ON</td>
</tr>
<tr>
<td>:MMEMory</td>
<td>:CA:Talog?</td>
</tr>
<tr>
<td></td>
<td>not applicable</td>
</tr>
<tr>
<td>:CDIRectory</td>
<td>not applicable</td>
</tr>
<tr>
<td>:COPY</td>
<td>not applicable</td>
</tr>
<tr>
<td>:DELete</td>
<td>not applicable</td>
</tr>
</tbody>
</table>
Default Values, Standard Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>*RST, Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>:INITialize</td>
<td>not applicable</td>
</tr>
<tr>
<td>:LOAD :STATe</td>
<td>not applicable</td>
</tr>
<tr>
<td>:STORe :STATe</td>
<td>not applicable</td>
</tr>
<tr>
<td>:OUTPut</td>
<td>OFF</td>
</tr>
<tr>
<td>:COMplement</td>
<td>OFF</td>
</tr>
<tr>
<td>:CORRection :EDELay</td>
<td>0.0 s</td>
</tr>
<tr>
<td>:CURRent</td>
<td>20 mA (50 Ω into 50 Ω)</td>
</tr>
<tr>
<td>:OFFSet</td>
<td>0.0 μA (50 Ω into 50 Ω)</td>
</tr>
<tr>
<td>:HIGH</td>
<td>+10 mA (50 Ω into 50 Ω)</td>
</tr>
<tr>
<td>:LOW</td>
<td>−10 mA (50 Ω into 50 Ω)</td>
</tr>
<tr>
<td>:LIMit :HIGH</td>
<td>+10.0 mA</td>
</tr>
<tr>
<td>:LOW</td>
<td>−10 mA</td>
</tr>
<tr>
<td>:STATe</td>
<td>OFF</td>
</tr>
<tr>
<td>:FREQuency</td>
<td>1.00 MHz</td>
</tr>
<tr>
<td>:AUTO</td>
<td>not applicable</td>
</tr>
<tr>
<td>:HOLD</td>
<td>VOLT</td>
</tr>
<tr>
<td>:PHAS</td>
<td>0.0</td>
</tr>
<tr>
<td>:PULSe :DCYCle</td>
<td>10.0% (derived from Width and Period)</td>
</tr>
<tr>
<td>:DELay</td>
<td>0.00</td>
</tr>
<tr>
<td>:HOLD</td>
<td>TIME</td>
</tr>
<tr>
<td>:UNIT</td>
<td>SEC</td>
</tr>
<tr>
<td>:HOLD</td>
<td>WIDTH</td>
</tr>
<tr>
<td>:PERiod</td>
<td>1 μs</td>
</tr>
<tr>
<td>:AUTO</td>
<td>not applicable</td>
</tr>
<tr>
<td>:TDELay</td>
<td>100 ns</td>
</tr>
<tr>
<td>:TRANSition :HOLD</td>
<td>TIME</td>
</tr>
<tr>
<td>:UNIT</td>
<td>SEC</td>
</tr>
<tr>
<td>Parameter</td>
<td>*RST, Default Values</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>[:LEADING]</td>
<td>0.8 ns (Agilent 81131A) or not applicable</td>
</tr>
<tr>
<td>:TRIgger: :TRAiling</td>
<td>0.8 ns (Agilent 81131A) or not applicable</td>
</tr>
<tr>
<td>:TRIgger: :TRAiling:AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>:TRIgger: :MODE</td>
<td>START</td>
</tr>
<tr>
<td>:TRIgger: :POSItion</td>
<td>1</td>
</tr>
<tr>
<td>:TRIgger: :VOLTage</td>
<td>TTL</td>
</tr>
<tr>
<td>:WIDTh</td>
<td>100 ns</td>
</tr>
<tr>
<td>:ROSCillator :SOURce</td>
<td>INT</td>
</tr>
<tr>
<td>:ROSCillator :EXTernal :FREQuency</td>
<td>5 MHz</td>
</tr>
<tr>
<td>:VOLTage</td>
<td>1.00 V</td>
</tr>
<tr>
<td>:VOLTage :OFFSet</td>
<td>0.0 mV</td>
</tr>
<tr>
<td>:VOLTage :HIGH</td>
<td>500 mV</td>
</tr>
<tr>
<td>:VOLTage :LOW</td>
<td>-500 mV</td>
</tr>
<tr>
<td>:LIMit [HIGH]</td>
<td>+500 mV</td>
</tr>
<tr>
<td>:LIMit :LOW</td>
<td>-500 mV</td>
</tr>
<tr>
<td>:LIMit :STATe</td>
<td>OFF</td>
</tr>
<tr>
<td>:STATus :OPERation</td>
<td>not applicable</td>
</tr>
<tr>
<td>:STATus :PRESet</td>
<td>not applicable</td>
</tr>
<tr>
<td>:STATus :QUESTionable</td>
<td>ON</td>
</tr>
<tr>
<td>:SYSTem :ERROR?</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SYSTem :KEY</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SYSTem :PRESet</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SYSTem :SECurity</td>
<td>OFF</td>
</tr>
<tr>
<td>:SYSTem :SET</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SYSTem :VERSion?</td>
<td>"1992.0"</td>
</tr>
<tr>
<td>:SYSTem :WARN? [:COUNT]</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SYSTem :STRING?</td>
<td>not applicable</td>
</tr>
<tr>
<td>:SYSTem :BUFFER?</td>
<td>not applicable</td>
</tr>
</tbody>
</table>
Default Values, Standard Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>*RST, Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger :COUNT</td>
<td>1</td>
</tr>
<tr>
<td>:PULSes</td>
<td>2</td>
</tr>
<tr>
<td>:LEVEL :TERMination</td>
<td>0.0 V</td>
</tr>
<tr>
<td>:SOURce</td>
<td>INT</td>
</tr>
</tbody>
</table>
Programming the Instrument
Trigger Modes

The following figure shows the instrument’s arming/triggering model:

For details of the trigger count command, refer to ":TRIG:COUN" on page 89.

You program the comprehensive triggering capabilities of the instrument using the SCPI :ARM and :TRIGger subsystems. Using these two command subsystems you can program the operating modes of the instrument which are set up using the MODE/TRG screen on the frontpanel.

Use the :ARM subsystem to select the overall triggering mode of the instrument (CONTINUOUS, STARTED, GATED), and the :TRIGger subsystem to select the pulse period source, triggering and number of pulse periods per :ARM event (BURST length). In pattern mode the pattern length is the sum of each used segment’s length.

38
Programming Reference

Programming the Instrument Trigger Modes

Continuous
Set Continuous mode by arming the instrument from its internal PLL:

`:ARM:SOURce IMMEDIATE` Arm from internal PLL

Started
Set Started mode by arming the instrument on low to high level transition from the EXT INPUT:

`:ARM:SOURce EXTERNAL1` Arm from EXT INPUT
`:ARM:MODE STARTED` Start on the arm event
`:ARM:SENSe POSitive` Arm on positive (high) level
`:ARM:LEVEL:THReshold 1V` Set EXT INPUT threshold

Gated
Set Gated mode by arming the instrument on levels from the EXT INPUT:

`:ARM:SOURce EXTERNAL1` Arm from EXT INPUT
`:ARM:MODE GATED` Select gated mode
`:ARM:SENSe POSitive` Arm on positive level

Pulses
Set Pulses mode by setting the :TRIGger:COUNt to 1 so that a single triggered pulse period is generated for every :ARM event. The trigger source sets the pulse period:

`:TRIGger:COUNt 1` Single pulse period per arm event
`:TRIGger:SOURce INternal 1` Pulse period from internal PLL
`:DIGital:PAOTTern OFF` Disable pattern data.

<table>
<thead>
<tr>
<th>Pulse period source</th>
<th>:TRIGger SOURce</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal PLL</td>
<td>INTernal[1] or IMMEDIATE</td>
</tr>
<tr>
<td>CLK-IN</td>
<td>EXTernal2</td>
</tr>
</tbody>
</table>
Programming Reference
Programming the Instrument Trigger Modes

Burst

Set Burst mode by setting the :TRIGger:COUNt to the burst count required. The trigger source sets the pulse period for the pulses within the burst (See table in "Pulses" on page 39).

```
:TRIGger:COUNt 16      Burst of 16 pulse periods
:TRIGger:SOURce INTernal1 Pulse period from internal PLL.
:DIGital:PATTern OFF   Disable pattern data
```

Pattern

Set Pattern mode by setting the

:DIGital[STIMulus]:PATTern:SEGMent[1|2|3|4]:LENGth to the required pattern length, and switching on digital pattern data. The trigger source sets the pulse period for the data pulses (See table in "Pulses" on page 39):

```
#Pattern length 512
:DIGital[STIMulus]:PATTern:SEGMent1:LENGth 512
:DIGital[STIMulus]:PATTern:SEGMent2:LENGth 0
:DIGital[STIMulus]:PATTern:SEGMent3:LENGth 0
:DIGital[STIMulus]:PATTern:SEGMent4:LENGth 0

#Disable counted segment loop
:DIGital[STIMulus]:PATTern:LOOP:COUNt 1

#Jump back to start of segment 1 after the last bit of the last segment (here: segment 1)
:DIGital[STIMulus]:PATTern:LOOP:INFinite[:STATe] ON
:DIGital[STIMulus]:PATTern:LOOP:INFinite:STARt SEGM1

:TRIGger:SOURce INTernal1 Pulse period from internal PLL
:DIGital:PATTern ON Enable pattern data
:DIGital:SIGNal1:FORMat NRZ Set OUTPUT 1 data to NRZ
:ARM:MODE STARTed
:ARM:SOURce EXT1 Switch to started by EXT1
```
Manually Starting and Gating

When starting and gating with the MAN key use the following commands:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTED</td>
<td>*TRG or :INITiate:CONTinuous ON to start the instrument</td>
</tr>
<tr>
<td></td>
<td>:INITiate:CONTinuous OFF to stop the instrument</td>
</tr>
<tr>
<td>GATED</td>
<td>:INITiate:CONTinuous ON to 'open the gate'</td>
</tr>
<tr>
<td></td>
<td>:INITiate:CONTinuous OFF to 'close the gate'</td>
</tr>
<tr>
<td></td>
<td>*TRG to gate for approx. 10ms</td>
</tr>
</tbody>
</table>
SCPI Instrument Command List

The following reference sections list the instrument commands in alphabetical order. In addition to a command description, the attributes of each command are described under the following headings. Not all of these attributes are applicable to all commands. The commands conform to the IEEE 488.2 SCPI standard.

<table>
<thead>
<tr>
<th>Command</th>
<th>Shows the short form of the command.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>Shows the long form of the command.</td>
</tr>
<tr>
<td>Form</td>
<td>Most commands can be used in different forms:</td>
</tr>
<tr>
<td></td>
<td>Set</td>
</tr>
<tr>
<td></td>
<td>Query</td>
</tr>
<tr>
<td></td>
<td>Event</td>
</tr>
<tr>
<td>Parameter</td>
<td>The type of parameter, if any, accepted by the command. The minimum and maximum value of numeric parameters can be accessed by the option MINimum or MAXimum.</td>
</tr>
<tr>
<td>Parameter Suffix</td>
<td>The suffixes that may follow the parameter.</td>
</tr>
<tr>
<td>Functional Coupling</td>
<td>Any other commands that are implicitly executed by the command.</td>
</tr>
<tr>
<td>Value Coupling</td>
<td>Any other parameter that is also changed by the command.</td>
</tr>
<tr>
<td>Range Coupling</td>
<td>Any other parameters whose valid ranges may be changed by the command.</td>
</tr>
<tr>
<td>*RST value</td>
<td>The value/state following a *RST command.</td>
</tr>
<tr>
<td>Specified Limits</td>
<td>The specified limits of a parameter.</td>
</tr>
<tr>
<td>Absolute Limits</td>
<td>Some parameters can be programmed beyond their specified limits.</td>
</tr>
<tr>
<td>Example</td>
<td>Example programming statements.</td>
</tr>
</tbody>
</table>
Command: :ARM:LEV[:THR]

Long
:ARM[:SEQUence[1] | :STARt][:LAYer]:LEVel[:THReshold]

Form
Set & Query

Parameter
Numeric

Parameter Suffix
V with engineering prefixes.

RST value
+1.0 V

Specified Limits
–1.4 V to +3.7 V

Description
Use this command to program the triggering threshold of the EXT INPUT connector.

Example
:ARM:LEV 2.5V
Set EXT INPUT threshold to 2.5 V

Command: :ARM:LEV:TERM

Long
:ARM[:SEQUence[1] | :STARt][:LAYer]:LEVel:TERMination

Form
Set & Query

Parameter
Numeric

Parameter Suffix
V with engineering prefixes.

RST value
+0.0 V

Specified Limits
–2.1 V to +3.3 V

Description
Use this command to program the termination voltage compensation of the EXT INPUT connector.

Example
:ARM:LEV:TERM 1.0V
Set EXT INPUT termination voltage to 1.0 V

Command: :ARM:MODE

Long
:ARM[:SEQUence[1] | :STARt][:LAYer]:MODE

Form
Set & Query

Parameter
STARted | GATed

RST value
STARted
Description

Use this command to select **STARTED** or **GATED** mode.

In the **gated mode**, the instrument triggers as long as the arming signal is above (:ARM:SENS POS), or below (:ARM:SENS NEG) the selected threshold level (:ARM:LEV).

In **started mode**, the instrument triggers on positive edge (:ARM:SENS POS) or negative edge (:ARM:SENS NEG).

Command: :ARM:SENS

| Long | Set & Query |
| :ARM[:SEQUence[1] | :STARt][:LAYer]:SENSe |

| Parameter | POSitive | NEGative |
| :ARM:SENS:POS |

*RST value: POS

Description

Use this command to select the edge or trigger level for the arming signal.

The instrument triggers at the positive or negative cycle of the arming signal.

Command: :ARM:SOUR

| Long | Set & Query |
| :ARM[:SEQUence[1] | :STARt][:LAYer]:SOURce |

| Parameter | IMMediate | EXTernal1 | MANual |
| :ARM:SOUR:IMMediate |

*RST value: IMM

Description

Use this command to select the triggering mode of the instrument by selecting the source of the arming signal:

Triggering Source	:ARM:SOUR:IMMediate	Mode	
Internal PLL	IMMEDIATE	Continuous	
EXT INPUT	EXTERNAL	Triggered	Gated by: EXT IN
MAN key	MANual	Triggered	Gated by: MANKey

Use :ARM:MODE STARTed| GATed to select the mode.
:INIT:CONT

Long
- :INITiate:CONTinuous

Form
- Set & Query

Parameter
- ON | OFF | 1 | 0

RST value
- ON

Description
Use this command to enable/disable automatic restart of the instrument (equal to start and stop the instrument). If :ARM:SOURce is set to IMMEDIATE, the value of :INITiate:CONTinuous is ignored.

:CHAN:Math

Long
- :CHANnel:Math

Form
- Set & Query

Parameter
- OFF | DIGital

RST value
- OFF

Description
Use this command to enable or disable digital channel addition in an instrument with two Output channels installed.

With :CHAN:Math DIGital the digital signals from both channels are "xor’ed” (before the slopes are applied) at OUTPUT 1. The signal of OUTPUT 2 can be used in parallel.

This allows you to for example to simulate single or repeated glitches.

:DIG:PATT:LOOP

Long
- :DIGital[:STIMulus]:PATTern:LOOP[:LEVEL[1]]][:COUNT]

Form
- Set & Query

Parameter
- Numeric

RST value
- 1

Specified limits
- 1 to 2^20
Description
Use this command to set up a counted loop across one or more segments.
If nested loops are used, the counted loop must be embedded into the infinite loop completely.

Example
To set up an infinite loop over segment 2 to segment 4 and a counted loop across segment 2 and segment 3:

Command
:DIG:PATT:LOOP:INF

Long
:DIGital[:STIMulus]:PATTern:LOOP:INFinite[:STATe]

Form
Set & Query

Parameter
ON | OFF | 1 | 0

*RST value
ON

Description
Use this command to set up an infinite loop from the last used segment to the destination segment.
The infinite loop is ignored, if :ARM:SOURce is IMMEDIATE (CONTINUOUS mode), since in continuous mode there has to be a jump back to the start of the pattern (always from segment 4 to segment 1).

Example
To setup an infinite loop over segment 2 to segment 4:

Command
:ARM:SOUR EXT1
:ARM:MODE STAR
:ARM:SENS POS
:DIG:PATT:LOOP:INF ON
:DIG:PATT:LOOP 100
:DIG:PATT:LOOP:STAR SEGM2
:DIG:PATT:LOOP:LENG 2
:DIG:PATT ON

Set arming source to EXT-IN
Set arming mode to started
Arm on positive level
Set jump destination to segment 2
Set number of repetitions of segment 2 and segment 3
Set start of counted loop
Set length of counted loop
Switch on PATTERN mode

Example
To set up a counted loop across segment 2 and segment 3:

Command
:DIG:PATT:LOOP:INF

Long
:DIGital[:STIMulus]:PATTern:LOOP:INFinite[:STATe]

Form
Set & Query

Parameter
ON | OFF | 1 | 0

*RST value
ON

Description
Use this command to set up a counted loop across one or more segments.
If nested loops are used, the counted loop must be embedded into the infinite loop completely.

Example
To set up an infinite loop over segment 2 to segment 4 and a counted loop across segment 2 and segment 3:

Command
:ARM:SOUR EXT1
:ARM:MODE STAR
:ARM:SENS POS
:DIG:PATT:LOOP:INF ON
:DIG:PATT:LOOP 100
:DIG:PATT:LOOP:STAR SEGM2
:DIG:PATT:LOOP:LENG 2
:DIG:PATT ON

Set arming source to EXT-IN
Set arming mode to started
Arm on positive level
Set jump destination to segment 2
Set number of repetitions of segment 2 and segment 3
Set start of counted loop
Set length of counted loop
Switch on PATTERN mode
Long: DIGital[:STIMulus]:PATTern:LOOP:INFinite:STARt
Form: Set & Query
Parameter: SEGM1 | SEGM2 | SEGM3 | SEGM4 | 1 | 2 | 3 | 4
*RST value: SEGM1
Description: Use this command to set up the destination segment.
The infinite loop is ignored, if :ARM:SOURce is IMMediate (CONTINUOUS mode), since in continuous mode there has to be a jump back to the start of the pattern (always from segment 4 to segment 1).
Example: See previous example (page 46).

Command: DIG:PATT:LOOP:STAR
Long: DIGital[:STIMulus]:PATTern:LOOP[:LEVel[1]]:STARt
Form: Set & Query
Parameter: SEGM1 | SEGM2 | SEGM3 | SEGM4 | 1 | 2 | 3 | 4
*RST value: SEGM1
Description: Use this command to set the first segment within a counted loop. The start of the counted loop must be within the infinite loop (if used).
Example: To set up an infinite loop over segment 2 to segment 4 and a counted loop across segment 2 and segment 3:

:ARM:SOUR EXT1 Set arming source to EXT-IN
:ARM:MODE STAR Set arming mode to started
:ARM:SENS POS Arm on positive level
:DIG:PATT:LOOP:INF ON Switch on infinite loop
:DIG:PATT:LOOP:INF:STAR SEG2 Set jump destination to segment 2
:DIG:PATT:LOOP 100 Set number of repetitions of segment2 and segment 3
:DIG:PATT:LOOP:STAR SEG2 Set start of counted loop
:DIG:PATT:LOOP:LENG 2 Set length of counted loop
:DIG:PATT ON Switch on PATTERN mode
Command	:DIG:PATT:LOOP:LENG
Long | :DIGital[:STIMulus]:PATTern:LOOP[:LEVEL[1]]:LENGth
Form | Set & Query
Parameter | 1 | 2 | 3 | 4
*RST value | 1
Description | Use this command to set the number of segments to be repeated within the counted loop.
Example | See previous example (page 47).

Command	:DIG:PATT
Long | :DIGital[:STIMulus]:PATTern[:STATe]
Form | Set & query
Parameter | ON | OFF | 1 | 0
*RST value | OFF
Description | Use this command to enable and disable PATTERN mode.

Command	:DIG:PATT:PRBS
Long | :DIGital[:STIMulus]:PATTern:PRBS
Form | Set & Query
Parameter | Numeric
*RST value | 7
Specified Limits | 7 to 15 (integer)
Description | Use this command to set up PRBS polynom for all PRBS segments on all channels.
Example

To set up a repeating 2^{10}–1 PRBS on OUTPUT 1:

- **:ARM:SOUR IMM**
 Set continuous mode
- **:DIG:PATT:SEGM1:LENG 1023**
 Set segment 1 pattern length (last bit) to 1023
- **:DIG:PATT:SEGM2:LENG 0**
 Set segment 2 to be ignored
- **:DIG:PATT:SEGM3:LENG 0**
 Set segment 3 to be ignored
- **:DIG:PATT:SEGM4:LENG 0**
 Set segment 4 to be ignored
- **:DIG:PATT:SEGM1:TYPE 1 PRBS**
 Set type of segment 1 on channel 1 to PRBS
- **:DIG:PATT:LOOP 1**
 Disable segment looping
- **:DIG:PATT:PRBS 10**
 Set PRBS base to 10
- **:DIG:PATT ON**
 Switch on PATTERN mode

<table>
<thead>
<tr>
<th>Channel</th>
<th>Description</th>
<th>Bit 1</th>
<th>Bit 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH1 (OUTPUT 1)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CH2 (OUTPUT 2)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Segment 2 to Segment 4 set to all bits set to zero.
Description
Use this command to set or read a segment's data of one or all channels starting from Bit 1. The <data> is an arbitrary block of program data as defined in IEEE 488.2 7.7.6.2, for example:

```
#1511213
#  Start of block
1  Length of the length of the data
5  Length of the data
11213 5 bytes of data
```

```
#2161000100010001000
#  Start of block
2  Length of the length of the data
16  Length of the data
10...00 16 bytes of data
```

```
#011213
#  Start of block
0  Replaces the block length specification. Length is calculated automatically.
11213 5 bytes of data
```

NOTE
The data length meets the same restrictions as the segment length (see page 52).

Example
`:DIG:PATT:SEGM1:DATA #1511213`
The instrument uses each byte of data set one Bit in the pattern memory. If you don’t specify a particular channel, the lowest two bits of each byte are used to set all three channels, and the top six bits are ignored. Note that you can therefore use the ASCII characters ‘0’, ‘1’, ‘2’ and ‘3’, to program Outputs 1 and 2 in binary:

![ASCII Table]

If you specify a particular channel, the least significant bit of each byte is used to set the selected channel, and the top seven bits are ignored. Note that you can therefore use the ASCII characters ‘1’ and ‘0’ to set individual bits to 1 and 0:

![ASCII Table]

Example

:ARM:SOUR IMM Set continuous mode
:DIG:PATT:SEG1:DATA1 #1501011 Set up pattern data for channel 1
:DIG:PATT:SEG1:LENG 5 Set pattern length (last bit) to 5
:DIG:PATT ON Switch on PATTERN mode
Command :DIG:PATT:SEGM[1234]:LENG
Long :DIGital[:STIMulus]:PATTern:SEGment[1|2|3|4]:LENGTH
Form Set & Query
Parameter Numeric
*RST value 32, 0, 0, 0 (segment 1 = 32, segments 2, 3, and 4 = 0)
Specified Limits 0 to 65504
Description Use this command to set up the number of bits within a segment. If a segment is set to a length of 0, the segment will be skipped.
Restrictions:
 • At least one segment’s length has to be > 0.
 • The overall length of the pattern has to be <= 65504 and >= two times segment length resolution.
 • If at least one segment is used to generate a PRBS, the overall pattern length has to be <= 32768.
 • The segment length has a resolution that depends on the current set frequency/period.
 • The segment at the start of a counted loop has a minimum length of 2 times the resolution.

<table>
<thead>
<tr>
<th>Pulse Period</th>
<th>Segment Length Resolution (length must be multiple of ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3ns</td>
<td>16</td>
</tr>
<tr>
<td>3ns ... < 6ns</td>
<td>8</td>
</tr>
<tr>
<td>6ns ... < 12ns</td>
<td>4</td>
</tr>
<tr>
<td>12ns ... < 24ns</td>
<td>2</td>
</tr>
<tr>
<td>>= 24ns</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTE

Every change of a segment length will cause the unused pattern data to be overwritten (no undo!).
Command: \texttt{DIG:PATT:SEGM[1|2|3|4]:PRES[1|2]}

Long: \texttt{DIGital[;STIMulus]:PATTern:SEGment[1|2|3|4]:PRESet[1|2]}

Form: Set

Parameter: \texttt{<n>,<length>}

*RST value: Not applicable

Specified Limits:
- \texttt{<n>} 0 to 32768 (integer)
- \texttt{<length>} 1 to 65504 (integer)

Description:
Use this command to set up clock data starting from bit 1 with value 1. The parameter \texttt{<n>} is used as the divider to generate a \texttt{CLOCK÷n} sequence (squarewave if NRZ data is selected). The parameter \texttt{<length>} determines the length of the segment.

- \texttt{n=0} Fill with 0
- \texttt{n=1} Fill with 1
- \texttt{n=2} Sequence = 101010101010101....
- \texttt{n=4} Sequence = 110011001100110....
- \texttt{n=6} Sequence = 111000111000111....
- \texttt{n=8} Sequence = 111100001111000....

and so on.

NOTE

The data length meets the same restrictions, than the segment length (see page 52).

Command: \texttt{DIG:PATT:SEGM[1|2|3|4]:TYPE[1|2]}

Long: \texttt{DIGital[;STIMulus]:PATTern:SEGment[1|2|3|4]:TYPE[1|2]}

Form: Set & Query

Parameter: DATA | PRBS | HIGH | LOW

*RST value: DATA
Programming Reference
SCPI Instrument Command List

Description
Use this command to set the type of the segment for one channel.

If the segment type of one channel is set to PRBS the other channel may not be set to DATA.

If at least one channel uses PRBS, then the segment type combination used in this segment has to be used in every segment that shall generate a PRBS.

Command :DIG:PATT:UPD
Long :DIGital[:STIMulus]:PATTer:n:UPDate
Form Set & query
Parameter ON | OFF | ONCE
*RST value ON
Description
Use this command to enable and disable the automatic updating of the pattern generating hardware following a :DIG:PATT:SEGM[1|2|3|4]:DATA command. Disable the automatic updating if you want to set up new pattern data in the instrument without affecting the pattern which is currently being generated. You can then update the hardware with the new pattern data by sending a :DIG:PATT:UPD ONCE command.

Command :DIG:SIGN[12]:FORM
Long :DIGital[:STIMulus]:SIGNAL[1|2]:FORMAT
Format Set & Query
Parameter RZ | NRZ | R1
Range Coupling Period, Frequency
*RST value RZ
Description
Use this command to set and read the data format of channels 1 and 2 when using PATTERN mode. If you don't specify a channel number in the command, channel 1 is assumed.

RZ
Return to Zero. An RZ pulse is generated for each ‘1’ in the data. You can vary the width, edges and levels of the pulse.

R1
Return to One. An R1 pulse is generated for each ‘0’ in the data. You can vary the width, edges and levels of the pulse.

NRZ
Non Return to Zero. A pulse of 100% dutycycle is generated for each ‘1’ in the data. You can vary the edges and levels of the pulse.

Example
:DIG:SIGN:FORM NRZ
Set channel 1 data format to NRZ

Command
:DISP
Long
:DISPlay[:WINDow][:STATe]
Form
Set & Query
Parameter
ON | OFF | 1 | 0
*RST value
ON
Description
This command is used to turn the frontpanel display on and off. Switching off the display improves the programming speed of the instrument.

NOTE
*RST switches the display back on.

Example
DISP OFF
Switch off the frontpanel display
Programming Reference
SCPI Instrument Command List

Command :MMEM:CAT?
Long :MMEMory:CATalog?
Form Query
Parameter ["A:"]
*RST value Not applicable
Description Use this command to get a listing of the contents of the currently selected directory on the memory card. As there is only one memory card slot, the parameter A: is optional. The information returned is:

BYTES_USED,BYTES_FREE,{,FILE_ENTRY}

BYTES_USED The total number of bytes used on the memory card.
BYTES_FREE The total number of bytes still available on the memory card.
FILE_ENTRY String containing the name, type and size of one file:
 "FILE_NAME,FILE_TYPE,FILE_SIZE"

NOTE The <file_type> is always blank. A directory name has <file_size> = 0

Command :MMEM:CDIR
Long :MMEMory:CDIRectory
Form Event
Parameter ["directory_name"]
*RST value Not applicable
Description Use this command to change the current directory on the memory card. If you don’t specify a directory name parameter, the root directory is selected.
NOTE

Note that you cannot use DOS pathnames as directory names, you can only select a directory name within the current directory.

Use the directory name "." to move back to the parent directory of the current directory, unless you are already in the root directory "\".

Examples

:MMEM:CDIR
Select root directory
:MMEM:CDIR ""PERFORM"
Select directory "PERFORM"
:MMEM:CDIR ".."
Select parent directory

Command :MMEM:COPY

Long :MMEMory: COPY

Form Event

Parameter "filename","A:","copyname","A:"

*RST value Not applicable

Description Use this command to copy an existing file filename in the current directory to a new file copynamename. If copynamename is the name of a sub-directory in the current directory, a copy of the file filename is made in the sub-directory. Use "." as copynamename to copy a file into the parent directory of the current directory.

Examples

:MMEM:COPY "test1","test2"
Copy test1 to test2
:MMEM:COPY "test1", ".."
Copy test1 into parent directory

Command :MMEM:DEL

Long :MMEMory: DELete

Form Event

Parameter "filename"

*RST value Not applicable

Description Use this command to delete file filename from the currently selected directory.
Programming Reference
SCPI Instrument Command List

Command :MMEM:INIT
Long :MMEMory:INITialize
Form Event
Parameter ['A:','DOS']
*RST value Not applicable
Description Use this command to initialize a memory card to DOS format.

CAUTION Initializing a memory card destroys any existing data on the card.

Command :MMEM:LOAD:STAT
Long :MMEMory:LOAD:STATe
Form Event
Parameter <n>,"filename"["A:"
*RST value Not applicable
Specified Limits <n> = 0 to 4 (integer)
Description Use this command to load a complete instrument setting from file filename in the current directory into memory <n> in the instrument.
Memories 1 to 4 are the internal memories. Use memory 0 to load a setting as the current instrument setting.
Examples See next command

Command :MMEM:STOR:STAT
Long :MMEMory:STORe:STATe
Form Event
Parameter <n>,"filename"["A:"
*RST value Not applicable
Programming Reference

SCPI Instrument Command List

Specified Limits: <n> = 0 to 4 (integer)

Description
Use this command to store a complete instrument setting from memory <n> to file filename in the current directory on the memory card.

Memories 1 to 4 are the internal memories. Use memory 0 to store the current instrument setting to a file.

Examples
:MMEM:LOAD:STAT 1,"FREQPERF"
Load FREQPERF into memory 1
:MMEM:LOAD:STAT 0,"AMPTEST"
Load AMPTEST as current setting
:*SAV 2
Save current setting in memory 2
:MMEM:STOR:STAT 2,"SETTING2"
Store memory 2 to file "SETTING2"
:*RCL 3
Recall memory 3 as current setting

Command
:OUTP[1|2]

Long
:OUTPut[1|2][:NORMal][:STATe]

Form
Set & Query

Parameter
ON | OFF | 1 | 0

*RST value
OFF

Description
Use this command to switch the normal OUTPUTs on or off.

Example
:OUTP1 ON
Switch on OUTPUT 1
:OUTP2 OFF
Switch off OUTPUT 2

Command
:OUTP[1|2]:COMP

Long
:OUTPut[1|2]:COMplement[:STATe]

Form
Set & Query

Parameter
ON | OFF | 1 | 0

*RST value
OFF

Description
Use this command to switch the complement OUTPUTs on or off.

Example
:OUTP1:COMP ON
Switch on complement OUTPUT 1
:OUTP2:COMP OFF
Switch off complement OUTPUT 2
Programming Reference
SCPI Instrument Command List

Command :CORR[1|2]:EDELay

Long [:SOURce]:CORRection[1|2]:EDELay[:TIMe]

Form Set & Query

Parameter Numeric

Parameter suffix S with engineering prefixes.

RST value 0.0 s

Specified Limits –25.0 ns to +25.0 ns

Description Use this command to program the OUTPUT Deskew delay. This allows you to deskew the OUTPUTS so that the zero-delay points of both OUTPUT signals are the same at the device-under-test.

Example

:CORR1:EDEL 0NS
Set OUTPUT 1 DESKEW to 0

:CORR2:EDEL 5.18NS
Set OUTPUT 2 DESKEW to 5.18 ns

Command :CURR[1|2]

Long [:SOURce]:CURRent[1|2][:LEVEL][:IMMediate][:AMPLitude]

Form Set & Query

Parameter Numeric

Parameter suffix A with engineering prefixes.

RST value 20 mA (50 Ω into 50 Ω)

Specified Limits

- 3.8 V Outputs (50 Ω into short): max. 152 mA typical
- 3.0 V Outputs (50 Ω into short): max. 120 mA typical

Value coupling

\[
Amplitude = High – Low
\]

\[
Offset = \frac{High – Low}{2}
\]

Range coupling Offset
Description
This command programs the amplitude current of the OUTPUT signal. Note that to set the OUTPUT levels in terms of current, you first have to execute the [:SOURce]:HOLD CURRent command to enable the [:SOURce]:CURRent subsystem.

The available current range is limited by the specified voltage limits.

Example
```plaintext
:HOLD CURR
:CURR1 75MA
```
Set OUTPUT 1 amplitude to 75 mA

Command
```
:CURR[1|2]:OFFSet
```

Long
```
[:SOURce]:CURRent[1|2][:LEVEL][:IMMediate]:OFFSet
```

Form
Set & Query

Parameter
Numeric

Parameter suffix
A with engineering prefixes.

*RST value
0.0 μA (50 Ω into 50 Ω)

Specified Limits
- 3.8 V Outputs (50 Ω into short): max. 152 mA typical
- 3.0 V Outputs (50 Ω into short): max. 120 mA typical

Value coupling

\[
\text{Amplitude} = \text{High} - \text{Low} \\
\text{Offset} = \frac{\text{High} - \text{Low}}{2}
\]

Range coupling
Amplitude

Description
This command programs the offset current of the OUTPUT signal. Note that to set the OUTPUT levels in terms of current, you first have to execute the [:SOURce]:HOLD CURRent command to enable the [:SOURce]:CURRent subsystem.

The available current range is limited by the specified voltage limits.

Example
```plaintext
:HOLD CURR
:CURR1:OFF 50MA
```
Set OUTPUT 1 offset to 50 mA
Programming Reference
SCPI Instrument Command List

Command :CURR[1|2]:HIGH
Long [:SOURce]:CURRent[1|2][:LEVel][:IMMediate]:HIGH
Form Set & Query
Parameter Numeric
Parameter suffix A with engineering prefixes.
*RST value +10 mA (50 Ω into 50 Ω)
Specified Limits
3.8 V Outputs (50 Ω into short): max. 152 mA typical
3.0 V Outputs (50 Ω into short): max. 120 mA typical

Value coupling
\[Amplitude = \text{High} - \text{Low} \]
\[Offset = \frac{\text{High} - \text{Low}}{2} \]

Range coupling Low-level
Description This command programs the High-level current of the OUTPUT signal.
Note that to set the OUTPUT levels in terms of current, you first have to execute [:SOURce]:HOLD CURRent command to enable the [:SOURce]:CURRent subsystem.
The available current range is limited by the specified voltage limits.

Example
::HOLD CURR Enable CURRENT subsystem
::CURR1:HIGH 150MA Set OUTPUT 1 High-level to 150 mA
Command: CURR[1|2]:LOW
Long [:SOURce]:CURRent[1|2][:LEVel][:IMMediate]:LOW
Form Set & Query
Parameter Numeric
Parameter suffix A, with engineering prefixes.
*RST value -10 mA (50 Ω into 50 Ω)
Specified Limits 3.8V Outputs (50 Ω into short): max. 152 mA typical
3.0V Outputs (50 Ω into short): max. 120 mA typical
Value coupling
\[
\text{Amplitude} = \text{High} - \text{Low} \\
\text{Offset} = \frac{\text{High} - \text{Low}}{2}
\]
Range coupling High-level
Description This command programs the Low-level current of the OUTPUT signal. Note that to set the OUTPUT levels in terms of current, you first have to execute the [:SOURce]:HOLD CURRent command to enable the [:SOURce]:CURRent subsystem.
The available current range is limited by the specified voltage limits.
Example
:HOLD CURR Enable CURRENT subsystem
:CURR1:LOW 50 MA Set OUTPUT 1 Low-level to 50 mA

Command: CURR[1|2]:LIM
Long [:SOURce]:CURRent[1|2]:LIMit[:HIGH]
Form Set & Query
Parameter Numeric
Parameter suffix A, with engineering prefixes.
*RST value +10.0 mA

Amplitude = High – Low
Offset = \frac{\text{High} - \text{Low}}{2}
Description
Use this command to set/read the High-level current limit. If you switch on current limiting, the High-level current cannot be set above the programmed limit.

NOTE
The current is *NOT* limited by the OUTPUT hardware, this is a software limit.

Example
```plaintext
:HOLD CURR
:CURR1:LIM 50 MA
:CURR1:LIM:STAT ON
```
Enable CURRENT subsystem
Set OUTPUT 1 High-level current limit to 50 mA
Switch on OUTPUT 1 limits

Command
:CURR[1|2]:LIM:LOW

Long

[:SOURce]:CURRent[1|2]:LIMit:LOW

Form
Set & Query

Parameter
Numeric

Parameter suffix
A with engineering prefixes.

*RST value
–10.0 mA

Description
Use this command to set/read the Low-level current limit. If you switch on current limiting, the Low-level current cannot be set below the programmed limit.

NOTE
The current is *NOT* limited by the OUTPUT hardware, this is a software limit.

Example
```plaintext
:HOLD CURR
:CURR1:LIM:LOW −50 MA
:CURR1:LIM:STAT ON
```
Enable CURRENT subsystem
Set OUTPUT 1 Low-level current limit to –50 mA
Switch on OUTPUT 1 limits

Command
:CURR[1|2]:LIM:STAT

Long

[:SOURce]:CURRent[1|2]:LIMit:STATe

Form
Set & Query

Parameter
ON | OFF | 1 | 0

64
Description
This command switches the output limits on or off. When you switch on the output limits cannot program the output-levels beyond the programmed limits, until you switch off the output-limits. The limits apply whether you program High/Low levels or Amplitude/Offset levels.

NOTE
You can switch the limits on and off in both the [:SOURce]:CURRent and the [:SOURce]:VOLTage subsystems but the current and voltage limits are not enabled/disabled independently. The voltage and current limits are always enabled/disabled together.

Example
:CURR1:LIM 50MA
Set OUTPUT 1 High-level current limit to 50 mA
:CURR1:LIM:LOW -50MA
Set OUTPUT 1 Low-level current limit to –50mA
:CURR1:LIM:STAT ON
Switch on OUTPUT 1 limits

Command: :FREQ

Long: [:SOURce]:FREQuency[:CW][:FIXed]

Form: Set & Query

Parameter: Numeric

Parameter Suffix: Hz with engineering prefixes, or MHz for Megahertz.

RST value: 1.00 MHz

Specified limits:
- Agilent 81131A: 1 kHz to 400 MHz
- Agilent 81132A: 1 kHz to 660 MHz

Value coupling:
\[
\text{Period} = \frac{1}{\text{Frequency}}
\]
Programming Reference
SCPI Instrument Command List

<table>
<thead>
<tr>
<th>Description</th>
<th>Use this command to set/read the pulse frequency. Select the frequency source for the pulse frequency using :TRIGger:SOURce. The currently selected source is programmed by this command. Note that the specified limits and available resolution depend on the selected source. You cannot set the pulse frequency if you have selected the CLK IN connector as the frequency source (:TRIG:SOUR EXT).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>:TRIG:SOUR INT</td>
</tr>
<tr>
<td></td>
<td>:FREQ 75MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>:FREQ:AUTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>[:SOURce]:FREQuency[:CW][:FIXed]:AUTO</td>
</tr>
<tr>
<td>Form</td>
<td>Event</td>
</tr>
<tr>
<td>Parameter</td>
<td>ONCE</td>
</tr>
<tr>
<td>*RST value</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Description</td>
<td>Use this command to measure the frequency at the CLK IN connector. If the CLK IN connector is the selected pulse frequency source, you can then read the measured value with :FREQ?</td>
</tr>
<tr>
<td>Example</td>
<td>:TRIG:SOUR EXT2</td>
</tr>
<tr>
<td></td>
<td>:FREQ:AUTO ONCE</td>
</tr>
<tr>
<td></td>
<td>:FREQ?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>:HOLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>[:SOURce]:HOLD</td>
</tr>
<tr>
<td>Form</td>
<td>Set & Query</td>
</tr>
<tr>
<td>Parameter</td>
<td>VOLTage</td>
</tr>
<tr>
<td>*RST value</td>
<td>VOLT</td>
</tr>
<tr>
<td>Description</td>
<td>Use this command to enable either of the [:SOURce]:VOLTage or [:SOURce]:CURRent subsystems. You can control the signal levels of the instrument OUTPUTs in terms of voltage or current.</td>
</tr>
</tbody>
</table>
Command: \texttt{:PHAS[1|2]}

Long:
\texttt{[:SOURce]:PHAS[e[1|2][:ADJJust]}

Form: Set & Query

Parameter: Numeric

Parameter suffix: DEG or RAD. A parameter without a suffix is interpreted as RAD.

*RST value: 0.0

Specified limits: 0 to 360\degree constrained by delay and period limits.

Value coupling:

\[\text{Delay} = \frac{\text{Phase}}{360} \times \text{Period}\]

Functional coupling: Programming the pulse phase also executes \texttt{[:SOURce]:PULSe:HOLD PHAS[e]} so that the pulse phase is held constant when the signal frequency is changed.

Description: Use this command to set/read the relative phase-delay of the output signal. This is equivalent to setting an absolute or percentage pulse-delay with \texttt{[:SOURce]:PULSe:DELay}.

If you want the phase delay to remain constant when the pulse period is varied (rather than the absolute pulse delay) use \texttt{[:SOURce]:PULSe:DELay[1|2]:HOLD PRATio}.

Example:

\begin{itemize}
 \item \texttt{:PULS:DEL1 500NS} \quad \text{Set OUTPUT 1 delay to 500ns}
 \item \texttt{:PHAS2 180 DEG} \quad \text{Set OUTPUT 2 phase to 180\degree}
 \item \texttt{:PULS:DEL1:HOLD TIM} \quad \text{Hold OUTPUT 1 delay constant with varying period}
 \item \texttt{:PULS:DEL2:HOLD PRAT} \quad \text{Hold OUTPUT 2 phase constant with varying period}
\end{itemize}

Command: \texttt{:PULS:DCYC[1|2]}

Long:
\texttt{[:SOURce]:PULSe:DCYCle[1|2]}

Form: Set & Query

Parameter: Numeric

Parameter suffix: PCT

*RST value: 10.0\% (derived from Width and Period)
Programming Reference

SCPI Instrument Command List

Specified limits: 0.1 – 99.9%, depends on Width & Period.

Value coupling:

\[Width = \frac{Duty \ Cycle}{100} \times Period \]

Description

Use this command to program the dutycycle of the pulse signal. If you want to set an absolute pulse-width use

\[[:SOURce]:PULSe:WIDTh[1|2] \]

If you want the pulse dutycycle to remain constant when the pulse period is varied (rather than the absolute pulse width use)

\[[:SOURce]:PULSe:HOLD[1|2] \] DCYCle

Example

: PULS:DCYC1 25PCT
: PULS:HOLD1 DCYC

Set OUTPUT 1 dutycycle to 25%

Hold dutycycle constant with varying period

Command

: PULS:DEL[1|2]

Long

\[[:SOURce]:PULSe:DELay[1|2] \]

Form

Set & Query

Parameter

Numeric

Parameter suffix

S with engineering prefixes. You can change the default unit using \[[:SOURce]:PULSe:DELay[1|2]:UNIT \]

RST value

0.0

Specified limits

0 to 3.00 µs

Value coupling

\[Phase = \frac{Delay}{Period} \times 360 \]

\[Delay\% = \frac{Delay}{Period} \times 100 \]
Description

Use this command to set/read the pulse-delay. Delay is the time between the start of the pulse period and the start of the leading-edge of the pulse. If you want the pulse-delay to remain constant when the pulse period is varied (rather than the phase-delay) use [:SOURce]:PULSe:DELay[1|2]:HOLD TIME.

Example

: PULS:DEL1 500NS Set OUTPUT1 delay to 500 ns
: PHAS2 180 DEG Set OUTPUT2 phase to 180°
: PULS:DEL1:HOLD TIME Hold OUTPUT1 delay constant with varying period
: PULS:DEL2:HOLD PRAT Hold OUTPUT2 phase constant with varying period

Command

:PULS:DEL[1|2]:HOLD

Long

[:SOURce]:PULSe:DELay[1|2]:HOLD

Form

Set & Query

Parameter

TIME | PRATio

*RST value

TIME

Description

Use this command to set/read the coupling between the pulse period and the pulse-delay:

TIME The absolute pulse-delay is held fixed when the pulse period is varied (Pulse phase varies).

PRATio The pulse phase-delay (delay as ratio of period) is held fixed when the pulse period is varied. (Pulse-delay varies).

Example

: PULS:DEL1 500ns Set OUTPUT1 delay to 500ns
: PHAS2 180DEG Set OUTPUT2 phase to 180°
: PULS:DEL1:HOLD TIME Hold OUTPUT1 delay constant with varying period
: PULS:DEL2:HOLD PRAT Hold OUTPUT2 phase constant with varying period
Programming Reference
SCPI Instrument Command List

Command :PULS:DEL[1|2]:UNIT
Long [:SOURce]:PULSe:DELay[1|2]:UNIT
Form Set & Query
Parameter S | SEC | PCT | DEG | RAD
*RST value SEC
Description Use this command to set/read the default units for the pulse-delay parameter. The default unit of a parameter is the unit used when the parameter is programmed to a value without a unit suffix.
Example
:PULS:DEL1:UNIT PCT Set OUTPUT 1 delay unit to %
:PULS:DEL1 50 Set OUTPUT 1 delay to 50% of period

Command :PULS:HOLD[1|2]
Long [:SOURce]:PULSe:HOLD[1|2]
Form Set & Query
Parameter WIDTh | DCYCle | TDELay
*RST value WIDTh
Description Use this command to set whether the pulse-width, the pulse-duty cycle or the pulse trailing-edge delay is held constant when the pulse period is changed.
Example
:PULS:DEL:HOLD1 TIME Hold OUTPUT 1 delay fixed when frequency varies
:PULS:DEL 20NS Set OUTPUT 1 delay to 20ns
:PULS:HOLD1 DCYC Hold OUTPUT 1 Duty cycle fixed when frequency varies
:PULS:DCYC 25PCT Set OUTPUT 1 Duty cycle to 25%

Command :PULS:PER
Long [:SOURce]:PULSe:PERiod
Form Set & Query
Parameter Numeric

70
Parameter Suffix: S with engineering prefixes.

*RST value: 1 μs

Specified limits:
- Agilent 81131A: 2.5 ns to 1 ms
- Agilent 81132A: 1.5 ns to 1 ms

Value coupling:

\[\text{Frequency} = \frac{1}{\text{Period}} \]

Description:
Use this command to set/read the pulse period. Select the pulse period source using \(\text{:TRIGger:SOURce} \). The currently selected source is programmed by this command. Note that the specified limits and available resolution depend on the selected source.

You cannot set the pulse period if you have selected the CLK IN connector as the frequency source (\(\text{:TRIG:SOUR EXT2} \)).

Example:
- \(\text{:TRIG:SOUR INT} \): Select internal PLL as pulse trigger
- \(\text{:PULS:PER 25NS} \): Set pulse frequency to 25 ns

Command:
\(\text{:PULS:PER:AUTO} \)

Long:
\([\text{[:SOURce]}]:\text{PULSe:PERiod:AUTO} \)

Form:
Event

Parameter:
ONCE

*RST value:
Not applicable

Description:
Use this command to measure the period at the CLK IN connector. If the CLK IN connector is the selected pulse period source, you can then read the measured value with \(\text{:PULS:PER?} \).

Example:
- \(\text{:TRIG:SOUR EXT2} \): Select ext CLK IN as pulse trigger
- \(\text{:PULS:PER:AUTO ONCE} \): Measure period at CLK IN
- \(\text{:PULS:PER?} \): Query pulse period

71
Programming Reference
SCPI Instrument Command List

Command :PULS:TDEL[1|2]
Long [:SOURce]:PULSe:TDELay[1|2]
Form Set & Query
Parameter Numeric
Parameter Suffix S with engineering prefixes.
*RST value 100 ns
Specified Limits Agilent 81131A: 1.25 ns to 999.9 µs
Agilent 81132A: 0.75 ns to 999.9 µs
Description Use this command to program the delay of the trailing-edge of the pulse relative to the start of the pulse period. This is an alternative method of programming the pulse-width.
Example :PULS:DEL1 500NS Set OUTPUT 1 delay to 500 ns
:PULS:DEL1:HOLD TIME Hold OUTPUT 1 delay constant with varying period
:PULS:TDEL1 750NS Set OUTPUT 1 trailing delay to 750 ns

Command :PULS:TRAN[1|2]:UNIT
Long [:SOURce]:PULSe:TRANsition[1|2]:UNIT
Form Set & Query
Parameter S | SEC | PCT
*RST value SEC
Description Use this command to set the default units for the pulse transition-times. The default unit is used when the parameter is programmed to a value without a unit suffix.

Command :PULS:TRAN[1|2]
Long [:SOURce]:PULSe:TRANsition[1|2][:LEADing]
Form Set & Query
Parameter Numeric
Parameter suffix: S with engineering prefixes

*RST value: 0.8 ns

Specified limits: Agilent 81131A: 0.8 ns or 1.6 ns

Parameter coupling: Trailing-edge = Leading-edge fixed coupled

Description: Use this command to set/read the transition-time of the pulse leading-edge. Note that the leading and trailing edges of the pulse have to fit within the defined pulse-width.

Example: `:PULS:TRAN1 1.6NS` Set OUTPUT 1 leading edge to 1.6 ns

NOTE Selectable transition time is only available with Agilent 81131A.

Command: `:PULS:TRAN[1|2]:TRA`

Long: `[:SOURce]:PULSe:TRANsition[1|2]:TRAiling`

Form: Set & Query

Parameter: Numeric

Parameter suffix: S with engineering prefixes.

*RST value: 0.8 ns

Specified limits: Agilent 81131A: 0.8 ns or 1.6 ns

Parameter coupling: Trailing-edge = Leading-edge fixed coupled

Description: Use this command to set/read the transition-time of the pulse trailing-edge. Note that the leading and trailing edges of the pulse have to fit within the defined pulse-width.

NOTE Selectable transition time is only available with Agilent 81131A.
Programming Reference

SCPI Instrument Command List

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULS:TRIG[1]:MODE</td>
<td>Use this command to set/read the TRIGGER OUT generation mode in pattern mode.</td>
</tr>
</tbody>
</table>

Long

```
[:SOURce]:PULSe:TRIGger[1]:MODE
```

Form

Set & Query

Parameter

CONTinuous | STARt

RST value STARt

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULS:TRIG[1]:POS</td>
<td>Use this command to set/read the TRIGGER OUT position in pattern mode. The specified value selects a segment number for the Agilent 81130A.</td>
</tr>
</tbody>
</table>

Long

```
[:SOURce]:PULSe:TRIGger[1]:POSition
```

Form

Set & Query

Parameter

1 | 2 | 3 | 4

RST value 1

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULS:TRIG[1]:VOLT</td>
<td>Use this command to set/read the TRIGGER OUT generation mode in pattern mode.</td>
</tr>
</tbody>
</table>

Long

```
[:SOURce]:PULSe:TRIGger[1]:VOLTage[:LEVEL]:IMMediate
```

Form

Set & Query

Parameter

TTL | PECL | SYM | ECLGND | ECLN2V

RST value TTL

74
Description: Use this command to set/read the output levels at the TRIGGER OUT connector.

<table>
<thead>
<tr>
<th>Value</th>
<th>High Level</th>
<th>Low Level</th>
<th>Termination Voltage</th>
<th>Termination Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>2.5V</td>
<td>0V</td>
<td>0V</td>
<td>50Ω</td>
</tr>
<tr>
<td>PECL</td>
<td>4.2V</td>
<td>3.3V</td>
<td>3.0V</td>
<td>50Ω</td>
</tr>
<tr>
<td>SYM</td>
<td>0.5V</td>
<td>-0.5V</td>
<td>0V</td>
<td>50Ω</td>
</tr>
<tr>
<td>ECLGND</td>
<td>-0.8V</td>
<td>-1.7V</td>
<td>0V</td>
<td>50Ω</td>
</tr>
<tr>
<td>ECLN2V</td>
<td>-0.8V</td>
<td>-1.7V</td>
<td>-2.0V</td>
<td>50Ω</td>
</tr>
</tbody>
</table>

Command: \texttt{PULS:WIDT[1|2]}

Long:
\texttt{[:SOURce]:PULSe:WIDTh[1|2]}

Form: Set & Query

Parameter: Numeric

Parameter suffix: \texttt{S} with engineering prefixes

*RST value: 100 ns

Specified Limits:
- Agilent 81131A: 1.25 ns to 999.9 µs
- Agilent 81132A: 0.75 ns to 999.9 µs

Description: Use this command to program the width of the pulse signal. If you want to set width as dutycycle use \texttt{[:SOURce]:PULSe:DCYCle[1|2]}.

If you want the pulse-width to remain constant when the pulse period is varied (rather than the dutycycle) use \texttt{[:SOURce]:PULSe:HOLD[1|2]} \texttt{WIDTh}.

Example:
- \texttt{PULS:WIDT1 50NS} Set OUTPUT 1 pulse width to 50 ns
- \texttt{PULS:HOLD1 WIDTH} Hold pulse-width constant with varying period
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ROSC:SOUR</td>
<td>[:SOURce]:ROSCillator:SOURce</td>
</tr>
</tbody>
</table>

Form

Set & Query

Parameter

<table>
<thead>
<tr>
<th>INTernal</th>
<th>EXTernal</th>
</tr>
</thead>
</table>

*RST value

INT

Description

Use this command to set/read the reference source for the PLL. If you select the external reference (CLK IN connector) you can choose to use a 1 MHz, 2 MHz, 5 MHz or 10 MHz reference signal using :ROSC:EXT:FREQ.

<table>
<thead>
<tr>
<th>Internal</th>
<th>Lock the PLL to its internal reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERNAL</td>
<td>Lock the PLL to a reference signal at the CLK IN connector. The external reference signal can be 1, 2, 5 or 10 MHz.</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ROSC:SOUR EXT</td>
<td>Set external PLL reference (CLK IN)</td>
</tr>
<tr>
<td>:ROSC:EXT:FREQ 10 MHZ</td>
<td>Set expected PLL reference frequency to 10 MHz</td>
</tr>
</tbody>
</table>
Command: \textbf{VOLT[1|2]}

Long: \texttt{[:SOURce]:VOLTage[1|2][:LEVEL][:IMMediate][:AMPLitude]}

Form: Set & Query

Parameter: Numeric

Parameter suffix: V with engineering prefixes.

*RST value: 1.00 V

Specified Limits:
- Agilent 81131A: 0.10 Vpp to 3.80 Vpp
- Agilent 81132A: 0.10 Vpp to 2.50 Vpp

Value coupling:

\[
\begin{align*}
\text{High} &= \text{Offset} + \frac{\text{Amplitude}}{2} \\
\text{Low} &= \text{Offset} - \frac{\text{Amplitude}}{2}
\end{align*}
\]

Range coupling: Offset

Description:
This command programs the amplitude voltage of the OUTPUT signal. Note that to set the OUTPUT levels in terms of voltage, you first have to execute the \texttt{[:SOURce]:HOLD VOLTage} command to enable the \texttt{[:SOURce]:VOLTage} subsystem.

The available voltage range is limited by the specified current limits.

Example:
- \texttt{:HOLD VOLT} Enable VOLTAGE subsystem
- \texttt{:VOLT1 2V} Set OUTPUT 1 amplitude to 2 V

Command: \textbf{VOLT[1|2]:OFFSet}

Long: \texttt{[:SOURce]:VOLTage[1|2][:LEVEL][:IMMediate]:OFFSet}

Form: Set & Query

Parameter: Numeric

Parameter suffix: V with engineering prefixes.

*RST value: 0.0 mV
Programming Reference
SCPI Instrument Command List

Specified Limits
Agilent 81131A: –1.95 V to 3.75 V
Agilent 81132A: –1.95 V to 2.95 V

Value coupling

\[\text{High} = \text{Offset} + \frac{\text{Amplitude}}{2} \]

\[\text{Low} = \text{Offset} - \frac{\text{Amplitude}}{2} \]

Range coupling
Amplitude

Description
This command programs the offset voltage of the OUTPUT signal. Note that to set the OUTPUT levels in terms of voltage, you first have to execute the [:SOURce]:HOLD VOLTage command to enable the [:SOURce]:VOLtage subsystem.

The available voltage range is limited by the specified current limits.

Example

[:HOLD VOLT] Enable VOLTAGE subsystem
[:VOLT1:OFF -800MV] Set OUTPUT 1 offset to –800mV

Command

[VOLT[1|2]:HIGH]

Long
[:SOURce]:VOLTage[1|2][:LEVEL][:IMMediate]:HIGH

Form
Set & Query

Parameter
Numeric

Parameter suffix
V with engineering prefixes.

*RST value
500 mV

Specified Limits
Agilent 81131A: –1.90 V to 3.80 V
Agilent 81132A: –1.90 V to 2.50 V

Value coupling

\[\text{Amplitude} = \text{High} - \text{Low} \]

\[\text{Offset} = \frac{\text{High} - \text{Low}}{2} \]
Range coupling

Low-level

Description

This command programs the High-level voltage of the OUTPUT signal. Note that to set the OUTPUT levels in terms of voltage, you first have to execute the [:SOURce]:HOLD VOLTage command to enable the [:SOURce]:VOLTage subsystem.

The available voltage range is limited by the specified current limits.

Example

:VOLT1:HIGH 2V

Command

:VOLT[12]:LOW

Long

[:SOURce]:VOLTage[1|2][:LEVel][:IMMediate]:LOW

Form

Set & Query

Parameter

Numeric

Parameter suffix

V with engineering prefixes.

*RST value

–500 mV

Specified Limits

Agilent 81131A: –2.00 V to 3.70 V
Agilent 81132A: –2.00 V to 2.90 V

Value coupling

\[
\text{Amplitude} = \text{High} - \text{Low} \\
\text{Offset} = \frac{\text{High} - \text{Low}}{2}
\]

Range coupling

High-level

Description

This command programs the Low-level voltage of the OUTPUT signal. Note that to set the OUTPUT levels in terms of voltage, you first have to execute the [:SOURce]:HOLD VOLTage command to enable the [:SOURce]:VOLTage subsystem.

The available voltage range is limited by the specified current limits.

Example

:HOLD VOLT

:VOLT1:LOW 500MV

Set OUTPUT 1 low-level to 500mV
Programming Reference
SCPI Instrument Command List

Command :VOLT[1|2]:LIM
Long [:SOURce]:VOLTage[1|2]:LIMit[:HIGH]
Form Set & Query
Parameter Numeric
Parameter suffix V with engineering prefixes.
*RST value +500 mV
Description Use this command to set/read the High-level voltage limit. If you switch on voltage limiting, the High-level voltage cannot be set above the programmed limit. Note that the voltage is \textit{NOT} limited by the OUTPUT hardware, this is a software limit.
Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:HOLD VOLT</td>
<td>Enable VOLTAGE subsystem</td>
</tr>
<tr>
<td>:VOLT1:LIM 2V</td>
<td>Set OUTPUT 1 High-level limit to 2 V</td>
</tr>
<tr>
<td>:VOLT1:LIM:STAT ON</td>
<td>Switch on OUTPUT 1 limits</td>
</tr>
</tbody>
</table>

Command :VOLT[1|2]:LIM:LOW
Long [:SOURce]:VOLTage[1|2]:LIMit:LOW
Form Set & Query
Parameter Numeric
Parameter suffix V with engineering prefixes.
*RST value –500 mV
Description Use this command to set/read the Low-level voltage limit. If you switch on voltage limiting, the Low-level voltage cannot be set below the programmed limit. Note that the voltage is \textit{NOT} limited by the OUTPUT hardware, this is a software limit.
Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:HOLD VOLT</td>
<td>Enable VOLTAGE subsystem</td>
</tr>
<tr>
<td>:VOLT1:LIM:LOW 0V</td>
<td>Set OUTPUT 1 Low-level voltage</td>
</tr>
<tr>
<td>:VOLT1:LIM:STAT ON</td>
<td>Switch on OUTPUT 1 limits</td>
</tr>
</tbody>
</table>

80
Command: :VOLT[1|2]:LIM:STAT

Long: [:SOURce]:VOLTage[1|2]:LIMit:STATe

Form: Set & Query

Parameter: ON | OFF | 1 | 0

*RST value: OFF

Description: This command switches the output limits on or off. When you switch on the output limits cannot program the output-levels beyond the programmed limits, until you switch off the voltage-limits. The limits apply whether you program High/Low levels or Amplitude/Offset levels.

NOTE

You can switch the limits on and off in both the [:SOURce]:CURRent and the [:SOURce]:VOLTage subsystems but the current and voltage limits are not enabled/disabled independently. The voltage and current limits are always enabled/disabled together.

Example:

- :HOLD VOLT Enable VOLTAGE subsystem
- :VOLT1:LIM 2V Set OUTPUT 1 High level voltage limit to 2 V
- :VOLT1:LIM:LOW 0V Set OUTPUT 1 Low-level voltage limit to 0
- :VOLT1:LIM:STAT ON Switch on OUTPUT 1 limits

Command: :STATus:OPERation

This command tree accesses the OPERation status group. The OPERation status group *is not used by the instrument therefore this command tree is redundant.*

- :STATus:OPERation[:EVENT]?
- :STATus:OPERation:CONDition?
- :STATus:OPERation:ENABLE
- :STATus:OPERation:NTRansition
- :STATus:OPERation:PTRansition
Programming Reference
SCPI Instrument Command List

Command:
:STATus:PRESet

Long:
:STATus:PRESet

Form:
Event

*RST value:
Not Applicable

Description:
- Clears all status group event-registers
- Clears the error queue
- Presets the status group enable-, PTR-, and NTR-registers as follows:

<table>
<thead>
<tr>
<th>Status Group</th>
<th>Register</th>
<th>Preset value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERation</td>
<td>ENABle</td>
<td>0000000000000000</td>
</tr>
<tr>
<td></td>
<td>PTR</td>
<td>0111111111111111</td>
</tr>
<tr>
<td></td>
<td>NTR</td>
<td>0000000000000000</td>
</tr>
<tr>
<td>QUESTionable</td>
<td>ENABle</td>
<td>0000000000000000</td>
</tr>
<tr>
<td></td>
<td>PTR</td>
<td>0111111111111111</td>
</tr>
<tr>
<td></td>
<td>NTR</td>
<td>0000000000000000</td>
</tr>
</tbody>
</table>

Command:
:STATus:QUESTionable

This command tree accesses the QUESTionable status group. The QUESTionable status group contains warning bits for voltage, current, time and frequency parameters. A warning occurs when the output signal could be out of specification due to the combined specification uncertainties of many parameters, although all parameters are set within their individually specified limits. If a parameter is set outside its specified limits an error is generated.

The following commands are used to access the registers within the status group:
Programming Reference
SCPI Instrument Command List

1. :STATus:QUEStionable[:EVENt]?
 Form Query
 *RST value Not Applicable
 Description This command reads the event register in the QUEStionable status group.

2. :STATus:QUEStionable:CONDition?
 Form Query
 *RST value Not Applicable
 Description This command reads the condition register in the QUEStionable status group.

3. :STATus:QUEStionable:ENABLE
 Form Set & Query
 Parameter Numeric
 *RST value Not affected by *RST
 Specified 0 – 32767
 limits
 Description This command sets or queries the enable register in the QUEStionable status group.

4. :STATus:QUEStionable:NTRansition
 Form Set & Query
 Parameter Numeric
 *RST value Not applicable
 Specified 0 – 32767
 limits
 Description This command sets or queries the negative transition register in the QUEStionable status group.

5. :STATus:QUEStionable:PTRansition
 Form Set & Query
 Parameter Numeric
 *RST value Not applicable
 Specified 0 – 32767
 limits
 Description This command sets or queries the positive transition register in the QUEStionable status group.
:SYST:ERR?

Use this command to read the instrument error queue. The instrument error queue can store up to 30 error codes on a first-in-first-out basis. When you read the error queue, the error number and associated message are put into the instrument's output buffer.

If the queue is empty, the value 0 is returned, meaning *No Error*. If the queue overflows at any time, the last error code is discarded and replaced with -350 meaning *Queue overflow*.

Example

```
:SYST:ERR?
```

Query for errors

Output example:

```
-222 "Data out of range" overlap at output 1: Width>Period
```

The above message is an example of a customized description. Generic descriptions are available in the SCPI 1995 Command Reference, items 21.8.4 to 21.8.11.

Send ":SYST:WARN:STR?". Alternatively, the HELP key shows the current errors and warnings and their description on the instruments display.

:SYST:KEY

Use this command to set and query the instrument's front panel key operation. The key operation can be Set, Query, or both.

Example

```
:SYST:KEY
```

Set & Query

Parameter Numeric

Parameter suffix No suffix allowed

RST value Not Applicable
Specified limits

<table>
<thead>
<tr>
<th>No.</th>
<th>Key Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>No key pressed (Query only)</td>
</tr>
<tr>
<td>0</td>
<td>DATA ENTRY 0</td>
</tr>
<tr>
<td>1</td>
<td>DATA ENTRY 1</td>
</tr>
<tr>
<td>2</td>
<td>DATA ENTRY 2</td>
</tr>
<tr>
<td>3</td>
<td>DATA ENTRY 3</td>
</tr>
<tr>
<td>4</td>
<td>DATA ENTRY 4</td>
</tr>
<tr>
<td>5</td>
<td>DATA ENTRY 5</td>
</tr>
<tr>
<td>6</td>
<td>DATA ENTRY 6</td>
</tr>
<tr>
<td>7</td>
<td>DATA ENTRY 7</td>
</tr>
<tr>
<td>8</td>
<td>DATA ENTRY 8</td>
</tr>
<tr>
<td>9</td>
<td>DATA ENTRY 9</td>
</tr>
<tr>
<td>10</td>
<td>DATA ENTRY .</td>
</tr>
<tr>
<td>11</td>
<td>DATA ENTRY +/-</td>
</tr>
<tr>
<td>12</td>
<td>Cursor Up</td>
</tr>
<tr>
<td>13</td>
<td>Cursor Down</td>
</tr>
<tr>
<td>14</td>
<td>Cursor Left</td>
</tr>
<tr>
<td>15</td>
<td>Cursor Right</td>
</tr>
<tr>
<td>16</td>
<td>MAN</td>
</tr>
<tr>
<td>17</td>
<td>STORE</td>
</tr>
<tr>
<td>18</td>
<td>HELP</td>
</tr>
<tr>
<td>19</td>
<td>SHIFT</td>
</tr>
<tr>
<td>20</td>
<td>MORE</td>
</tr>
<tr>
<td>21</td>
<td>Softkey 1</td>
</tr>
<tr>
<td>22</td>
<td>Softkey 2</td>
</tr>
<tr>
<td>23</td>
<td>Softkey 3</td>
</tr>
<tr>
<td>24</td>
<td>Softkey 4</td>
</tr>
<tr>
<td>25</td>
<td>NANO</td>
</tr>
</tbody>
</table>
In query form, this command reads the last key pressed. The buffer is emptied by *RST and returns the value -1 when empty.

In set form, the command simulates pressing a key on the frontpanel. Simulated key-press are also recorded as the last key pressed.

NOTE

:SYST:KEY 19 sets the instrument to LOCAL mode.

1. In remote mode only the softkeys under the display and the **SHIFT** (LOCAL) key are active. Since the instrument normally switches to remote mode when any command is received, including :SYSTem:KEY, simulating one of the other disabled keys has no effect.

2. If you want to simulate full frontpanel operation, you must prevent the instrument from entering remote mode by using the REN line of the GP-IB to maintain local mode (LOCAL 7 in BASIC).

If you do this, the :SYSTem:KEY command is the only command which works. Any other commands will be buffered in the instrument blocking any further :SYSTem:KEY commands, until remote mode is enable.
Programming Reference
SCPI Instrument Command List

Command :SYST:PRES
Long :SYSTem:PRESet
Form Same as *RST

Command :SYST:SEC
Long :SYSTem:SECurity[:STATe]
Form Set & Query
Parameter ON|OFF
*RST value OFF
Description

CAUTION
Do not switch on system security unless you are willing to erase the instrument settings stored in the instrument. All instrument memories, including the current setting, will be overwritten with the default settings if you
- Switch off system security
- Switch the instrument off and on again
- If you accidentally switch on system security, and want to rescue the settings stored in the instrument, store the settings on a memory card. You can then recall them from the memory card later.

Use this command to switch on system security mode. Switch on system security if you need to make sure that all instrument settings stored in the instrument are erased automatically when the instrument is switched off, or when security mode is switched off.
The instrument settings are erased by overwriting them with the default settings.
System security mode is not available via the frontpanel. If you want to erase all settings by hand:
1 SHIFT STORE 0 to RECALL the default settings from memory 0.
2 STORE 1, STORE 2,...,STORE 4 to store the defaults in memories 1 to 4.
<table>
<thead>
<tr>
<th>Command</th>
<th>:SYST:SET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>:SYSTem:SET</td>
</tr>
<tr>
<td>Form</td>
<td>Set & Query</td>
</tr>
<tr>
<td>Parameter</td>
<td>Block data</td>
</tr>
<tr>
<td>*RST value</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Description</td>
<td>In query form, the command reads a block of data containing the instrument's complete set-up. The set-up information includes all parameter and mode settings, but does not include the contents of the instrument setting memories, the status group registers or the :DISPlay[:WINDow][:STATe]. The data is in a binary format, not ASCII, and cannot be edited. In set form, the block data must be a complete instrument set-up read using the query form of the command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>:SYST:VERS?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>:SYSTem:VERSION?</td>
</tr>
<tr>
<td>Form</td>
<td>Query</td>
</tr>
<tr>
<td>*RST value</td>
<td>"1992.0"</td>
</tr>
<tr>
<td>Description</td>
<td>This command reads the SCPI revision to which the instrument complies.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>:SYST:WARN?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long</td>
<td>:SYSTem:WARNing[:COUNT]?</td>
</tr>
<tr>
<td>Form</td>
<td>Query</td>
</tr>
<tr>
<td>*RST value</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Description</td>
<td>Use this command to read the number of warnings which are currently active. Note that the warning status of voltage, current, time and frequency are also summarized by bits in the QUESTionable Status register.</td>
</tr>
</tbody>
</table>
Command: :SYST:WARN:STR?
Long: :SYSTem:WARNing:STRing?
Form: Query
*RST value: Not applicable
Description: Use this command to read all the currently active warning messages. The warning messages are concatenated to form a single string with a ; as separator between the messages.

Command: :SYST:WARN:BUFF?
Long: :SYSTem:WARNing:BUFFer?
Form: Query
*RST value: Not applicable
Description: Use this command to read the maximum possible number of characters which could be returned by :SYST:WARN:STR? if all warnings were active.

Command: :TRIG:COUN
Long: :TRIGger[:SEQUence[1] | :STARt]:COUNt
Form: Set & Query
Parameter: Numeric
*RST value: 1
Specified limits: 1 to 65504
Description

Use this command to set/read the number of trigger events (pulse periods) to be generated for each arming event in pulse and burst mode (in pattern mode the number of trigger events depends on the used sequence). This corresponds to selecting the event mode on the MODE/TRIG screen:

PULSES
Set a trigger count of 1 so that a single pulse period is generated for each arming event.

BURST of
Set a trigger count of 2 to 65504 so that a burst of 2 to 65504 pulse periods is generated for each arming event. Switch off pattern mode so that a pulse is generated in each pulse period. (:DIG:PATT OFF)

NOTE
For a started burst this command will reduce the number of pulses on channel 1 and channel 2 (:TRIGger:COUNt:PULSes[1|2]) to the value set by :TRIGger:COUNt. Changes of the number of pulses on the channels will increase the value to of :TRIGger:COUNt to reflect the changes on the channels.

Examples

To set STARTED BURST of 16 pulse periods and 6 Pulses at Out1, the burst are started by a positive level at the EXT INPUT:

:ARM:SOUR EXT1
:ARM:MODE STAR
:ARM:SENS POS
:TRIG:COUN 16
:TRIG:COUN:PULS1 6
:TRIG:SOUR INT1
:DIG:PATT OFF

To set GATED PULSES Pulses at Out1, gated by a positive level at the EXT INPUT:

:ARM:SOUR EXT1
:ARM:MODE GAT
:ARM:SENS POS
:TRIG:COUN 1
:TRIG:SOUR INT1
:DIG:PATT OFF
Influence of :TRIGger:COUNT and :TRIGger:COUNT:PULSes[1|2] in started burst mode:

- :ARM:SOUR IMM
- TRIG:COUN 1
- :ARM:MODE STAR
- :TRIG:COUN:PULS1 20
- :TRIG:COUN 5

- :TRIG:COUN:PULS1? \(\Rightarrow\) 5
- :TRIG:COUN? \(\Rightarrow\) 5
- :TRIG:COUN:PULS1 10
- :TRIG:COUN? \(\Rightarrow\) 10
- :TRIG:COUN 20
- :TRIG:COUN? \(\Rightarrow\) 10
- :TRIG:COUN 8
- :TRIG:COUN:PULS1? \(\Rightarrow\) 8
- :TRIG:COUN 1
- :TRIG:COUN:PULS1? \(\Rightarrow\) 8

- Set continuous mode
- Set Pulse mode
- Prepare started mode
- Set number of pulses on channel 1 to 20
- Set Burst mode with a length of 5 clocks, the number of pulses on both channels will be reduced to 5 if necessary.
- Request number of pulses on channel 1
- Request number of clock within the started burst
- Set number of pulses on channel 1 to 10
- Request number of clocks within the started burst
- Set number of clocks within the started burst to 20
- Request the number of clocks with in the started burst. The return value is 10, because none of the channels will generate more than 10 pulses.
- Set the number of clocks within the started burst to 8.
- Request the number of pulses on channel 1. The return value is 8, because the number of clocks has been decreased to a value less than the currently used number of pulses on channel 1.
- Set Pulse mode
- Request the number of pulses on channel 1. The value stays unchanged, since the instrument is no longer in started burst mode.
Command: TRIG:COUN:PULS[1|2]

Long Form:

Form:

Set & Query

Parameter:

Numeric

RST value:

2

Specified limits:

2 to 65504

Description:

Use this command to set/read the number of pulses within a burst at OUTPUT 1 or OUTPUT 2.

Examples:

To set STARTED BURST of 16 pulse periods and 6 pulses at Output 1, the burst is started by a positive level at the EXT INPUT:

```
:ARM:SOUR EXT1  
:ARM:MODE STAR  
:ARM:SENS POS   
:TRIG:COUN 16    
:TRIG:COUN:PULS1 6  
:TRIG:SOUR INT1  
:DIG:PATT OFF
```

Command: TRIG:LEV:TERM

Long Form:

:TRIGger[:SEQUence[1] | :STARt]:LEVel:TERmination

Form:

Set & Query

Parameter:

Numeric

Parameter Suffix:

V with engineering prefixes.

RST value:

0.0 V

Specified limits:

–2.1 V to +3.3 V

Description:

Use this command to program the termination voltage compensation of the CLK IN connector.

Example:

```
:TRIG:LEV:TERM 2.5V  
```

Set CLK IN termination voltage to 2.5 V
Command: `:TRIG:SOUR`
Long: `:TRIGger[:SEQUence[1] | :START]:SOURce`
Form: Set & Query
Parameter: IMMEDIATE | INTERNAL[1] | EXTERNAL2
RST value: INT
Description: Use this command to select the pulse period source of the Agilent 81130A by selecting the source of the pulse period trigger signal:
Pulse period sources set by `:TRIG:SOUR`

<table>
<thead>
<tr>
<th>Pulse period source</th>
<th>:TRIG:SOURce</th>
</tr>
</thead>
<tbody>
<tr>
<td>internal PLL</td>
<td>IMMEDIATE</td>
</tr>
<tr>
<td>CLK IN</td>
<td>EXTERNAL2</td>
</tr>
</tbody>
</table>
3 Specifications

In this chapter you will find the specifications of the Agilent 81130A Pulse Generator and its output modules Agilent 81131A and Agilent 81132A.

At the end of this chapter, “Pulse Parameter Definitions” on page 111 provides detailed information on the definition of the pulse parameters used by the instrument.

NOTE

Warranted Performance

Specifications describe the instrument’s warranted performance. Non-warranted values are described as typical. All specifications apply after a 30 minute warm-up phase with 50 Ohm source, a 50 Ohm load resistance and separate channels. They are valid from 0 °C to 55 °C ambient temperature.
Declaration of Conformity

Manufacturer
Agilent Technologies
Boeblingen Verification Solutions
Herrenberger Str. 130
D-71034 Boeblingen/Germany

We declare that the system:

- Agilent 81100 Family of Pulse-/Data Generators
- Agilent 81110 A 330/165 MHz Pulse/Pattern Generator
- Agilent 81104 A 80 MHz Pulse Pattern Generator
- Agilent 81101 A 50 MHz Pulse Pattern Generator
- Agilent 81112 A 330 MHz, 3.5V Output Module
- Agilent 81130 A * 400/660 MHz Pulse-/Pattern Generator
- Agilent 81131 A * 400 MHz, 3.5V Output Module
- Agilent 81132 A * 660 MHz, 2.5V Output Module
- Agilent E 8305 A * VXI Plugin 250 MHz Pulse Generator
- Agilent E 8306 A * VXI Plugin 100 MHz Clock Generator

conforms to the following standards:

Safety
EN61010-1:1993

EMC
EN 55011:1991 / CISPR 11 Group 1, Class B
* EN 55011:1991 / CISPR 11 Group 1, Class A
EN 61000-4-2:1995 ESD: 4kVcd; 8 kVad; 4kV c.p.
EN 61000-4-3:1995 Radiated Immunity: 3V/m 80%AM
ENV 50204:1995 Radiated Immunity: 3V/m; 50%Dty
EN 61000-4-4:1995 Fast Transients/Bursts: 0.5kV, 1kV
EN 61000-4-5:1995 Surges: 1kVdiff; 2kV com.mode
EN 61000-4-6:1995 Conducted Immunity
EN 61000-4-8:1993 Power freq. magn. field 3A/m; 50Hz
IEC1000-4-11:1994 Voltage Dips and Interruptions

Supplementary Information
The product herewith complies with the requirements of the
- Low Voltage Directive (73/23/EEC) and the

During the measurements against EN55011, the I/O ports were terminated with their
nominal impedance, the GP-IB connection was terminated with the cable Agilent 10833B.
When the product is connected to other devices, the user must ensure that the connecting
cables and the other devices are adequately shielded to prevent radiation.

Boeblingen, June 09th 1998
Update, Oct. 13th 1998

Wolfgang Fenske
Regulation Consultant
Agilent 81130A Specifications

General

Environmental Conditions

<table>
<thead>
<tr>
<th>Operating temperature:</th>
<th>0 °C to +55 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage temperature:</td>
<td>-40 °C to +70 °C</td>
</tr>
<tr>
<td>Humidity:</td>
<td>95% r.h. up to 40 °C ambient temperature</td>
</tr>
<tr>
<td>Altitude:</td>
<td>up to 2000 m</td>
</tr>
<tr>
<td>Installation:</td>
<td>Category II</td>
</tr>
<tr>
<td>Pollution:</td>
<td>Degree 2</td>
</tr>
<tr>
<td>EMC:</td>
<td>conforms to EN50082-1, EN55011, Class A</td>
</tr>
<tr>
<td>Battery:</td>
<td>Lithium, type CR2477-N</td>
</tr>
<tr>
<td></td>
<td>(Agilent part number 1420-0557)</td>
</tr>
</tbody>
</table>

Safety

IEC1010, CSA1010

Power requirements

100–240 Vac, ±10%, 50–60 Hz;
100–120 Vac, ±10%, 400 Hz
Power consumption: 300 VA max.

Maximum Dimensions (H x W x D)

89 mm x 426 mm x 521 mm
Specifications

Agilent 81130A Specifications

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net</td>
<td></td>
</tr>
<tr>
<td>8.5 kg</td>
<td>Single Channel</td>
</tr>
<tr>
<td>9.2 kg</td>
<td>Dual Channel</td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
</tr>
<tr>
<td>13.8 kg</td>
<td>Dual Channel</td>
</tr>
</tbody>
</table>

Recalibration period

1 year recommended

Warranty

3 years standard

Acoustic Noise Emission

For ambient temperature up to 30°C, under normal operation and at the typical operator position:

\[L_{pA} = 52 \text{ dB (5.9 bel) typical} \]

\[47 \text{ dB (5.3 bel) at 23°C typical} \]

Measured in accordance with ISO 7779/EN 27779.
Timing Specifications

The timing characteristics are measured at 50% amplitude at fastest transitions in continuous mode and 50 Ω load impedance.

NOTE

The Agilent 81130A is designed and recommended for an operation in the frequency range of 170 kHz to 400/660 MHz. However it can be operated in the extended range down to 1 kHz. Changes in specifications below 170 kHz are set in brackets [].

Period & Frequency

Period can also be entered as frequency.

<table>
<thead>
<tr>
<th>Period & Frequency</th>
<th>Agilent 81130A with Agilent 81131A</th>
<th>Agilent 81130A with Agilent 81132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period range:</td>
<td>2.5 ns to 1 ms</td>
<td>1.5 ns to 1 ms</td>
</tr>
<tr>
<td>Frequency range:</td>
<td>1 kHz to 400.0 MHz</td>
<td>1 kHz to 660.0 MHz</td>
</tr>
<tr>
<td>Period/frequency resolution:</td>
<td>4 digits, 2 ps best case</td>
<td></td>
</tr>
<tr>
<td>Period accuracy<sup>a</sup></td>
<td>± 100 ppm [0.01%]</td>
<td></td>
</tr>
<tr>
<td>RMS-jitter: (internal reference, internal clock)</td>
<td>0.001% + 15 ps</td>
<td></td>
</tr>
</tbody>
</table>

^a In burst mode the first period may be decreased by 150 ps.

Repeatability is typically four times better than accuracy.
Specifications
Agilent 81130A Specifications

Width
The width can be entered as absolute width, duty cycle, or trailing edge delay.

<table>
<thead>
<tr>
<th>Width</th>
<th>Agilent 81130A with Agilent 81131A</th>
<th>Agilent 81130A with Agilent 81132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width range:</td>
<td>1.25 ns to (period – 1.25 ns)</td>
<td>750 ps to (period – 750 ps)</td>
</tr>
<tr>
<td>Resolution:</td>
<td>4 digits, 2 ps best case [0.05% of period]</td>
<td></td>
</tr>
<tr>
<td>Accuracy:</td>
<td>± 100 ppm ± 200 ps [± 0.06% of period]</td>
<td></td>
</tr>
<tr>
<td>Jitter:</td>
<td></td>
<td>0.001% + 15 ps</td>
</tr>
</tbody>
</table>

Delay
Measured between trigger output and main output. Can be entered as absolute delay, phase ° or % of period.

<table>
<thead>
<tr>
<th>Delay</th>
<th>Agilent 81130A with Agilent 81131A</th>
<th>Agilent 81130A with Agilent 81132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable delay range:</td>
<td>0 to 3.00 µs: independent of period</td>
<td></td>
</tr>
<tr>
<td>Resolution:</td>
<td>4 digits, 2 ps best case [0.05% of period]</td>
<td></td>
</tr>
<tr>
<td>Accuracy:</td>
<td>± (0.01% + 100 ps) relative to the zero-delay [±0.035% of period]</td>
<td></td>
</tr>
<tr>
<td>Jitter:</td>
<td></td>
<td>0.001% + 15 ps</td>
</tr>
<tr>
<td>Fixed Delay:</td>
<td></td>
<td>32 ns typ.</td>
</tr>
</tbody>
</table>
Deskew

Compensation for different cable delays.

<table>
<thead>
<tr>
<th>Deskew</th>
<th>Agilent 81130A with Agilent 81131A</th>
<th>Agilent 81130A with Agilent 81132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>± 25 ns</td>
<td></td>
</tr>
<tr>
<td>Resolution:</td>
<td>4 digits, 2 ps best case</td>
<td></td>
</tr>
</tbody>
</table>

For frequencies >170 kHz only.

Transition Times

Measured between 10% and 90% of amplitude, except for ECL levels (20% and 80% of amplitude).

<table>
<thead>
<tr>
<th>Transition Times</th>
<th>Agilent 81130A with Agilent 81131A</th>
<th>Agilent 81130A with Agilent 81132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range:</td>
<td>800 ps or 1600 ps (selectable)</td>
<td>fixed</td>
</tr>
<tr>
<td>Minimum transition:</td>
<td>≤ 600 ps for Vpp ≤ 1 V</td>
<td>500 ps typ.</td>
</tr>
<tr>
<td></td>
<td>≤ 900 ps for Vpp > 1 V</td>
<td></td>
</tr>
<tr>
<td>At ECL levels:</td>
<td><450 ps</td>
<td>< 350 ps (200 ps typ.)</td>
</tr>
</tbody>
</table>

Digital Channel Add

In this mode, channel 1 and channel 2 are added and fed to channel 1 output. Channel 2 is still available.
Main Output Level Specifications

Level parameters can be entered as high/low level in terms of voltage or current or offset/amplitude.

<table>
<thead>
<tr>
<th>Level Specifications</th>
<th>Agilent 81130A with Agilent 81131A</th>
<th>Agilent 81130A with Agilent 81132A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output impedance:</td>
<td>50 Ω ± 1% typ.</td>
<td>50 Ω ± 5% typ.</td>
</tr>
<tr>
<td>Max. external voltage:</td>
<td>–2.2 V to +5.5 V</td>
<td>–2.0 V to +4.0 V</td>
</tr>
<tr>
<td>Amplitude:</td>
<td>0.10 Vpp to 3.80 Vpp</td>
<td>0.10 Vpp to 2.50 Vpp</td>
</tr>
<tr>
<td>Level window:</td>
<td>–2.00 V to +3.80 V</td>
<td>–2.00 V to +3.00 V</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>± (2% + 50 mV)</td>
<td>± (5% + 50 mV)</td>
</tr>
</tbody>
</table>

Limits: high and low level can be limited to protect the DUT

Resolution: 3 digits (10 mV best case)

Short circuit current: –80 mA to +152 mA –80 mA to +120 mA

Baseline noise: 4 mV RMS typ. 8 mV RMS typ.

Connectors: SMA(f) 3.5 mm

Overshoot/preshoot/ringing: ± (5% +50 mV) of amplitude typ.

Normal/inverted: differential outputs

ON/OFF: relays connect/disconnect output (HiZ)
External Input, External Clock/PLL Reference Input

External Input
The external input EXT INPUT is used as trigger/gate input in started and gated mode. It is sampled once per period.

External Clock/PLL Reference Input
The CLK-IN/REF input can either be used for external clock input or Phase Locked Loop (PLL) reference.

• External Clock
 – The output period is determined by the signal at clock input. Frequency accuracy can be increased by using a precise external clock.

• PLL Reference
 – PLL locks either to an external frequency reference at the PLL Reference Input or to an instrument’s internal reference.
 – PLL is a high accuracy period (frequency) source. When locked to the internal reference, period accuracy, resolution, and jitter are improved. When locked to an external frequency reference, the external frequency affects these accuracies.
Specifications of EXT INPUT/CLK-IN REF Input

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>External Input (EXT IN)</th>
<th>External clock.PLL reference (CLK-IN/REF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectors:</td>
<td>SMA(f) 3.5 mm</td>
<td></td>
</tr>
<tr>
<td>Termination voltage:</td>
<td>–2.10 V to +3.30 V</td>
<td></td>
</tr>
<tr>
<td>Termination voltage resolution:</td>
<td>50 mV</td>
<td></td>
</tr>
<tr>
<td>Input Transitions:</td>
<td>< 20 ns</td>
<td></td>
</tr>
<tr>
<td>Maximum input voltage:</td>
<td>~3 V to +6 V</td>
<td></td>
</tr>
<tr>
<td>Threshold:</td>
<td>–1.4 V to +3.7 V</td>
<td>ac coupled</td>
</tr>
<tr>
<td>Threshold resolution:</td>
<td>50 mV</td>
<td>not applicable</td>
</tr>
<tr>
<td>Input impedance/coupling:</td>
<td>50 Ω typ. / dc</td>
<td>50 Ω typ. / ac</td>
</tr>
<tr>
<td>Input frequency:</td>
<td>0 to 330 MHz</td>
<td>External Clock: 170 kHz to 660 MHz</td>
</tr>
<tr>
<td>PLL Reference:</td>
<td></td>
<td>1, 2, 5, 10 MHz</td>
</tr>
<tr>
<td>Duty cycle:</td>
<td>DC-coupled</td>
<td>50% ± 10% duty cycle</td>
</tr>
<tr>
<td>Typical delay to trigger out:</td>
<td>22 ns + 0 ... 1 period<sup>a</sup></td>
<td>21 ns</td>
</tr>
<tr>
<td>Typical delay to output:</td>
<td>54 ns + 0 ... 1 period<sup>a</sup></td>
<td>53 ns</td>
</tr>
<tr>
<td>Sensitivity:</td>
<td>< 400 mVpp</td>
<td></td>
</tr>
</tbody>
</table>

^a The uncertainty of 1 period can be eliminated if an external clock is used and the following setup and hold times are observed:

setup time: 0.3 ns to 4.3 ns, hold time: –2.8 ns to 4.0 ns.
Trigger Modes

Continuous
Generate continuous pulses, bursts, or patterns.

Externally Started
Each active input transition (rising or falling) generates pulses, a burst, or a pattern.
The trigger source can be selected from:
- External Input
- MAN key

Externally Gated
The active input level (high or low) enables pulses, bursts, or patterns.
The output is stopped immediately on an external gate signal, therefore the last cycle may be incomplete.
The gate source can be selected from:
- External Input
- MAN key
Specification of Trigger Output

This output provides one pulse per period with 50% duty cycle typically. In pattern mode, the trigger pulse can be set to mark the start of any segment.

<table>
<thead>
<tr>
<th>Trigger Output Specification</th>
<th>Agilent 81130A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level (into 50 Ω):</td>
<td>selectable:</td>
</tr>
<tr>
<td></td>
<td>TTL into GND</td>
</tr>
<tr>
<td></td>
<td>PECL into +3 V</td>
</tr>
<tr>
<td></td>
<td>ECL into -2 V</td>
</tr>
<tr>
<td></td>
<td>ECL into GND</td>
</tr>
<tr>
<td>Output impedance:</td>
<td>50 Ω typ.</td>
</tr>
<tr>
<td>Trigger pulse width:</td>
<td>50% of period typ.</td>
</tr>
<tr>
<td>Maximum external voltage:</td>
<td>-2 V to +3 V</td>
</tr>
<tr>
<td>Transition times:</td>
<td>600 ps typ.</td>
</tr>
<tr>
<td>Delay from trigger to output:</td>
<td>32 ns typ.</td>
</tr>
</tbody>
</table>

Output Modes

The output mode determines whether the output signal consists of
- pulses
- bursts of pulses
- patterns of pulses

The output signal is controlled by the Trigger mode.
Burst Mode

<table>
<thead>
<tr>
<th>Burst</th>
<th>Agilent 81130A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst count:</td>
<td>2 to 65504</td>
</tr>
<tr>
<td>Burst period<sup>a</sup>:</td>
<td>2 to 65504 clocks</td>
</tr>
</tbody>
</table>

^a Minimum number of clocks is twice the segment length resolution (see table “Patterns and Sequences”).

Patterns and Sequences

<table>
<thead>
<tr>
<th>Patterns/Sequences Specifications</th>
<th>Agilent 81130A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of segments:</td>
<td>4</td>
</tr>
<tr>
<td>Number of infinite loops:</td>
<td>1</td>
</tr>
<tr>
<td>Number of counted loops:</td>
<td>1</td>
</tr>
<tr>
<td>Loop count:</td>
<td>1 to 2^{20}</td>
</tr>
<tr>
<td>Memory depth per channel:</td>
<td>65504 (~ PRBS repetition length)</td>
</tr>
<tr>
<td>Segment length:</td>
<td>1 to 65504</td>
</tr>
<tr>
<td></td>
<td>(Frequency dependent resolution, see table below)</td>
</tr>
<tr>
<td>Data types:</td>
<td>Data (editable)</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>PRBS (2^n-1 with $n = 7, 8, ..., 15$)</td>
</tr>
<tr>
<td>Data formats:</td>
<td>RZ, R1, NRZ</td>
</tr>
</tbody>
</table>
Specifications
Agilent 81130A Specifications

The following rules apply for pattern sequences:

- The resolution of the segment length value depends on the frequency:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frequency in MHz</th>
<th>Period in ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>333.4 ... 666.7</td>
<td>1.500 ... 2.999</td>
</tr>
<tr>
<td>8</td>
<td>166.7 ... 333.3</td>
<td>3.000 ... 5.999</td>
</tr>
<tr>
<td>4</td>
<td>83.4 ... 166.6</td>
<td>6.000 ... 11.99</td>
</tr>
<tr>
<td>2</td>
<td>41.7 ... 83.3</td>
<td>12.00 ... 23.99</td>
</tr>
<tr>
<td>1</td>
<td>min. freq. ... 41.6</td>
<td>24.00 ... max. period</td>
</tr>
</tbody>
</table>

- If the counted loop is used, the minimum length of the first segment is twice the resolution.
- An infinite loop over a single segment requires a minimum segment length of twice the resolution.
- Within a segment, PRBS is allowed to be combined with data type PRBS, High or Low only.
- PRBS must be combined with always the same data type in all segments.

Human Interface

Overprogramming
Parameter values can be entered exceeding the specified range.

Warnings and Errors
Warning messages indicate potentially conflicting parameters due to accuracy tolerances.
Error messages indicate conflicting parameters.
Specifications

Agilent 81130A Specifications

Help Key
Displays a context-sensitive message about the selected parameter. Concept help for getting started is also available. If warnings or errors occur, the HELP key displays the warning/error list accordingly.

Memory

Non-Volatile Memory
Actual setting is saved on power down. 4 user settings and 1 default setting are also stored in instrument.

Memory Card
99 settings can be stored per 1 MB (MS-DOS, PCMCIA) memory card. Also used for convenient firmware updates.

Remote Control

Function Code
SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0.
Programming Times
(all checks and display off)

<table>
<thead>
<tr>
<th>Command</th>
<th>Typical execution time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width, delay, transition times:</td>
<td>40 ms to 70 ms</td>
</tr>
<tr>
<td>Period within one range(^a)</td>
<td>100 ms to 200 ms</td>
</tr>
<tr>
<td>Period between different ranges(^a) ...</td>
<td></td>
</tr>
<tr>
<td>... in pulse/burst mode:</td>
<td>140 ms to 300 ms</td>
</tr>
<tr>
<td>... in pattern mode:</td>
<td>100 ms to 5.05 s</td>
</tr>
<tr>
<td>Levels:</td>
<td>43 ms</td>
</tr>
<tr>
<td>Trigger modes:</td>
<td>< 75 ms</td>
</tr>
<tr>
<td>Input parameters:</td>
<td>28 ms</td>
</tr>
<tr>
<td>Save setting:</td>
<td>200 ms</td>
</tr>
<tr>
<td>Recall setting ...</td>
<td></td>
</tr>
<tr>
<td>... in pulse/burst mode:</td>
<td>515 ms to 800 ms</td>
</tr>
<tr>
<td>... in pattern mode with data and PRBS (^b):</td>
<td>1.15 s to 5.5 s</td>
</tr>
<tr>
<td>Complete pattern memory transfer:</td>
<td>1.25 ms</td>
</tr>
<tr>
<td>Pattern and Sequencing (^b):</td>
<td>190 ms to 5.1 s</td>
</tr>
</tbody>
</table>

\(^a\) Range depends on segment length resolution.

\(^b\) Depends on PRBS polynom setting.
Pulse Parameter Definitions

Here you find the pulse parameter definitions of terms used in the instrument specifications. In the following figure a graphical overview of the pulse parameters is provided:
Specifications
Pulse Parameter Definitions

Time Reference Point
The time reference point is at the median of the amplitude (50% amplitude point on pulse edge):

![Time Reference Point Diagram]

Pulse Period
The time interval between the leading edge medians of consecutive output pulses:

![Pulse Period Diagram]

Trigger Delay
Interval between trigger point of the external trigger input signal and the trigger output pulse's leading edge median.

Pulse Width
Interval between leading and trailing edge medians:

![Pulse Width Diagram]

The specified and displayed value is that obtained with fastest edges, essentially equal to the interval from the start of the leading edge to the start of the trailing edge. By designing so that the pulse edges turn about their start points, the interval from leading edge start stays unchanged (in
practice, start points may shift with changes in transition time) when transition times are varied. This is more convenient for programming and the width display is easy to interpret.

Pulse Delay

Interval between leading edge medians of trigger output pulse and output pulse:

The specified and displayed value is that obtained with the fastest leading edge. Pulse delay has two components, a fixed delay from trigger output to output signal and a variable delay with respect to the trigger output.

Interchannel Delay (Skew)

Interval between corresponding leading edge medians of the output signals.
Specifications
Pulse Parameter Definitions

Transition Time
Interval between the 10% and 90% amplitude points on the leading/trailing edge:

![Diagram of Transition Time](image)

Linearity
Peak deviation of an edge from a straight line through the 10% and 90% amplitude points, expressed as percentage of pulse amplitude:

![Diagram of Linearity](image)
Specifications
Pulse Parameter Definitions

Jitter
Short-term instability of one edge relative to a reference edge. Usually specified as rms value, which is one standard deviation or “sigma”. If distribution is assumed Gaussian, six sigma represents 99.74% of the peak-peak jitter.

The reference edge for period jitter is the previous leading edge. That for delay jitter is the leading edge of the trigger output. Width jitter is the stability of the trailing edge with regard to the leading edge.

Stability
Long-term average instability over a specific time, for example, hour, year. Jitter is excluded.

Pulse Levels
Pulse output is specified as pulse top and pulse base (usually referred to as high level and low level), or as peak to peak amplitude and median offset. A “window” specification shows the limits within which the pulse can be positioned.
Specifications
Pulse Parameter Definitions

Preshoot, Overshoot, Ringing

Preshoot and overshoot are peak distortions preceding/following an edge. Ringing is the positive-peak and negative-peak distortion, excluding overshoot, on pulse top or base. For example, a combined preshoot, overshoot, and ringing specification of 5% implies:

- Overshoot/undershoot < 5%
- Largest pulse-top oscillation <± 5%, of pulse amplitude.

Settling Time

Time taken for pulse levels to settle within level specifications, measured from 90% point on leading edge.
Repeatability

When an instrument operates under the same environmental conditions and with the same settings, the value of a parameter will lie within a band inside the accuracy window. Repeatability defines the width of this band.
Index

A
Acoustic Noise Emission 98
Added at Output 1 45
Amplitude
definition 115
Amplitude current 60
Amplitude voltage 77
Automatic restart the instrument 45

B
BURST
length 89, 92
mode 89, 92
number of pulses 92
period 89, 92
Burst Mode
specification 107

C
Certification
met specifications 5
Channel addition 45
Clear Error Queue 82
Clear Status 82
CLK-IN Termination 92
Common Commands 18
Condition Register 20
CONTINUOUS mode 44, 46, 47
Counted Loop 45, 47, 48, 108
Current Limits 64

D
DATA 53
Declaration
of Conformity 96
Default Units 70
Definition
interchannel delay 113
jitter 115
Linearity 114
pulse delay 113
pulse levels 115
pulse parameters 111
pulse performance 116
pulse period 112
pulse width 112
repeatability 117
settling time 116
stability 115
time reference point 112
transition time 114
trigger delay 112
Delay 69, 70
specification 100
Delay% 68, 69, 70
Deskew
specification 101
Digital Channel Add 45, 101
Dimensions 97
DIR 56
DISPLAY
ON/OFF 55
Duty Cycle 67

E
Enable Register 21
Environmental Conditions 97
Error Queue 84
Errors 108
Event Register 20
EXT INPUT
Termination Voltage 43
Threshold 43
External Clock 103
External Input 103

F
Frequency
specification 99
Functional Coupling 42

G
GATED
level 44
mode 43, 44
Gated by 44
General
Specifications 97
GP-IB
information 14

H
HELP Key 109
HIGH 53
High-level
current 62
current limit 63
definition 115
voltage 78
voltage limit 80
Index

Human Interface 108

I
Infinite Loop 46, 47, 108
Instrument Setting 88
Interchannel Delay
 definition 113

J
Jitter
 definition 115

K
Key-code Reference 86

L
Last Key Pressed 84
Leading Edge 72
 definition 114
Level
 specification 102
Linearity
 definition 114
Load
 file into memory 58
Loop Length 48
Loop Start 47
LOW 53
Low-level
 current 63
 current limit 64
 definition 115
 voltage 79
 voltage limit 80

M
Main Output Level Specification 102
Measure CLK-IN
 frequency 66
 period 71
Memory Card
 catalog/DIR 56
 change directory 56
 copy file 57
 delete file 57
 format 58
 initialize 58
 load from Form 58
 store to 59

N
Non-Volatile Memory 109
NRZ/RZ 54

O
Offset
 current 61
 definition 115
 voltage 77
Operation Status 23
Output modes
 specification 106
OUTPUT ON/OFF 59
Overprogramming 108
Overshoot
 definition 116

P
PATTERN
 Data 49
 LENGTH 52
 LOOP 45, 46, 47, 48
 mode 48
 PRBS 48
 Update 54
Pattern
 Clock/n 53
Patterns
 specification 107
Period
 specification 99
Phase 67
PLL Reference 76
 frequency 76
 Input 103
Power requirements 97
PRBS 53, 108
Preshoot
 definition 116
Programming
 BURST mode 40
 CONTINUOUS mode 39
 GATED mode 39
 PATTERN mode 40
 PULSES mode 39
 STARTED mode 39
Programming Times
 specification 110
Pulse Delay
 definition 113
Index

Pulse Frequency 65
Pulse Levels
definition 115
Pulse Parameter
definitions 111
Pulse Performance
definition 116
Pulse Period 70
definition 112
source 93
Pulse Width 75
definition 112

Q
Questionable Status 24
Group 82

R
Range Coupling 42
Reading
Error Queue 84
Keyboard 84
Recalibration period 98
Repeatability
definition 117
Reset 87
Ringing
definition 116
RZ/NRZ 54

S
Safety 97
symbols 8
SCPI
command dictionary 42
version 88
Segment
data 49
length 49, 52, 53
type 53
Separate Channels 45
Sequences
specification 107
Setting
load into memory 58
Settling Time
definition 116
Simulating Key-presses 84
Skew
definition 113

Specifications 95
burst mode 107
delay 100
deskew 101
frequency 99
general 97
level 102
memory card 109
output modes 106
patterns 107
period 99
PLL 103
programming times 110
pulse width 100
remote control 100
sequences 107
timing 99
timing (PLL) 103
transition times 101
trigger modes 105
width 100
Stability
definition 115
Standard Event Status 22
Start instrument 45
STARTED
level 44
mode 43, 44
Started by 44
Status Byte 22
Status Group
definition 19
questionable 82
Status Model 19
Preset 82
Stop instrument 45
Store
from memory to file 58
System
Preset 87
Security 87

T
Time Reference Point
definition 112
Timing
specifications 99
Trailing Edge
definition 114
delay 72
Transition Filters 20
Index

Transition Times 72
 definition 114
 specification 101
Transition Units 72
Trigger Delay
 definition 112
Trigger Modes
 specification 105
TRIGGER OUT
 level 74
 mode 74
 position 74

V
Value Coupling 42
Voltage Limits 81

W
Warnings 88, 108
Warranted Performance 95
Warranty 98
Weight 98
Width
 specification 100
Front Panel Controls

DATA ENTRY / QUICK ACCESS Keys

DATA ENTRY

CURSOR/DIGIT Keys

ENTER & UNIT Keys

MODIFY

KNOB

Special FUNCTION Keys