Errata

Title & Document Type: 83731A/B and 83732A/B Synthesized Signal Generator Programming Guide

Manual Part Number: 83731-90129

Revision Date: July 1997

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We’ve added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.
Programming Guide

HP 83731A/32A and
HP 83731B/32B
Synthesized Signal
Generators
Notice.

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
The 83731A/32A and 83731B/32B Synthesized Signal Generators

The HP 83731A/32A and HP 83731B/32B Synthesized Signal Generators (referred to as "synthesizers" throughout this manual) provide FM, φM, logarithmic/linear AM, phase modulation, and pulse modulation capability. The HP 83731A/31B has a carrier frequency range of 1 GHz to 20 GHz and the HP 83732A/32B has a carrier frequency range of 10 MHz to 20 GHz. Specification information can be found in Chapter 4 in the HP 83731A/32A Synthesized Signal Generators User’s Guide and in the HP 83731B/32B Synthesized Signal Generators User’s Guide.

This programming guide provides specific, detailed information about the commands used to program the synthesizer with firmware revision number 10.0 or greater.

Notes

1. This manual applies to instruments with firmware revision 10.0 or greater.
2. If you have an HP 83731A/32A instrument with firmware revision number < 10.0, refer to the HP 83731A/32A Synthesized Signal Generators Programmer’s Reference (83731-90005).
3. To view firmware revision, press [SPCL], [1], [HZ (ENTER)].
In This Book

This book provides information about the various commands used in programming the synthesizer, error messages, and regulatory information. Information is divided into chapters as follows:

- **Chapter 1, “Getting Started Programming,”** contains general HP-IB information, introduces the Standard Commands for Programmable Instruments (SCPI), and provides example programs.

- **Chapter 2, “Programming Commands,”** contains entries on all of the programming commands used by the synthesizer. This chapter is subdivided into sections that contain groupings of related commands. For example, all commands related to automatic level control are grouped in one tabbed section.

- **Chapter 3, “Error Messages,”** contains a list of all of the error messages that might be generated during use of the instrument. Each entry in the list contains a sequence that can be followed to recover from the error condition.

- **Chapter 4, “HP 8673 Compatibility Guide,”** contains HP 8673 to SCPI compatibility information.

- **Chapter 5, “Legal and Regulatory Information,”** contains SCPI conformance information. The product warranty is also contained in this chapter.
## Contents

1. **Getting Started Programming**
   - HP-IB General Information ........................................ 1-3
   - Interconnecting Cables ........................................... 1-3
   - Instrument Addresses ............................................ 1-5
   - HP-IB Instrument Nomenclature ................................ 1-6
     - Listener .......................................................... 1-6
     - Talker ........................................................... 1-6
     - Controller ....................................................... 1-6
   - Programming the Synthesizer .................................... 1-6
   - HP-IB Command Statements ....................................... 1-7
   - Abort ......................................................................... 1-8
     - Related statements used by some computers ............... 1-8
   - Remote ....................................................................... 1-9
     - Some BASIC examples ........................................... 1-9
   - Local Lockout ....................................................... 1-10
     - A BASIC example .................................................. 1-10
   - Local ........................................................................ 1-10
     - Some BASIC examples ........................................... 1-10
   - Clear ........................................................................ 1-11
     - Some BASIC examples ........................................... 1-11
     - Related statements used by some computers ............... 1-11
   - Output ....................................................................... 1-12
     - A BASIC example .................................................. 1-12
     - Related statements used by some computers ............... 1-12
   - Enter ....................................................................... 1-13
     - Related statements used by some computers ............... 1-14
   - Getting Started with SCPI ....................................... 1-15
   - Definitions of Terms ............................................. 1-16
   - Standard Notation .................................................. 1-17
     - Command Mnemonics .............................................. 1-17
     - Angle Brackets ..................................................... 1-17
   - How to Use Examples ............................................. 1-17
     - Command Examples ................................................ 1-18
     - Response Examples ................................................ 1-18
   - Essentials for Beginners ......................................... 1-19
     - Program and Response Messages ............................... 1-20
2. **Programming Commands**

Command Syntax ....................................... 2-3
2a. **Automatic Level Control Commands**

[SOURce[1]:]POWer:ALC:PMETer

Query Syntax ........................................ 2a-3
See Also ............................................. 2a-4

[SOURce[1]:]POWer:ALC:PMETer:STEP

Query Syntax ........................................ 2a-5
See Also ............................................. 2a-6

[SOURce[1]:]POWer:ALC:SOURce

Query Syntax ........................................ 2a-7
See Also ............................................. 2a-8

2b. **Carrier Commands**

[SOURce[1]:]FREQuency:[CW]:FIXed

Query Syntax ........................................ 2b-3
See Also ............................................. 2b-4

[SOURce[1]:]FREQuency:[CW]:FIXed:STEP

Query Syntax ........................................ 2b-5
See Also ............................................. 2b-6

[SOURce[1]:]FREQuency:MULTiplier

Query Syntax ........................................ 2b-7
See Also ............................................. 2b-8

[SOURce[1]:]FREQuency:MULTiplier:STEP

Query Syntax ........................................ 2b-9
See Also ............................................. 2b-10

2c. **Instrument Information Commands**

*IDN? (Identification Query) ....................... 2c-3
*OPT? (Option Identification Query) ............. 2c-4
OUTPut:IMPedance? ................................... 2c-5

[SOURce[1]:]ROSCillator:SOURce?

See Also ............................................. 2c-6

SYSTem:ERROR?

See Also ............................................. 2c-7

SYSTem:VERSEnion?

See Also ............................................. 2c-8

*TST? (Self-Test Query) ......................... 2c-9

2c-10
2d. **Instrument State Commands**

- *LRN? (Learn Device Setup Query) ........................................ 2d-3
  See Also ................................................................. 2d-4
- MEMory:RAM:INITialize .................................................. 2d-5
  See Also ................................................................. 2d-5
- *RCL (Recall Command) .................................................. 2d-6
  See Also ................................................................. 2d-6
- *RST (Reset Command) .................................................... 2d-7
  See Also ................................................................. 2d-9
- *SAV (Save Command) .................................................... 2d-10
  See Also ................................................................. 2d-10
- SYSTem:PRESet ........................................................... 2d-11
  See Also ................................................................. 2d-13

2e. **Level Correction Commands**

- MEMory:CATalog[:ALL]? .................................................... 2e-3
  See Also ................................................................. 2e-3
- MEMory:CATalog:TABLE? .................................................. 2e-4
  See Also ................................................................. 2e-4
- MEMory:TABLE:FREQuency ............................................... 2e-5
  Query Syntax ........................................................... 2e-6
  See Also ................................................................. 2e-7
- MEMory:TABLE:FREQuency:POINts? .................................... 2e-8
  See Also ................................................................. 2e-8
- MEMory:TABLE:LOSS[:MAGNitude] ..................................... 2e-9
  Query Syntax ........................................................... 2e-10
  See Also ................................................................. 2e-11
- MEMory:TABLE:LOSS[:MAGNitude]:POINts? .......................... 2e-12
  See Also ................................................................. 2e-12
- MEMory:TABLE:SELect ................................................... 2e-13
  Query Syntax ........................................................... 2e-14
  See Also ................................................................. 2e-14
- [SOURce[1]:]CORRrection:CSET[:SELect] ............................ 2e-15
  Query Syntax ........................................................... 2e-16
  See Also ................................................................. 2e-16
- [SOURce[1]:]CORRrection:CSET:STATe ............................... 2e-17
  Query Syntax ........................................................... 2e-18
  See Also ................................................................. 2e-18
- [SOURce[1]:]CORRrection:FLATness[:DATA] .......................... 2e-19
  Query Syntax ........................................................... 2e-20
  See Also ................................................................. 2e-20
2f. **Macro Commands**

*DMC (Define Macro Command) ........................................ 2f-3
See Also .......................................................... 2f-3
*EMC (Enable Macros) ................................................ 2f-4
Query Syntax ...................................................... 2f-4
See Also .......................................................... 2f-5
*GMC? (Get Macro Contents Query) ................................. 2f-6
See Also .......................................................... 2f-6
*LMC? (List Macro Query) .......................................... 2f-7
See Also .......................................................... 2f-7
MEMory:FREE:MACRo? .............................................. 2f-8
See Also .......................................................... 2f-8
*PMC (Purge Macros Command) ..................................... 2f-9
See Also .......................................................... 2f-9
*RMC (Remove Macro Command) .................................... 2f-10
See Also .......................................................... 2f-10

2g. **Miscellaneous Commands**

DISPlay:[WINDow][:STATe] .......................................... 2g-3
Query Syntax ...................................................... 2g-4
SYSTEm:KEY ...................................................... 2g-5
Query Syntax ...................................................... 2g-7

2h. **Modulation Commands**

[SOURce[1]:]AM[:DEPTh] ............................................. 2h-3
Query Syntax ...................................................... 2h-4
See Also .......................................................... 2h-5
[SOURce[1]:]AM[:DEPTh]:STEP .................................... 2h-6
Query Syntax ...................................................... 2h-7
See Also .......................................................... 2h-7
[SOURce[1]:]AM:INT:FREQ .......................................... 2h-8

Contents-6
Query Syntax ........................................ 2h-9
See Also ............................................. 2h-9
[SOURce[1]:]AM:INT:FREQ:STEP
Query Syntax ........................................ 2h-10
See Also ............................................. 2h-11
[SOURce[1]:]AM:INT:FUNC
Query Syntax ........................................ 2h-12
See Also ............................................. 2h-13
[SOURce[1]:]AM:SENSitivity
Query Syntax ........................................ 2h-14
See Also ............................................. 2h-15
[SOURce[1]:]AM:SOURce
Query Syntax ........................................ 2h-16
See Also ............................................. 2h-17
[SOURce[1]:]AM:STATe
Query Syntax ........................................ 2h-18
See Also ............................................. 2h-19
[SOURce[1]:]AM:TYPE
Query Syntax ........................................ 2h-20
See Also ............................................. 2h-20
[SOURce[1]:]FM:COUPling
Advantages of DC FM ................................ 2h-21
Disadvantages of DC FM ............................ 2h-21
Query Syntax ........................................ 2h-22
See Also ............................................. 2h-22
[SOURce[1]:]FM[:DEViation]
Query Syntax ........................................ 2h-23
See Also ............................................. 2h-24
[SOURce[1]:]FM[:DEViation]:STEP
Query Syntax ........................................ 2h-25
See Also ............................................. 2h-26
[SOURce[1]:]FM:INT:FREQ
Query Syntax ........................................ 2h-27
See Also ............................................. 2h-28
[SOURce[1]:]FM:INT:FREQ:STEP
Query Syntax ........................................ 2h-29
See Also ............................................. 2h-30
[SOURce[1]:]FM:INT:FUNC
Query Syntax ........................................ 2h-30
See Also ............................................. 2h-31
[SOURce[1]:]FM:SENSitivity
Query Syntax ........................................ 2h-32
See Also ............................................. 2h-33
[SOURce[1]:]FM:SENSitivity
Query Syntax ........................................ 2h-34
See Also ............................................. 2h-35
See Also .................................................. 2h-36
[SOURce[1]:FM:SOURce .................................. 2h-37
  Query Syntax ........................................... 2h-38
[SOURce[1]:FM:STATe ..................................... 2h-39
  Query Syntax ........................................... 2h-39
  See Also ................................................ 2h-40
[SOURce[1]:MODulation:OFF ................................ 2h-41
  See Also ................................................ 2h-41
[SOURce[1]:MODulation:OVDR .............................. 2h-42
  See Also ................................................ 2h-42
[SOURce[1]:PM:COUPling .................................. 2h-43
  Query Syntax ........................................... 2h-44
  See Also ................................................ 2h-44
[SOURce[1]:PM[:DEViation] ............................... 2h-45
  Query Syntax ........................................... 2h-47
  See Also ................................................ 2h-47
[SOURce[1]:PM[:DEViation]:STEP .......................... 2h-48
  Query Syntax ........................................... 2h-49
  See Also ................................................ 2h-49
[SOURce[1]:PM:INT:FREQ .................................. 2h-50
  Query Syntax ........................................... 2h-51
  See Also ................................................ 2h-52
[SOURce[1]:PM:INT:FREQ:STEP ............................ 2h-53
  Query Syntax ........................................... 2h-54
  See Also ................................................ 2h-54
[SOURce[1]:PM:INT:FUNC ................................. 2h-55
  Query Syntax ........................................... 2h-55
  See Also ................................................ 2h-56
[SOURce[1]:PM:RANGe ..................................... 2h-57
  Query Syntax ........................................... 2h-58
  See Also ................................................ 2h-58
[SOURce[1]:PM:SENSitivy ................................ 2h-59
  Query Syntax ........................................... 2h-60
  See Also ................................................ 2h-61
[SOURce[1]:PM:SOURce .................................... 2h-62
  Query Syntax ........................................... 2h-63
  See Also ................................................ 2h-63
[SOURce[1]:PM:STATe ..................................... 2h-64
  Query Syntax ........................................... 2h-65
  See Also ................................................ 2h-65
[SOURce[1]:PULM:EXTernal:POLarity ....................... 2h-66
Query Syntax 2h-67
See Also 2h-67
[SOURce[1]:]PULM:SOURce 2h-68
Query Syntax 2h-68
See Also 2h-69
[SOURce[1]:]PULM:STATe 2h-70
Query Syntax 2h-70
See Also 2h-71
[SOURce[1]:]PULSe:DELay 2h-72
Query Syntax 2h-73
See Also 2h-74
[SOURce[1]:]PULSe:DELay:STEP 2h-75
Query Syntax 2h-76
See Also 2h-76
[SOURce[1]:]PULSe:DOUble:STATe 2h-77
Query Syntax 2h-77
See Also 2h-78
[SOURce[1]:]PULSe:FREQuency 2h-79
Query Syntax 2h-80
See Also 2h-81
[SOURce[1]:]PULSe:FREQuency:STEP 2h-82
Query Syntax 2h-83
See Also 2h-83
[SOURce[1]:]PULSe:PERiod 2h-84
Query Syntax 2h-85
See Also 2h-86
[SOURce[1]:]PULSe:PERiod:STEP 2h-87
Query Syntax 2h-88
See Also 2h-88
[SOURce[1]:]PULSe:TRANSition::LEADING 2h-89
Application for Manual Pulse Rise Time and Fall Time
Selection 2h-90
Query Syntax 2h-91
See Also 2h-91
[SOURce[1]:]PULSe:TRANSition:STATe 2h-92
Application for Manual Pulse Rise Time Selection 2h-93
Query Syntax 2h-93
See Also 2h-94
[SOURce[1]:]PULSe:TRANSition:TRAilng 2h-95
Application for Manual Pulse Rise Time and Fall Time
Selection 2h-96
Query Syntax .............................................. 2h-97
See Also .................................................. 2h-97
[SOURce[1]:]PULSe:WIDTh ............................... 2h-98
Query Syntax .............................................. 2h-99
See Also .................................................. 2h-100
[SOURce[1]:]PULSe:WIDTh:STEP ......................... 2h-101
Query Syntax .............................................. 2h-102
See Also .................................................. 2h-102
TRIGger:SEQUence[1]:STARt:SOURce ................. 2h-103
Query Syntax .............................................. 2h-103
See Also .................................................. 2h-104
TRIGger:SEQUence2:SL0Pe ............................. 2h-105
See Also .................................................. 2h-105
TRIGger:SEQUence2:STOP:SOURce ...................... 2h-106
Query Syntax .............................................. 2h-106
See Also .................................................. 2h-107

21. Power Level Commands
[SOURce[1]:]POWer[:LEVEL] .............................. 2i-3
Query Syntax .............................................. 2i-5
See Also .................................................. 2i-5
[SOURce[1]:]POWer[:LEVEL]:STEP ....................... 2i-6
Query Syntax .............................................. 2i-7
See Also .................................................. 2i-7

2j. Programmable Interface Commands
*OPC (Operation Complete) .............................. 2j-3
Query Syntax .............................................. 2j-3
See Also .................................................. 2j-4
SYSTem:COMMunicate:GPIB:ADDRes ..................... 2j-5
Query Syntax .............................................. 2j-5
See Also .................................................. 2j-6
SYSTem:LANGUage ......................................... 2j-7
Query Syntax .............................................. 2j-8
UNIT:FREQuency ......................................... 2j-9
Query Syntax .............................................. 2j-10
UNIT:POWer:VOLTage ..................................... 2j-12
Query Syntax .............................................. 2j-13
UNIT:TIME ................................................ 2j-14
Query Syntax .............................................. 2j-15
*WAI (Wait-to-Continue Command) .................... 2j-16
2k. **RF Output Control Commands**

OUTPut[:PROTection][:STATE] ........................................ 2k-3
Query Syntax ......................................................... 2k-4
See Also .............................................................. 2k-4
OUTPut[:STATE] ......................................................... 2k-5
Query Syntax ......................................................... 2k-5
See Also .............................................................. 2k-6
[SOURce[1]:]POWer:ATTenuation:AUTO .............................. 2k-7
Advantages ............................................................. 2k-7
Disadvantages ........................................................... 2k-8
Query Syntax ......................................................... 2k-8
See Also .............................................................. 2k-9
[SOURce[1]:]POWer:PROTection:STATe ......................... 2k-10
Pulsed Power Pre-Calibration Program ......................... 2k-11
Program Comments .................................................. 2k-13
Query Syntax ......................................................... 2k-14
See Also .............................................................. 2k-15

21. **Status Register Commands**

The Status Register System ......................................... 21-3
General Status Group Model ........................................ 21-3
    Condition Register .............................................. 21-4
    Negative Transition Register ................................ 21-4
    Positive Transition Register ................................ 21-4
    Event Register ................................................... 21-5
    Enable Register .................................................. 21-5
Synthesizer Status Groups ......................................... 21-5
    The Status Byte Group ......................................... 21-5
    The Standard Event Status Group ............................... 21-6
    The Standard Operation Status Group ........................... 21-7
    The Questionable Data Status Group ............................ 21-7
Status Register System Programming Example ................... 21-8
    Program Comments ............................................... 21-8
*CLS (Clear Status Command) ....................................... 21-10
See Also .............................................................. 21-10
*ESE (Standard Event Status Enable) .............................. 21-11
Query Syntax ......................................................... 21-12
See Also .............................................................. 21-12
*ESR? (Standard Event Status Register Query) ................... 21-13
Status Reporting .......................... 21-14
See Also .................................. 21-14
*PSC (Power-On Status Clear) .......... 21-15
  Query Syntax .......................... 21-15
  See Also ................................ 21-16
*SRE (Service Request Enable) ......... 21-17
  Query Syntax .......................... 21-18
  See Also ................................ 21-18
STATus:OPERation:CONDition? ......... 21-19
  See Also ................................ 21-20
STATus:OPERation:ENABLE ................ 21-21
  Query Syntax .......................... 21-22
  See Also ................................ 21-23
STATus:OPERation:[EVENt]? .............. 21-24
  See Also ................................ 21-26
STATus:OPERation:NTRansition ......... 21-27
  Query Syntax .......................... 21-28
  See Also ................................ 21-29
STATus:OPERation:PTRansition ......... 21-30
  Query Syntax .......................... 21-31
  See Also ................................ 21-32
STATus:PRESet ............................ 21-33
  See Also ................................ 21-34
STATus:QUESTIONable:CONDition? ..... 21-35
  See Also ................................ 21-36
STATus:QUESTIONable:ENABLE ............ 21-37
  Query Syntax .......................... 21-39
  See Also ................................ 21-39
STATus:QUESTIONable:[EVENt]? ........ 21-40
  See Also ................................ 21-42
STATus:QUESTIONable:NTRansition ...... 21-43
  Query Syntax .......................... 21-45
  See Also ................................ 21-45
STATus:QUESTIONable:PTRansition ...... 21-46
  Query Syntax .......................... 21-48
  See Also ................................ 21-48
*STB? (Read Status Byte Query) ....... 21-49
  See Also ................................ 21-50
3. Error Messages
   Error Messages List ........................................... 3-3
   Messages ..................................................... 3-5

4. HP 8673 Compatibility Guide
   Command Mapping to SCPI ..................................... 4-3
   Out of Range Personality Difference ...................... 4-12
   Rounding Personality Difference .......................... 4-12
   Power Suffixes ............................................... 4-12
   Output Active Parameter ................................... 4-13
   System ALC Mode ............................................. 4-13
   Query Return Format ........................................ 4-13
   HP 8673 Status Bits ......................................... 4-15
   Images ........................................................ 4-16
   Event Register Bits ......................................... 4-17
   Condition Register Bits .................................... 4-17
   Source Settled Bit Personality Difference ............... 4-17
   ALC Unlevled and Frequency Error Bits ................... 4-17
   Change in ESB Bit .......................................... 4-18
   Front Panel Entry Complete Bit ............................ 4-18

5. Legal and Regulatory Information
   SCPI Conformance ............................................. 5-3
   Certification ............................................... 5-11
   Regulatory Information ..................................... 5-11
   Warranty ...................................................... 5-12
   Limitation of Warranty .................................... 5-12
   Exclusive Remedies ......................................... 5-13
   Assistance ................................................... 5-14

Index
Figures

1-1. HP-IB Connector and Cable ........................................... 1-3
1-2. SCPI Command Types .................................................... 1-21
1-3. A Simplified Command Tree .......................................... 1-22
1-4. Proper Use of the Colon and Semicolon ......................... 1-24
1-5. Simplified Program Message Syntax ................................. 1-30
1-6. SCPI Simplified Subsystem Command Syntax ..................... 1-31
1-7. Simplified Common Command Syntax ................................. 1-32
1-8. Simplified Response Message Syntax ............................... 1-33
21-1. Status Register System Hierarchy ................................. 21-3
21-2. General Status Group Model ....................................... 21-4
Tables

1-1. HP-IB Interface Cables Available ........................................ 1-4
1-2. SCPI Data Types .............................................................. 1-34
2c-1. Synthesizer Options ....................................................... 2c-4
2d-1. PRESET Conditions ....................................................... 2d-8
2d-2. PRESET Conditions ....................................................... 2d-12
2g-1. Synthesizer Key Codes ................................................... 2g-6
2h-1. Maximum FM Deviation in Internal FM Mode ......................... 2h-24
2h-2. FM Sensitivity to CW Frequency ........................................ 2h-35
2h-4. PM Sensitivity to CW Frequency ........................................ 2h-60
2j-1. Available Default Suffixes .............................................. 2j-10
2j-2. Power Level-Related Suffixes ......................................... 2j-12
2j-3. Available Suffix Multipliers .......................................... 2j-13
2j-4. Available Default Suffixes .............................................. 2j-15
2l-1. Standard Event Status Enable Register Bit Definitions .......... 2l-11
2l-2. Service Request Enable Register Bit Definitions ................... 2l-17
2l-3. Operation Condition Register Bit Definitions ....................... 2l-20
2l-4. Operation Event Enable Register Bit Definitions .................. 2l-22
2l-5. Operation Event Register Bit Definitions ........................... 2l-25
2l-6. Operation Negative Transition Register Bit Definitions ............ 2l-28
2l-7. Operation Positive Transition Register Bit Definitions ............ 2l-31
2l-8. Status Register Preset Conditions ................................... 2l-33
2l-9. Questionable Condition Register Bit Definitions .................... 2l-35
2l-10. Questionable Event Enable Register Bit Definitions ............... 2l-38
2l-11. Questionable Event Register Bit Definitions ....................... 2l-41
2l-12. Questionable Negative Transition Register Bit Definitions ......... 2l-44
4-1. HP 8673 Command Mapping to SCPI Commands ........................ 4-4
4-2. HP 8673 Status and Extended Bytes ................................... 4-16
5-1. SCPI Conformance ......................................................... 5-4
Contents
Getting Started Programming

HP-IB, the Hewlett-Packard Interface Bus, is the instrument-to-instrument communication system between the synthesizer and up to 14 other instruments. Any instrument having HP-IB capability can be interfaced to the synthesizer, including non-HP instruments that have "GPIB," "IEEE-488," "ANSI MC1.1," or "IEC-625" capability (these are common generic terms for HP-IB; all are electrically equivalent although IEC-625 uses a unique connector). This portion of the manual specifically describes interfacing the synthesizer to a computer.

The first part of this chapter provides general HP-IB information. Later, the Standard Commands for Programmable Instruments language (SCPI) is introduced, and example programs are given.
Interconnecting Cables

The HP-IB connector allows the synthesizer to be connected to any other instrument or device on the interface bus. All HP-IB instruments can be connected with HP-IB cables and adapters. These cables are shown in Figure 1-1. The adapters are principally extension devices for instruments that have recessed or crowded HP-IB connectors.
Table 1-1. HP-IB Interface Cables Available

<table>
<thead>
<tr>
<th>HP-IB Cable Part Numbers</th>
<th>Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 10833A</td>
<td>1 m (3.3 ft)</td>
</tr>
<tr>
<td>HP 10833B</td>
<td>2 m (6.6 ft)</td>
</tr>
<tr>
<td>HP 10833C</td>
<td>4 m (13.2 ft)</td>
</tr>
<tr>
<td>HP 10833D</td>
<td>0.5 m (1.6 ft)</td>
</tr>
</tbody>
</table>

As many as 14 HP-IB instruments can be connected to the synthesizer (15 total instruments in the system). The cables can be interconnected in a "star" pattern (one central instrument, with the HP-IB cables emanating from that instrument like spokes on a wheel), or in a linear pattern (like boxcars on a train), or any combination pattern. There are certain restrictions:

- Each instrument must have a unique HP-IB address, ranging from 0 to 30. Refer to "Instrument Addresses" in this chapter for information on setting the synthesizer's HP-IB address.
- In a two-instrument system that uses just one HP-IB cable, the cable length must not exceed 4 meters (13 ft).
- When more than two instruments are connected on the bus, the cable length to each instrument must not exceed 2 meters (6.5 ft) per unit.
- The total cable length between all units must not exceed 20 meters (65 ft).

Hewlett-Packard manufactures HP-IB extender instruments (HP 37201A, HP 37204A/B) that overcome the range limitations imposed by the cabling rules. These extenders allow twin-pair cable operation up to 1 km (3,280 ft), and telephone modem operation over any distance. HP sales and service offices can provide additional information on the HP-IB extenders.

The codes next to the HP-IB connector, illustrated in Figure 1-1, describe the HP-IB electrical capabilities of the synthesizer, using IEEE Std. 488-1978 mnemonics (HP-IB, GPIB, IEEE-488, and IEC-625 are all electrically equivalent). Briefly, the mnemonics translate as follows:

SH1 Source Handshake, complete capability.
AH1 Acceptor Handshake, complete capability.
T5 Talker; capable of basic talker, serial poll, and unaddress if MLA.

TE0 Talker, Extended address; no capability.

L3 Listener, capable of basic listener, and unaddress if MTA.

LE0 Listener, Extended address; no capability.

SR1 Service Request, complete capability.

RL1 Remote Local, complete capability.

PP0 Parallel Poll, no capability.

DC1 Device Clear, complete capability.

DT0 Device Trigger, complete capability.

C0, 1 Controller capability options; C0, no capabilities; C1, system controller.

E2 Electrical specification indicating open collector outputs.

These codes are described completely in the *IEEE Std 488-1978* document, published by the Institute of Electrical and Electronic Engineers, Inc., 345 East 47th Street, New York, New York 11017.

Instrument Addresses

Each instrument in an HP-IB network must have a unique address, an integer ranging in value from 0 to 30. The default address for the synthesizer is 19, but this can be changed using the `SHIFT` `LOCAL` keys.
HP-IB Instrument Nomenclature

An HP-IB instrument is categorized as a “listener,” “talker,” or “controller,” depending on its current function in the network.

Listener

A listener is a device capable of receiving data or commands from other instruments. Any number of instruments in the HP-IB network can be listeners simultaneously.

Talker

A talker is a device capable of transmitting data or commands to other instruments. To avoid confusion, an HP-IB system allows only one device at a time to be an active talker.

Controller

A controller is an instrument, typically a computer, capable of managing the various HP-IB activities. Only one device at a time can be an active controller.

Programming the Synthesizer

The synthesizer can be controlled entirely by a computer (although the POWER or LINE switch must be operated manually). Several functions are possible only by computer (remote) control. Computer programming procedures for the synthesizer involve selecting an HP-IB command statement, then adding the specific synthesizer (SCPI, HP 8763) programming codes to that statement to achieve the desired operating conditions.

In the programming explanations that follow, specific examples are included that are written in a generic dialect of the BASIC language. BASIC was selected because the majority of HP-IB computers have BASIC language capability. However, other programming languages can also be used.
HP-IB Command Statements

Command statements form the nucleus of HP-IB programming; they are understood by all instruments in the network and, when combined with the programming language codes, they provide all management and data communication instructions for the system.

An explanation of the eight fundamental command statements follows. However, some computers use a slightly different terminology, or support an extended or enhanced version of these commands. Consider the following explanations as a starting point, but for detailed information consult the BASIC language reference manual, the I/O programming guide, and the HP-IB manual for the particular computer used.

Syntax drawings accompany each statement: All items enclosed by a circle or oval are computer specific terms that must be entered exactly as described; items enclosed in a rectangular box are names of parameters used in the statement; and the arrows indicate a path that generates a valid combination of statement elements.
Abort

Abort abruptly terminates all listener/talker activity on the interface bus, and prepares all instruments to receive a new command from the controller. Typically, this is an initialization command used to place the bus in a known starting condition. The syntax is:

![Diagram of ABORT and interface select code]

where the interface select code is the computer's HP-IB I/O port, which is typically port 7. Some BASIC examples:

```
10    ABORT 7
100   IF V>20 THEN ABORT 7
```

Related statements used by some computers:
- ABORTIO (used by HP-80 series computers)
- HALT
- RESET
Remote

Remote causes an instrument to change from local control to remote control. In remote control, the front panel keys are disabled (except for the LOCAL key and the POWER or LINE switch), and the REMOTE annunciator is lit. The syntax is:

\[
\text{REMOTE, device selector}
\]

where the device selector is the address of the instrument appended to the HP-IB port number. Typically, the HP-IB port number is 7, and the default address for the synthesizer is 19, so the device selector is 719.

Some BASIC examples

10 REMOTE 7

which prepares all HP-IB instruments for remote operation (although nothing appears to happen to the instruments until they are addressed to talk), or

10 REMOTE 719

which affects the HP-IB instrument located at address 19, or

10 REMOTE 719, 721, 726, 715

which effects four instruments that have addresses 19, 21, 26, and 15.
Local Lockout

LOCAL LOCKOUT can be used in conjunction with REMOTE to disable the front panel LOCAL key. With the LOCAL key disabled, only the controller (or a hard reset by the POWER switch) can restore local control. The syntax is:

![Local Lockout Diagram]

A BASIC example
10 REMOTE 719
20 LOCAL LOCKOUT 7

Local

LOCAL is the complement to REMOTE, causing an instrument to return to local control with a fully enabled front panel. The syntax is:

![Local Diagram]

Some BASIC examples
10 LOCAL 7
which effects all instruments in the network, or
10 LOCAL 719
for an addressed instrument (address 19).
Clear

CLEAR causes all HP-IB instruments, or addressed instruments, to assume a "cleared" condition, with the definition of "cleared" being unique for each device. For the synthesizer:

1. All pending output-parameter operations are halted.
2. The parser (the software that interprets the programming codes) is reset, and now expects to receive the first character of a programming code.

The syntax is:

```
10  CLEAR 7
```

to clear all HP-IB instruments, or

```
10  CLEAR 719
```

to clear an addressed instrument.

Some BASIC examples

Related statements used by some computers

- CLEAR
- CONTROL
- SEND

The preceding statements are primarily management commands that do not incorporate programming codes. The following two statements do incorporate programming codes, and are used for data communication.
Output

OUTPUT is used to send function commands and data commands from the controller to the addressed instrument. The syntax is:

where USING is a secondary command that formats the output in a particular way, such as a binary or ASCII representation of numbers. The USING command is followed by "image items" that precisely define the format of the output; these image items can be a string of code characters, or a reference to a statement line in the computer program. Image items are explained in the programming codes where they are needed. Notice that this syntax is virtually identical to the syntax for the ENTER statement that follows.

A BASIC example

100 OUTPUT 719; "programming codes"

Related statements used by some computers

- CONTROL
- CONVERT
- IMAGE
- IOBUFFER
- TRANSFER
Enter

ENTER is the complement of OUTPUT, and is used to transfer data from the addressed instrument to the controller. The syntax is:

```
100  OUTPUT 719; "... programming codes ..."
110  ENTER 719; "... response data ...
```

ENTER statements are commonly formatted, which requires the secondary command USING and the appropriate image items. The most-used image items involve end-of-line (end or identify) suppression, binary inputs, and literal inputs.

Example

```
100  ENTER 719 USING "#, B"; A, B, C
```

suppresses the EOI sequence (#), and indicates that variables A, B, and C are to be filled with binary (B) data. As another example,

```
100  ENTER 719 USING "#, 123A"; A$
```

suppresses EOI, and indicates that string variable A$ is to be filled with 123 bytes of literal data (123A).
The suppression of the EOI sequence is frequently necessary to prevent a premature termination of the data input. When not specified, the typical EOI termination occurs when an ASCII LF (line feed) is received. However, the LF bit pattern could coincidentally occur randomly in a long string of binary data, where it might cause a false termination. Also, the bit patterns for the ASCII CR (carriage return), comma, or semicolon might cause a false termination. Suppression of the EOI causes the computer to accept all bit patterns as data, not commands, and relies on the HP-IB EOI (end or identify) line for correct end-of-data termination.

Related statements used by some computers
- CONVERT
- IMAGE
- IOBUFFER
- ON TIMEOUT
- SET TIMEOUT
- TRANSFER

This completes the “HP-IB Command Statements” subsection. The following material explains the SCPI programming codes, and shows how they are used with the OUTPUT and ENTER HP-IB command statements.
Getting Started with SCPI

This section of Chapter 1 describes the use of the Standard Commands for Programmable Instruments language (SCPI). This section explains how to use SCPI commands in general. This section presents only the basics of SCPI. If you want to explore the topic in greater depth, see the paragraph titled, "Related Documents."
# Definitions of Terms

You need a general understanding of the terms listed below before you continue.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller</td>
<td>A controller is any computer used to communicate with a SCPI instrument. A controller can be a personal computer, a minicomputer, or a plug-in card in a card cage. Some intelligent instruments can also function as controllers.</td>
</tr>
<tr>
<td>instrument</td>
<td>An instrument is any device that implements SCPI. Most instruments are electronic measurement or stimulus devices, but this is not a requirement. Similarly, most instruments use an HP-IB interface for communication. The same concepts apply regardless of the instrument function or the type of interface used.</td>
</tr>
<tr>
<td>program message</td>
<td>A program message is a combination of one or more properly formatted SCPI commands. Program messages always go from a controller to an instrument. Program messages tell the instrument how to make measurements and output signals.</td>
</tr>
<tr>
<td>response message</td>
<td>A response message is a collection of data in specific SCPI formats. Response messages always go from an instrument to a controller or listening instrument. Response messages tell the controller about the internal state of the instrument and about measured values.</td>
</tr>
<tr>
<td>command</td>
<td>A command is an instruction in SCPI. You combine commands to form messages that control instruments. In general, a command consists of mnemonics (keywords), parameters, and punctuation.</td>
</tr>
<tr>
<td>query</td>
<td>A query is a special type of command. Queries instruct the instrument to make response data available to the controller. Query mnemonics always end with a question mark.</td>
</tr>
</tbody>
</table>
Standard Notation

This section uses several forms of notation that have specific meaning.

Command Mnemonics

Many commands have both a long and a short form, and you must use either one or the other (SCPI does not accept a combination of the two). Consider the \texttt{FREQuency} command, for example. The short form is \texttt{FREQ} and the long form is \texttt{FREQuENCY} (this notation style is a shorthand to document both the long and short form of commands). SCPI is not case sensitive, so \texttt{fREquEnCy} is just as valid as \texttt{FREQuENCY}, but \texttt{FREQ} and \texttt{FREQuENCY} are the only valid forms of the \texttt{FREQuency} command.

Angle Brackets

Angle brackets indicate that the word or words enclosed represent something other than themselves. For example, \texttt{<new line>} represents the ASCII character with the decimal value 10. Similarly, \texttt{<END>} means that EOI is asserted on the HP-IB interface. Words in angle brackets have much more rigidly defined meaning than words used in ordinary text. For example, this section uses the word “message” to talk about messages generally. But the bracketed words \texttt{<program message>} indicate a precisely defined element of SCPI. If you need them, you can find the exact definitions of words such as \texttt{<program message>} in a syntax diagram.

How to Use Examples

It is important to understand that programming with SCPI actually requires knowledge of two languages. You must know the programming language of your controller (BASIC, C, Pascal) as well as the language of your instrument (SCPI). The semantic requirements of your controller’s language determine how the SCPI commands and responses are handled in your application.
Command Examples

Command examples look like this:

:`FREQuency:CW?`

This example tells you to put the string `:`FREQuency:CW? in the output statement appropriate to your application programming language. If you encounter problems, study the details of how the output statement handles message terminators such as `<new line>`. If you are using simple OUTPUT statements in HP BASIC, this is taken care of for you. In HP BASIC, you type:

```
OUTPUT 719;"`:FREQuency:CW?
```

Command examples do not show message terminators because they are used at the end of every program message. “Details of Commands and Responses,” discusses message terminators in more detail.

Response Examples

Response examples look like this:

```
3.0000000000000E+009
```

These are the characters you would read from an instrument after sending a query command. To actually pull them from the instrument into the controller, use the input statement appropriate to your application programming language. If you have problems, study the details of how the input statement operates. In particular, investigate how the input statement handles punctuation characters such as corruma and semicolon, and how it handles `<new line>` and EOI. To enter the previous response in HP BASIC, you type:

```
ENTER 719;CW_frequency
```

Response examples do not show response message terminators because they are always `<new line>` `<END>`. These terminators are typically automatically handled by the input statement. The paragraph titled “Details of Commands and Responses,” later in this chapter, discusses message terminators in more detail.
Essentials for Beginners

This section discusses elementary concepts critical to first-time users of SCPI. Read and understand this section before continuing. This section includes the following topics:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program and Response Messages</td>
<td>These paragraphs introduce the basic types of messages sent between instruments and controllers.</td>
</tr>
<tr>
<td>Subsystem Command Trees</td>
<td>These paragraphs describe the tree structure used in subsystem commands.</td>
</tr>
<tr>
<td>Reading Instrument Errors</td>
<td>These paragraphs explain how to read and print an instrument’s internal error messages.</td>
</tr>
<tr>
<td>Example Programs</td>
<td>These paragraphs contain two simple measurement programs that illustrate basic SCPI programming principles.</td>
</tr>
</tbody>
</table>
Program and Response Messages

To understand how your instrument and controller communicate using SCPI, you must understand the concepts of program and response messages. *Program messages* are the formatted data sent from the controller to the instrument. Conversely, *response messages* are the formatted data sent from the instrument to the controller. Program messages contain one or more commands, and response messages contain one or more responses.

The controller may send commands at any time, but the instrument sends responses only when specifically instructed to do so. The special type of command used to instruct the instrument to send a response message is the *query*. All query mnemonics end with a question mark. Queries return either measured values or internal instrument settings. Any internal setting that can be programmed with SCPI can also be queried.

SCPI uses the concept of forgiving listening and precise talking outlined in IEEE 488.2.

*Forgiving listening* means that instruments are very flexible in accepting various command and parameter formats. For example, the synthesizer accepts either :POWer:STATe ON or :POWer:STATe 1 to turn RF output on.

*Precise talking* means that the response format for a particular query is always the same. For example, if you query the power state when it is on (using :POWer:STATe?), the response is always 1, regardless of whether you previously sent :POWer:STATe 1 or :POWer:STATe ON.

Commands can be separated into two groups, common commands and subsystem commands.

*Common commands* are generally not measurement related. They are used to manage macros, status registers, synchronization, and data storage. Common commands are easy to recognize because they all begin with an asterisk, such as *IDN?, *OPC, and *RST. Common commands are defined by IEEE 488.2.

*Subsystem commands* include all measurement functions and some general purpose functions. Subsystem commands are distinguished by the colon used between keywords, as in :FREQuency:CW?. Each command subsystem is a
set of commands that roughly corresponds to a functional block inside the instrument. For example, the POWER subsystem contains commands for power generation, while the STATUS subsystem contains commands for accessing status registers.

![SCPI Diagram](image)

**Figure 1-2. SCPI Command Types**

The remaining paragraphs in this subsection discuss subsystem commands in more detail. Remember, some commands are implemented in one instrument and not in another, depending on its measurement function.
Subsystem Command Trees

Most programming tasks involve subsystem commands. SCPI uses a hierarchical structure for subsystem commands similar to the file systems on most computers. In SCPI, this command structure is called a command tree.

![Figure 1-3. A Simplified Command Tree](image)

In the command tree shown in Figure 1-3, the command closest to the top is the root command, or simply the root. Notice that you must follow a particular path to reach lower level subcommands. For example, if you wish to access the GG command, you must follow the path AA to BB to GG.

To access commands in different paths in the command tree, you must understand how an instrument interprets commands. A special part of the instrument firmware, a parser, decodes each message sent to the instrument. The parser breaks up the message into component commands using a set of rules to determine the command tree path used. The parser keeps track of the current path, the level in the command tree where it expects to find the next command you send. This is important because the same keyword may appear in different paths. The particular path you use determines how the keyword is interpreted. The following rules are used by the parser:
• **Power On and Reset**
  After power is cycled or after *RST, the current path is set to the root.

• **Message Terminators**
  A message terminator, such as a `<new line>` character, sets the current path to the root. Many programming languages have output statements that send message terminators automatically. The paragraph titled, "Details of Commands and Responses," later in this chapter, discusses message terminators in more detail.

• **Colon**
  When it is between two command mnemonics, a colon moves the current path down one level in the command tree. For example, the colon in **MEAS:VOLT** specifies that VOLT is one level below MEAS. When the colon is the first character of a command, it specifies that the next command mnemonic is a root level command. For example, the colon in :INIT specifies that INIT is a root level command.

• **Semicolon**
  A semicolon separates two commands in the same message without changing the current path.

• **Whitespace**
  Whitespace characters, such as `<tab>` and `<space>`, are generally ignored. There are two important exceptions. Whitespace inside a keyword, such as :FREQ uency, is not allowed. You must use white space to separate parameters from commands. For example, the `<space>` between LEVel and 6.2 in the command :POWer:LEVel 6.2 is mandatory. Whitespace does not affect the current path.

• **Commas**
  If a command requires more than one parameter, you must separate adjacent parameters using a comma. Commas do not affect the current path.

• **Common Commands**
  Common commands, such as *RST, are not part of any subsystem. An instrument interprets them in the same way, regardless of the current path setting.
Figure 1-4 shows examples of how to use the colon and semicolon to navigate efficiently through the command tree. Notice how proper use of the semicolon can save typing.

Sending this message:

`:AA:BB:EE; FF; GG`

Is the same as sending these three messages:

`:AA:BB:EE`

`:AA:BB:FF`

`:AA:BB:GG`
More About Commands

You can query any value that you can set. For example, the presence of the synthesizer \texttt{FREQuency:STEP} command implies that a \texttt{FREQuency:STEP?} also exists. If you see a command ending with a question mark, it is a query only command. Some commands are \textit{events}, and cannot be queried. An event has no corresponding setting if it causes something to happen inside the instrument at a particular instant.

\textit{Implied commands} appear in square brackets. If you send a subcommand immediately preceding an implied command, but do not send the implied command, the instrument assumes you intend to use the implied command, and behaves just as if you had sent it. Note that this means the instrument expects you to include any parameters required by the implied command. The following example illustrates equivalent ways to program the synthesizer using explicit and implied commands.

Example synthesizer commands with and without an implied command:

\begin{verbatim}
FREQuency:STEP:INCREMENT 1 \textit{using explicit commands}
FREQuency:STEP 1 \textit{using implied commands}
\end{verbatim}

Optional parameter names are enclosed in square brackets. If you do not send a value for an optional parameter, the instrument chooses a default value. The instrument's command dictionary documents the values used for optional parameters.
Program Message Examples

The following parts of the synthesizer SCPI command set will be used to demonstrate how to create complete SCPI program messages:

:FRQency
  [:CW]
  :STEP
:POWer
  [:LEVel]

Example 1

"FRQency:CW 5 GHZ; STEP 2 GHZ"

The command is correct and will not cause errors. It is equivalent to sending:

"FRQency:CW 5 GHZ; FRQency:STEP 2 GHZ".

Example 2

"FRQency 5 GHZ; :STEP 2 GHZ"

This command results in a command error. The command makes use of the default [:CW] node. When using a default node, there is no change to the current path position. Since there is no command "STEP" at the root, an error results. A correct way to send this is:

"FREQ 5 GHZ; FREQ:STEP 2 GHZ"

or as in example 1.
"FREQuency:STEP 1 GHZ; FREQuency:CW 5 GHZ"

This command results in a command error. The FREQ:CW portion of the command is missing a leading colon. The path level is dropped at each colon until it is in the FREQ:STEP subsystem.

So when the FREQ:CW command is sent, it causes confusion because no such node occurs in the FREQ:STEP subsystem. By adding a leading colon, the current path is reset to the root. The corrected command is:

"FREQuency:STEP 1 GHZ; :FREQuency:CW 5 GHZ".

"FREQ 5 GHZ; POWER 4 DBM"

Notice that in this example the keyword short form is used. The command is correct. It utilizes the default nodes of [:CW] and [:LEVEL]. Since default nodes do not affect the current path, it is not necessary to use a leading colon before POWER.
Reading Instrument Errors

When debugging a program, you may want to know if an instrument error has occurred. Some instruments can display error messages on their front panels. If your instrument cannot do this, you can put the following code segment in your program to read and display error messages.

```
10 !
20 ! The rest of your
30 ! variable declarations
40 ! Assign @box to 719
50 DIM Err_msg$[75]
60 INTEGER Err_num
70 !
80 ! Part of your program
90 ! that generates errors
100 !
110 !
200 REPEAT
210 OUTPUT @Box;";SYST:ERR?"
220 ! Query instrument error
230 ENTER @Box;Err_num,Err_msg$
240 ! Read error #, message
250 PRINT Err_num,Err_msg$
260 ! Print error message
270 UNTIL Err_num = 0
280 ! Repeat until no errors
290 !
300 ! The rest of your program
310 !
```
Details of Commands and Responses

This section describes the syntax of SCPI commands and responses. It provides many examples of the data types used for command parameters and response data. The following topics are explained:

<table>
<thead>
<tr>
<th>Program Message Syntax</th>
<th>These paragraphs explain how to properly construct the messages you send from the computer to instruments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Message Syntax</td>
<td>These paragraphs discuss the format of messages sent from instruments to the computer.</td>
</tr>
<tr>
<td>SCPI Data Types</td>
<td>These paragraphs explain the types of data contained in program and response messages.</td>
</tr>
</tbody>
</table>
Program Message Syntax

These program messages contain commands combined with appropriate punctuation and program message terminators.

![Diagram of Program Message Syntax]

NOTES:

<new line> = ASCII character decimal 10
^END = EOI asserted concurrent with last byte

Figure 1-5. Simplified Program Message Syntax

As Figure 1-5 shows, you can send common commands and subsystem commands in the same message. If you send more than one command in the same message, you must separate them with a semicolon. You must always end a program message with one of the three program message terminators shown in Figure 1-5. Use <new line>, <^END>, or <new line> <^END> as the program message terminator. The word <^END> means that EOI is asserted on the HP-IB interface at the same time the preceding data byte is sent. Most programming languages send these terminators automatically. For example, if you use the HP BASIC OUTPUT statement, <new line> is automatically sent after your last data byte. If you are using a PC, you can usually configure the system to send whatever terminator you specify.
SCPI Subsystem Command Syntax

NOTE:
SP = white space, ASCII characters 0₁₀ to 9₁₀ and 1₁₀ to 32₁₀

Figure 1-6. SCPI Simplified Subsystem Command Syntax

As Figure 1-6 shows, there must be a <space> between the last command mnemonic and the first parameter in a subsystem command. This is one of the few places in SCPI where <space> is required. Note that if you send more than one parameter with a single command, you must separate adjacent parameters with a comma. Parameter types are explained later in this subsection.
Common Command Syntax

NOTE:
SP = white space, ASCII characters 0₁₀ to 9₁₀ and 1₁₁ to 32₁₀

Figure 1-7. Simplified Common Command Syntax

As with subsystem commands, use a <space> to separate a command mnemonic from subsequent parameters. Separate adjacent parameters with a comma. Parameter types are explained later in this subsection.
Response Message Syntax

![Diagram](image)

**Figure 1-8. Simplified Response Message Syntax**

Response messages can contain both commas and semicolons as separators. When a single query command returns multiple values, a comma separates each data item. When multiple queries are sent in the same message, the groups of data items corresponding to each query are separated by a semicolon. For example, the fictitious query `:QUERY1?:QUERY2?` might return a response message of:

```
<data1>,<data1>;<data2>,<data2>
```

Response data types are explained later in this subsection. Note that `<new line>``<END>` is always sent as a response message terminator.
SCPI Data Types

These paragraphs explain the data types available for parameters and response data. They list the types available and present examples for each type. SCPI defines different data formats for use in program messages and response messages. It does this to accommodate the principle of forgiving listening and precise talking. Recall that forgiving listening means instruments are flexible, accepting commands and parameters in various formats. Precise talking means an instrument always responds to a particular query in a predefined, rigid format. Parameter data types are designed to be flexible in the spirit of forgiving listening. Conversely, response data types are defined to meet the requirements of precise talking.

<table>
<thead>
<tr>
<th>Parameter Types</th>
<th>Response Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric</td>
<td>Real or Integer</td>
</tr>
<tr>
<td>Extended Numeric</td>
<td>Integer</td>
</tr>
<tr>
<td>Discrete</td>
<td>Discrete</td>
</tr>
<tr>
<td>Boolean</td>
<td>Numeric Boolean</td>
</tr>
<tr>
<td>String</td>
<td>String</td>
</tr>
<tr>
<td>Block</td>
<td>Definite Length Block</td>
</tr>
<tr>
<td></td>
<td>Indefinite Length Block</td>
</tr>
<tr>
<td>Non-decimal Numeric</td>
<td>Hexadecimal</td>
</tr>
<tr>
<td></td>
<td>Octal</td>
</tr>
<tr>
<td></td>
<td>Binary</td>
</tr>
</tbody>
</table>

Notice that each parameter type has one or more corresponding response data types. For example, a setting that you program using a numeric parameter returns either real or integer response data when queried. Whether real or integer response data is returned depends on the instrument used. However, precise talking requires that the response data type be clearly defined for a particular instrument and query. The instrument command
dictionary in Chapter 2 generally contains information about data types for individual commands. The following paragraphs explain each parameter and response data type in more detail.

---

**Parameter Types**

**Numeric Parameters**

Numeric parameters are used in both subsystem commands and common commands. Numeric parameters accept all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation.

If an instrument setting programmed with a numeric parameter can only assume a finite number of values, the instrument automatically rounds the parameter. For example, if an instrument has a programmable output impedance of 50 or 75 ohms, and you specified 76.1 for output impedance, the value is rounded to 75. If the instrument setting can only assume integer values, it automatically rounds the value to an integer. For example, sending *ESE 10.123 is the same as sending *ESE 10.

Examples of numeric parameters:

- 100
- 100. (no decimal point required)
- -1.23
- 4.56e<space>3
- -7.89E-01
- +256
- .5

fractional digits optional
leading signs allowed
space allowed after e in exponentials
use either E or e in exponentials
leading + allowed
digits left of decimal point optional
Most subsystems use extended numeric parameters to specify physical quantities. Extended numeric parameters accept all numeric parameter values and other special values as well. All extended numeric parameters accept MAXimum and MINimum as values. Other special values, such as UP and DOWN may be available as documented in Chapter 2. Note that MINimum and MAXimum can be used to set or query values. The query forms are useful for determining the range of values allowed for a given parameter.

In some instruments, extended numeric parameters accept engineering unit suffixes as part of the parameter value.

Note that extended numeric parameters are not used for common commands or STATus subsystem commands.

Examples of extended numeric parameters:

```
100.      any simple numeric values
-1.23     largest valid setting
4.56e<space>3
-7.89E-01
+256
.5

MAX
MIN
-100 mV  valid setting nearest negative infinity
          negative 100 millivolts
```
Use discrete parameters to program settings that have a finite number of values. Discrete parameters use mnemonics to represent each valid setting. They have a long and a short form, just like command mnemonics. You can use mixed upper and lower case letters for discrete parameters.

Examples of discrete parameters used with the ALC:SOURce subsystem:

- **INTERNAL**  **internal leveling**
- **DIODE**  **external diode detector leveling**

Although discrete parameters values look like command keywords, do not confuse the two. In particular, be sure to use colons and spaces properly. Use a colon to separate command mnemonics from each other. Use a space to separate parameters from command mnemonics.

Examples of discrete parameters in commands:

```
100 OUTPUT @Source;"POWer:ALC:SOURce INT"
100 OUTPUT @Source;"POWer:ALC:SOURce DIODE"
```

Boolean parameters represent a single binary condition that is either true or false. There are only four possible values for a Boolean parameter.

Examples of Boolean parameters:

```
ON  Boolean TRUE, upper/lower case allowed
OFF Boolean FALSE, upper/lower case allowed
1   Boolean TRUE
0   Boolean FALSE
```
Response Data Types

Real Response Data

A large portion of all measurement data are formatted as real response data. Real response data are decimal numbers in either fixed decimal notation or scientific notation. In general, you do not need to worry about the rules for formatting real data, or whether fixed decimal or scientific notation is used. Most high level programming languages that support instrument I/O handle either type transparently.

Examples of real response data:

1.23E+0
-1.0E+2
+1.0E+2
0.5E+0
1.23
-100.0
+100.0
0.5

Integer Response Data

Integer response data are decimal representations of integer values including optional signs. Most status register related queries return integer response data.

Examples of integer response data:

0  signs are optional
+100  leading + sign allowed
-100  leading sign allowed
256  never any decimal point
Discrete Response Data: Discrete response data are similar to discrete parameters. The main difference is that discrete response data return only the short form of a particular mnemonic, in all upper case letters.

Examples of discrete response data:

- INTernal  \textit{level internally}
- DIODE  \textit{level using an external diode}

String Response Data: String response data are similar to string parameters. The main difference is that string response data use only double quotes as delimiters, rather than single quotes. Embedded double quotes may be present in string response data. Embedded quotes appear as two adjacent double quotes with no characters between them.

Examples of string response data:

- "This IS valid"
- "SO IS THIS "" ""
- "I said, ""Hello!""""
Programming Typical Measurements

This section illustrates how the general SCPI concepts presented in previous sections apply to programming real measurements. To introduce you to programming with SCPI, we must list the commands for the synthesizer. We will begin with a simplified example.

Using the Example Programs

The example programs are interactive. They require active participation by the operator. If you desire to get an understanding of the principles without following all of the instructions, read the "Program Comments" paragraphs to follow the programmed activity.

The HP-IB select code is assumed to be preset to 7. All example programs in this section expect the synthesizer's HP-IB address to be decimal 19.

To find the present HP-IB address use the front panel.

Press [SHIFT] [LOCAL].

The active entry area indicates the present decimal address. If the number displayed is not 19, press [19] [ENTER] to reset it to 19.

Now check that the interface language is set to SCPI. Press [SPECIAL] 15 [ENTER]. The selected interface language is then shown, use the up and down keys to change the language.
HP-IB Check, Example Program 1

This first program is to verify that the HP-IB connections and interface are functional. Connect a controller to the synthesizer via an HP-IB cable. Clear and reset the controller and type in the following program:

```
10  Synthesizer =719
20  ABORT 7
30  LOCAL Synthesizer
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  CLS
70  PRINT "The synthesizer should now be in REMOTE."
80  PRINT "Verify that the 'RMT' annunciator is on."
90  END
```

Run the program and verify that the RMT annunciator is lit on the synthesizer. If it is not, verify that the synthesizer address is set to 19 and that the interface cable is properly connected.

If the controller display indicates an error message, it is possible that the program was entered in incorrectly. If the controller accepts the REMOTE statement but the synthesizer RMT annunciator does not turn on, refer to the service guide to find the trouble shooting information.

Program Comments

10: Set up a variable to contain the HP-IB address of the source.
20: Abort any bus activity and return the HP-IB interfaces to their reset states.
30: Place the synthesizer into LOCAL to cancel any local lockouts that may have been setup.
40: Reset the synthesizer's parser and clear any pending output from the source. Prepare the synthesizer to receive new commands.
50: Place the synthesizer into REMOTE.
60: Clear the display of the computer.
70: Print a message to the computer's display.
Local Lockout Demonstration, Example Program 2

When the synthesizer is in REMOTE mode, all the front panel keys are disabled except the LOCAL key. But, when the LOCAL LOCKOUT command is set on the bus, even the LOCAL key is disabled. The LOCAL command, executed from the controller, is then the only way to return all (or selected) instruments to front panel control.

Continue example program 1. Delete line 90 END and type in the following commands:

```
90 PRINT "Verify that all keys are ignored, except the 'LOCAL' key."
100 PRINT "Verify that 'LOCAL' causes the RMT annunciator to go OFF."
110 PRINT "..... press CONTINUE"
120 PAUSE
130 REMOTE Synthesizer
140 LOCAL LOCKOUT 7
150 PRINT
160 PRINT "Synthesizer should now be in LOCAL LOCKOUT mode."
170 PRINT "Verify that all keys (including 'LOCAL') have no effect."
180 PRINT "..... press CONTINUE"
190 PAUSE
200 LOCAL Synthesizer
210 PRINT
220 PRINT "Synthesizer should now be in LOCAL mode."
230 PRINT "Verify that the synthesizer's keyboard is functional."
240 END
```

**Program Comments**

90 to 120: Print a message on the computer's display, then pause.

130: Place the synthesizer into REMOTE.

140: Place the synthesizer into LOCAL LOCKOUT mode.
150 to 190: Print a message on the computer's display, then pause.
200: Return the synthesizer to local control.
210 to 230: Print a message on the computer's display.
Internally Leveled CW Signal, Example Program 3

In the following example, an internally leveled, CW signal is generated at a frequency of 2.000203 GHz with a power level of $-2.1$ dBm. Clear and reset the controller and type in the following program:

10   Synthesizer=719
20   ABORT 7
30   LOCAL 7
40   CLEAR Synthesizer
50   REMOTE Synthesizer
60   OUTPUT Synthesizer;"*RST"
70   OUTPUT Synthesizer;"POW:ALC:SOUR INT"
80   OUTPUT Synthesizer;"FREQuency 2.000203GHZ"
90   OUTPUT Synthesizer;"POWer:LEVel -2.1 DBM"
100  OUTPUT Synthesizer;"OUTP:STATe ON"
110  END

Run the program.

Program Comments

10:       Assign the synthesizer's HP-IB address to a variable.
20 to 50:  Abort any HP-IB activity and initialize the HP-IB interface.
60:       Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70:       Enable internal leveling.
80:       Set the frequency to 2.000203 GHz.
90:       Set the synthesizer's power level to $-2.1$ dBm.
100:      Turn the RF output on.
Internally Leveled AC-Coupled External FM Signal, Example Program 4

In the following example, an internally leveled, AC-coupled FM signal will be generated at a carrier frequency of 12.5 GHz with a power level of −3 dBm. In order to accomplish this, connect the output of a modulating signal source to the synthesizer's FM IN, set the modulating signal source for the desired FM characteristics, and then run the following program.

```
10   Synthesizer=719
20   ABORT 7
30   LOCAL 7
40   CLEAR Synthesizer
50   REMOTE Synthesizer
60   OUTPUT Synthesizer; "*RST"
70   OUTPUT Synthesizer; "FM:COUP AC"
80   OUTPUT Synthesizer; "FM:STAT ON"
90   OUTPUT Synthesizer; "POW:ALC:SOUR INT"
100  OUTPUT Synthesizer; "FREQ 12.5GHZ"
110  OUTPUT Synthesizer; "POW:LEV -3DBM"
120  OUTPUT Synthesizer; "OUTP:STAT ON"
130  END
```

**Program Comments**

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set FM coupling to AC.
80: Turn frequency modulation on.
90: Enable internal leveling.
100: Set the carrier frequency to 12.5 GHz.
110: Set the output power level to −3 dBm.
120: Turn the RF output on.
Internally Leveled AC-Coupled Internal FM Signal, Example Program 5

**NOTE**
Internal FM source is only available with Option 1E2 installed.

In the following example, an internally leveled, AC-coupled internal FM signal will be generated at a carrier frequency of 12.5 GHz with a power level of 
−3 dBm. The FM rate will be 5 kHz and the peak deviation will be 100 kHz.
In order to accomplish this, run the following program.

```
10 Synthesizer=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Synthesizer
50 REMOTE Synthesizer
60 OUTPUT Synthesizer; "*RST"
70 OUTPUT Synthesizer; "FM:COUP AC"
80 OUTPUT Synthesizer; "FM:SOUR INT"
90 OUTPUT Synthesizer; "FM:INT:FREQ 5KHZ"
100 OUTPUT Synthesizer; "FM:DEV 100KHZ"
110 OUTPUT Synthesizer; "FM:STAT ON"
120 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
130 OUTPUT Synthesizer; "FREQ 12.5GHZ"
140 OUTPUT Synthesizer; "POW:LEV -3DBM"
150 OUTPUT Synthesizer; "OUTP:STAT ON"
160 END
```
10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set FM coupling to AC.
80: Set the FM source to internal.
90: Set the internal FM rate to 5 kHz.
100: Set the internal FM deviation to 100 kHz.
110: Turn frequency modulation on.
120: Enable internal leveling.
130: Set the carrier frequency to 12.5 GHz.
140: Set the output power level to $-3$ dBm.
150: Turn the RF output on.
Power Sweep Routine, Example Program 6

In the following example, a power sweep will be generated at a carrier frequency of 2.3 GHz. The power will sweep from a minimum level of −30 dBm to a maximum level of 0 dBm.

To program the synthesizer to generate the power sweep explained above, connect the output of a function generator to the synthesizer's AM IN. Set the function generator to generate a negative sawtooth waveform from +3 V to 0 V and then run the following program.

```
10  Synthesizer=719
20  ABORT 7
30  LOCAL 7
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  OUTPUT Synthesizer; "*RST"
70  OUTPUT Synthesizer; "AM:STAT ON"
80  OUTPUT Synthesizer; "POW:ALC:SOUR INT"
90  OUTPUT Synthesizer; "FREQ 2.3GHZ"
100 OUTPUT Synthesizer; "POW:LEV ODBM"
110 OUTPUT Synthesizer; "OUTP:STAT ON"
120 END
```

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Turn logarithmic amplitude modulation on.
80: Enable internal leveling.
90: Set the carrier frequency to 2.3 GHz.
100: Set the output power level to 0 dBm (the maximum level needed in the power sweep).
110: Turn the RF output on.
Generating Repetitive, Internal Pulse Modulation, Example Program 7

In the following example, an internally leveled, internally pulse modulated signal will be generated at a carrier frequency of 3.085 GHz with a power level of 0 dBm. The pulses will have a pulse repetition interval of 100 ms with a 25 ms pulse width and a 200 µs delay.

```
10 Synthesizer=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Synthesizer
50 REMOTE Synthesizer
60 OUTPUT Synthesizer; "*RST"
70 OUTPUT Synthesizer; "PULM:SOUR INT"
80 OUTPUT Synthesizer; "TRIG:SOUR IMM"
90 OUTPUT Synthesizer; "PULM:STAT ON"
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 3.085GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
140 OUTPUT Synthesizer; "PULS:PER 100MS"
150 OUTPUT Synthesizer; "PULS:WIDT 25MS"
160 OUTPUT Synthesizer; "PULS:DEL 200US"
170 OUTPUT Synthesizer; "OUTP:STAT ON"
180 END
```

**Program Comments**

10: Assign the synthesizer’s HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to internal.
80: Set pulse trigger source to immediate (non-triggered).
90: Turn pulse modulation on.
100: Enable internal leveling.
Getting Started Programming

Programming Typical Measurements

110: Set the carrier frequency to 3.085 GHz.
120: Set the output power level to 0 dBm.
130: Turn average power inhibit on or off.
140: Set the pulse repetition interval to 100 ms.
150: Set the pulse width to 25 ms.
160: Set the pulse delay to 200 $\mu$s.
170: Turn the RF output on.
Generating Externally-Trigged Pulse Modulation, Example Program 8

In the following example, an internally-leveled, externally-triggered pulse-modulated signal will be generated at a carrier frequency of 5 GHz with a power level of −3 dBm. The pulses will have a 23 ms pulse width and a 100 μs delay.

To program the synthesizer to generate the signal explained above, connect the output of a trigger signal source to the PULSE/TRIG GATE IN, set the trigger signal source for the desired triggering characteristics, and then run the following program:

```
10  Synthesizer=719
20  ABORT 7
30  LOCAL 7
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  OUTPUT Synthesizer; "*RST"
70  OUTPUT Synthesizer; "PULM: SOUR INT"
80  OUTPUT Synthesizer; "TRIG: SOUR EXT"
90  OUTPUT Synthesizer; "PULM: STAT ON"
100 OUTPUT Synthesizer; "POW: ALC: SOUR INT"
110 OUTPUT Synthesizer; "FREQ 5 GHz"
120 OUTPUT Synthesizer; "POW: LEV -3 DBM"
130 OUTPUT Synthesizer; "POW: PROT: STAT ON|OFF"
140 OUTPUT Synthesizer; "PULS: WIDT 23 MS"
150 OUTPUT Synthesizer; "PULS: DEL 100 US"
160 OUTPUT Synthesizer; "OUTP: STAT ON"
170 END
```

Program Comments

10: Assign the synthesizer’s HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to internal.
80: Enable triggered pulse mode.
Programming Typical Measurements

90: Turn pulse modulation on.
100: Enable internal leveling.
110: Set the carrier frequency to 5 GHz.
120: Set the output power level to $-3$ dBm.
130: Turn average power inhibit on or off.
140: Set the pulse width to 23 ms.
150: Set the pulse delay to 100 $\mu$s.
160: Turn the RF output on.
Generating Repetitive, External Pulse Modulation, Example Program 9

In the following example, a repetitive, externally pulse-modulated signal will be generated at a carrier frequency of 12.02 GHz with a power level of 0 dBm. The pulse characteristics (PRI, width, and delay) will be set with an external pulse source.

To program the synthesizer to generate the signal explained above, connect the output of a pulse source to the synthesizer's PULSE/TRIG GATE IN, set the pulse source for the desired PRI, width, and delay, and then run the following program.

```
10 Synthesizer=719
20 ABORT 7
30 LOCAL 7
40 CLEAR Synthesizer
50 REMOTE Synthesizer
60 OUTPUT Synthesizer; "*RST"
70 OUTPUT Synthesizer; "PULM:SOUR EXT"
80 OUTPUT Synthesizer; "PULM:EXT:POL NORM|INV"
90 OUTPUT Synthesizer; "PULM:STAT ON"
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ 12.02GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
140 OUTPUT Synthesizer; "OUTP:STAT ON"
150 END
```

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to external.
80: Set external pulse polarity. Choose "NORM" for non-inverted external pulse modulation or "INV" for inverted external pulse modulation.
Programming Typical Measurements

90: Turn pulse modulation on.
100: Enable internal leveling.
110: Set the carrier frequency to 12.02 GHz.
120: Set the output power level to 0 dBm.
130: Turn average power inhibit on or off.
140: Turn the RF output on.
Generating a Doublet Pulse, Example Program 10

In the following example, doublet pulses will be generated at a carrier frequency of 10 GHz with a power level of 0 dBm. The pulses will have a 1 µs pulse width and a pulse delay of 2 µs.

To program the synthesizer to generate the pulses explained above, connect the output of a pulse source to the synthesizer's PULSE/TRIG GATE IN, set the gate signal source for the desired gate pulse characteristics, and then run the following program.

```
10  Synthesizer=719
20  ABORT 7
30  LOCAL 7
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  OUTPUT Synthesizer; "*RST"
70  OUTPUT Synthesizer; "PULM:SOUR INT"
80  OUTPUT Synthesizer; "PULS:DOUB ON"
90  OUTPUT Synthesizer; "PULM:STAT ON"
100 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110 OUTPUT Synthesizer; "FREQ:10GHZ"
120 OUTPUT Synthesizer; "POW:LEV ODBM"
130 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
140 OUTPUT Synthesizer; "PULS:WIDT 1US"
150 OUTPUT Synthesizer; "PULS:DEL 2US"
160 OUTPUT Synthesizer; "OUTP:STAT ON"
170 END
```

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to internal.
80: Enable doublet pulse mode.
90: Turn pulse modulation on.
Getting Started: Programming

**Programming Typical Measurements**

100: Enable internal leveling.
110: Set the carrier frequency to 10 GHz.
120: Set the output power level to 0 dBm.
130: Turn average power inhibit on or off.
140: Set the pulse width to 1 µs.
150: Set the pulse delay to 2 µs.
160: Turn the RF output on.
Generating Gated Pulse Modulation, Example
Program 11

In the following example, a gated, pulse-modulated signal will be generated at a carrier frequency of 6.67 GHz with a power level of 0 dBm. The pulses will have a 100 μs pulse width and a pulse repetition frequency of 1 kHz.

To program the synthesizer to generate the signal explained above, connect the output of a gate signal source to the synthesizer's PULSE/TRIG GATE IN, set the gate signal source for the desired gate signal characteristics, and then run the following program.

```
10  Synthesizer=719
20  ABORT 7
30  LOCAL 7
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  OUTPUT Synthesizer; "*RST"
70  OUTPUT Synthesizer; "PULM:SOUR INT"
80  OUTPUT Synthesizer; "TRIG:SOUR EXT"
90  OUTPUT Synthesizer; "TRIG:STOP:SOUR EXT"
100 OUTPUT Synthesizer; "PULM:STAT ON"
110 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
120 OUTPUT Synthesizer; "FREQ 6.67GHZ"
130 OUTPUT Synthesizer; "POW:LEV 0DBM"
140 OUTPUT Synthesizer; "POW:PROT:STAT ON|OFF"
150 OUTPUT Synthesizer; "PULS:WIDT 100US"
160 OUTPUT Synthesizer; "PULS:FREQ 1KHZ"
170 OUTPUT Synthesizer; "OUTP:STAT ON"
180 END
```

Program Comments

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to internal.
80: Enable triggered pulse mode.
Getting Started Programming

Programming Typical Measurements

90: Set the pulse trigger stop source to external.
100: Turn pulse modulation on.
110: Enable internal leveling.
120: Set the carrier frequency to 6.67 GHz.
130: Set the output power level to 0 dBm.
140: Turn average power inhibit on or off.
150: Set the pulse width to 100 μs.
160: Set the pulse repetition frequency to 1 kHz.
170: Turn the RF output on.
Generating an Internal Log AM Signal, Example Program 12

NOTE
The internal AM source is only available with Option 1E2 installed.

In the following example, an internally-leveled, internal Log AM signal will be generated at a carrier frequency of 12.5 GHz with a power level of -3 dBm. The AM rate will be 5 kHz and the AM depth will be 40 dB. In order to accomplish this, run the following program.

10  Synthesizer=719
20  ABORT 7
30  LOCAL 7
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  OUTPUT Synthesizer; "*RST"
70  OUTPUT Synthesizer; "AM:SOUR INT"
80  OUTPUT Synthesizer; "AM:INT:FREQ 5KHZ"
90  OUTPUT Synthesizer; "AM:DEPT 40DB"
100 OUTPUT Synthesizer; "AM:STAT ON"
110 OUTPUT Synthesizer; "POW:ALC:SOUR INT"
120 OUTPUT Synthesizer; "FREQ 12.5GHZ"
130 OUTPUT Synthesizer; "POW:LEV -3DBM"
140 OUTPUT Synthesizer; "OUTP:STAT ON"
150 END
Getting Started Programming

Programming Typical Measurements

<table>
<thead>
<tr>
<th>Program Comments</th>
<th>10:</th>
<th>Assign the synthesizer’s HP-IB address to a variable.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 to 50:</td>
<td></td>
<td>Abort any HP-IB activity and initialize the HP-IB interface.</td>
</tr>
<tr>
<td>60:</td>
<td></td>
<td>Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.</td>
</tr>
<tr>
<td>70:</td>
<td></td>
<td>Set the AM source to internal.</td>
</tr>
<tr>
<td>80:</td>
<td></td>
<td>Set the internal AM rate to 5 kHz.</td>
</tr>
<tr>
<td>90:</td>
<td></td>
<td>Set the internal AM depth to 40 dB.</td>
</tr>
<tr>
<td>100:</td>
<td></td>
<td>Turn logarithmic AM on.</td>
</tr>
<tr>
<td>110:</td>
<td></td>
<td>Enable internal leveling.</td>
</tr>
<tr>
<td>120:</td>
<td></td>
<td>Set the carrier frequency to 12.5 GHz.</td>
</tr>
<tr>
<td>130:</td>
<td></td>
<td>Set the output power level to $-3$ dBm.</td>
</tr>
<tr>
<td>140:</td>
<td></td>
<td>Turn the RF output on.</td>
</tr>
</tbody>
</table>
Generating Simultaneous Log AM and Pulse Modulation, Example Program 13

In the following example, an antenna scan pattern will be generated using simultaneous logarithmic AM and internal pulse modulation (external or gated pulse modulation can also be used). A carrier frequency of 2.3 GHz at a peak main lobe power level of 0 dBm will be used. The pulse repetition frequency will be 10 kHz with a pulse width of 1 μs.

To program the synthesizer to generate the antenna scan pattern explained above, connect the output of an arbitrary waveform generator to the synthesizer's AM IN. Set the arbitrary waveform generator to produce a scan waveform, and then run the following program.

```
10    Synthesizer=719
20    ABORT 7
30    LOCAL 7
40    CLEAR Synthesizer
50    REMOTE Synthesizer
60    OUTPUT Synthesizer; "*RST"
70    OUTPUT Synthesizer; "PULM:SOUR INT"
80    OUTPUT Synthesizer; "TRIG:SOUR IMM"
90    OUTPUT Synthesizer; "PULM:STAT ON"
100   OUTPUT Synthesizer; "POW:ALC:SOUR INT"
110   OUTPUT Synthesizer; "FREQ 2.3GHZ"
120   OUTPUT Synthesizer; "POW:LEV 0DBM"
130   OUTPUT Synthesizer; "PULS:FREQ 10KHZ"
140   OUTPUT Synthesizer; "PULS:WIDT 1US"
150   OUTPUT Synthesizer; "PULS:DEL 0S"
160   OUTPUT Synthesizer; "AM:STAT ON"
170   OUTPUT Synthesizer; "OUTP:STAT ON"
180   END
```

**Program Comments**

10: Assign the synthesizer's HP-IB address to a variable.
20 to 50: Abort any HP-IB activity and initialize the HP-IB interface.
60: Set the synthesizer to its initial state for programming. The *RST state is the same as the PRESET state.
70: Set pulse source to internal.
80: Set pulse trigger source to immediate (non-triggered).
90: Turn pulse modulation on.
100: Enable internal leveling.
110: Set the carrier frequency to 2.3 GHz.
120: Set the output power level to 0 dBm (this is the peak main lobe power level).
130: Set the pulse repetition frequency to 10 kHz.
140: Set the pulse width to 1 μs.
150: Set the pulse delay to zero (no delay).
160: Turn logarithmic amplitude modulation on.
170: Turn the RF output on.
Level Correction Routine, Example Program 14

The following example demonstrates how to gather level correct data externally, then load the collected data into one of the synthesizer level correct tables. Clear and reset the controller and type in the following program:

```
10  Synthesizer=719
20  Power_meter=713
30  ABORT 7
40  LOCAL 7
50  CLEAR Synthesizer
60  REMOTE Synthesizer
70  CLS
80  OUTPUT Synthesizer;"*RST"
90  OUTPUT Power_meter;"*RST"
100 DIM Frequencies(1:401)
110 DIM Losses(1:401)
120 PRINT "CHOOSE THE START FREQUENCY IN GHZ (1.654321 FOR EXAMPLE)"
130 ENTER KBD;Start_freq
140 PRINT "CHOOSE THE STOP FREQUENCY IN GHZ (15.123456 FOR EXAMPLE)"
150 ENTER KBD;Stop_freq
160 PRINT "CHOOSE THE NUMBER OF POINTS (2 TO 401)"
170 ENTER KBD;Points
180 PRINT "CHOOSE THE LEVEL CORRECTION TABLE TO STORE DATA INTO (1 TO 4)"
190 ENTER KBD;Table_num
200 PRINT "CHOOSE THE SYNTHESIZER POWER LEVEL TO USE DURING ";
210 PRINT "THE LEVEL CORRECTION"
220 PRINT "(-3.32 FOR EXAMPLE)"
230 ENTER KBD;Power_level
240 OUTPUT Synthesizer; "POW ";Power_level
250 OUTPUT Power_meter; "FM 32 EN"
260 OUTPUT Power_meter; "TR0"
270 Step_freq=(Stop_freq-Start_freq)/(Points-1)
280 Current_freq=Start_freq
```
290 FOR I=1 TO Points
300 Frequencies(I)=Current_freq
310 OUTPUT Synthesizer; "FREQ ";Current_freq;" GHZ"
320 OUTPUT Power_meter; "FR ";Current_freq;" GZ"
330 OUTPUT Power_meter; "TR2"
340 WAIT 5
350 ENTER Power_meter;Meter_reading
360 Losses(I)=Power_level-Meter_reading
370 Current_freq=Current_freq+Step_freq
380 NEXT I
390 OUTPUT Synthesizer; "MEM:TABLE:SEL FDAT";TRIM$(VAL$(Table_num))
400 !
410 ! Store frequencies
420 !
430 OUTPUT Synthesizer; "MEM:TABLE:FREQ ";
440 FOR I=1 TO Points
450 OUTPUT Synthesizer:Frequencies(I);"GHZ"
460 IF I<Points THEN OUTPUT Synthesizer;" ";
470 NEXT I
480 OUTPUT Synthesizer USING "/"
490 !
500 ! Store losses
510 !
520 OUTPUT Synthesizer; "MEM:TABLE:LOSS ";
530 FOR I=1 TO Points
540 OUTPUT Synthesizer;Losses(I);  
550 IF I<Points THEN OUTPUT Synthesizer;" ";
560 NEXT I
570 OUTPUT Synthesizer USING "/"
580 PRINT "END OF PROGRAM"
590 END

Run the program.

Program Comments
10: Assign the synthesizer’s HP-IB address to a variable.
20: Assign the power meter’s HP-IB address to a variable.
30 to 60: Abort any HP-IB activity and initialize the HP-IB interface.
70: Clear the computer’s display.
80: Set the synthesizer to its initial state for programming.
90: Set the power meter to its initial state for programming.
100: Dimension frequency array.
110: Dimension correction factor array.
120: Print a message on the computer display for entering the start frequency.
130: Enter start frequency into variable Start_freq.
140: Print a message on the computer display for entering the stop frequency.
150: Enter stop frequency into variable Stop_freq.
160: Print a message for entering the number of frequency points to measure.
170: Enter number of measurement points into variable points.
180: Print a message on the computer display for entering the desired correction table number.
190: Enter correction table number into variable Table_num.
200 to 220: Print a message on the computer display for entering the power level.
230: Enter power level into variable Power_level.
240: Set synthesizer’s power level to the entered value.
250: Set number of averages.
260: Set power meter to trigger hold mode.
270: Calculate the frequency step.
280: Set variable Current_freq equal to the start frequency set by variable Start_freq.
300: Store current frequency into the Frequencies array.
310: Set synthesizer to the current frequency.
320: Set power meter frequency to the current frequency.
330: Set power meter to trigger with delay.
340: Wait five seconds for power meter to stabilize.
350: Enter current power meter reading into variable Meter_reading.
360: Store the correction factor into the Losses array.
370: Increment the current frequency to the next frequency point to measure.
390: Select a table for data storage.
430: Command the synthesizer to load the following frequency points into table.
450: Add a frequency point into the table.
460: Add a data separator (comma).
480: Add a line feed.
520: Command the synthesizer to load the following correction factors into table.
540: Add a correction factor into the table.
550: Add a data separator (comma).
570: Add a line feed.
Saving and Recalling States, Example Program 15

The complete front panel state may be saved for later use in non-volatile memories called registers 0 through 9. This can be done remotely as a part of a program. Clear and reset the controller and type in the following program:

10  Synthesizer=719
20  ABORT 7
30  LOCAL 7
40  CLEAR Synthesizer
50  REMOTE Synthesizer
60  CLS
70  OUTPUT Synthesizer;"*RST;FREQ: 4GHZ;POW:LEV -3DBM
   ;OUTP:STAT ON"
80  OUTPUT Synthesizer;"*SAV 1"
90  CLS
100 PRINT "A Synthesizer state has been saved in REGISTER 1."
110 OUTPUT Synthesizer;"*RST;FREQ: CW 1.23456GHZ;POW:LEV -1DBM"
120 OUTPUT Synthesizer;"*SAV 2"
130 PRINT "A CW state has been saved in REGISTER 2."
140 PRINT "..... Press Continue"
150 PAUSE
160 OUTPUT Synthesizer;"*RCL 1"
170 PRINT "Register 1 recalled. Verify Synthesizer output power."
180 PRINT "Press Continue."n
190 PAUSE
200 OUTPUT Synthesizer;"*RCL 2"
210 PRINT "Register 2 recalled."
220 PRINT "Verify Synthesizer is in CW mode."
230 END

Run the program.
Assign the synthesizer's HP-IB address to a variable.

Abort any HP-IB activity and initialize the HP-IB interface.

Clear the computer's display.

Set up a synthesizer state. Note the combination of several commands into a single message. This single line is equivalent to the following lines:

```
OUTPUT Synthesizer;"*RST"
OUTPUT Synthesizer;"FREQ 4GHZ"
OUTPUT Synthesizer;"POW:LEV -3DBM"
OUTPUT Synthesizer;"OUTP:STAT ON"
```

Save this state into storage register 1.

Clear the computer display.

Print a message on the computer display.

Setup the synthesizer for a CW state. Note the combination of several commands into a single message. This single line is equivalent to the following lines:

```
OUTPUT Source;"*RST"
OUTPUT Source;"FREQ:CW 1.23456 GHZ"
OUTPUT Source;"POW:LEV -1DBM"
```

Save this state into storage register 2.

Print a message on the computer display and pause.

Recall the instrument state from register 1.

Print a message on the computer display and pause.

Recall the instrument state from register 2. It should contain the CW state.

Print messages on the computer display.
Related Documents


This standard defines the technical details required to design and build an HP-IB interface (IEEE 488.1). This standard contains electrical specifications and information on protocol that is beyond the needs of most programmers. However, it can be useful to clarify formal definitions of certain terms used in related documents.


This document describes the underlying message formats and data types used in SCPI. It is intended more for instrument firmware engineers than for instrument user/programmers. However, you may find it useful if you need to know the precise definition of certain message formats, data types, or common commands.

**NOTE**

To obtain a copy of either of these documents, write to:

The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, NY 10017 USA


This HP BASIC manual contains a good non-technical description of the HP-IB (IEEE 488.1) interface in Chapter 12, "The HP-IB Interface." Subsequent revisions of HP BASIC may use a slightly different title for this manual or
chapter. This manual is the best reference on instrument I/O for HP BASIC programmers.


This book provides a thorough overview of HP-IB basics for the HP-IB system designer, programmer, or user.

**NOTE**

To obtain a copy of either of these documents, contact the Hewlett-Packard representative listed in your telephone directory.

---

*Standard Commands for Programmable Instruments (SCPI)*

This document defines the Standard Commands for Programmable Instruments (SCPI) Consortium’s SCPI standards.

**NOTE**

To obtain the above document, contact:

SCPI Consortium
8380 Hercules Drive, Suite P3
La Mesa, CA 91942
Phone: (619) 897-8790
FAX: (619) 697-5955
CompuServe: 76516,254

1-70
Programming Commands
Programming Commands

This chapter contains detailed information on all the programming commands used by the synthesizer. The chapter is sub-divided into logical groupings of commands that are tabbed. For example, all programming commands pertaining to automatic level control are contained in one tabbed section. The individual commands are organized alphabetically within each section. The remainder of this chapter introduction contains information that pertains to all programming commands. The programming command entries begin with the tab labeled “Automatic Level Control Commands” and end with the tab labeled “Status Register Commands.”
Command Syntax

Following the heading for each programming command entry is a syntax statement showing the proper syntax for the command. An example syntax statement is shown below:

```
[SOURce[1]:]POWer[:LEVEL][:IMMediate][:AMPLitude]
    incr
    STEP[:INCrement]
        MAXimum
        MINimum
        DEFault
```

Syntax statements read from left to right and top to bottom. In the above example, the "STEP" portion of the statement immediately follows the "[:AMPLitude]" portion of the statement with no separating space. A separating space is legal only between the command and its argument. In the above example, the portion following the "[:INCrement]" portion of the statement is the argument. Additional conventions used in the syntax statements are defined as follows:

- **italics** are used to symbolize a program code parameter or query response.
- ::= means "is defined as".
- | (vertical bar) indicates a choice of one element from a list. For example, <A> | <B> indicates <A> or <B> but not both.
- ... (an ellipsis) is used to indicate that the preceding element may be repeated one or more times.
- [ ] (square brackets) indicate that the enclosed items are optional.
- { } (braces) indicate that one and only one of the enclosed elements must be selected.
- Uppercase lettering (**FREQuency**) indicates that the uppercase portion of the command is the minimum required for the command.
- Lowercase lettering (**FREQuency**) indicates that the lowercase portion of the command is optional; it can either be included with the upper-case portion of the command or omitted.
Programming Commands
Automatic Level Control Commands
Automatic Level Control Commands

This sub-chapter contains detailed information on all programming commands pertaining to automatic level control.
[SOURce[1]:] POWer: ALC: PMETer

[SOURce[1]:] POWer: ALC: PMETer[:LEVEL][:AMPLitude]

meter

MAXimum

MINimum

UP

DOWN

DEFault

The "[SOURce[1]:] POWer: ALC: PMETer" command is used to enter the initial reading of the external power meter to the synthesizer for use during external power meter leveling.

The parameters are as follows:

meter

Enters the initial reading of the external power meter to the synthesizer. The allowable range for the parameter is −120 dBm (−100 dBm for HP 83731A/32A) to +30 dBm when Option 1E1 is installed or −15 dBm to +30 dBm if Option 1E1 is not installed.

MAXimum

Sets the initial power meter reading to its maximum allowable value.

MINimum

Sets the initial power meter reading to its minimum allowable value.

UP

Increases the entered initial power meter reading by the current increment value.

DOWN

Decreases the entered initial power meter reading by the current increment value.

DEFault

Sets the initial power meter reading to its default (preset) value.

The power meter reading set with the "[SOURce[1]:] POWer: ALC: PMETer" command allows the synthesizer to calculate the value of the voltage present at the power meter recorder output connector.
Automatic Level Control Commands

[SOURce[1];]POWer:ALC:PMETer

If an initial power meter reading is entered that is outside of its allowable range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the parameter is 0 dBm.

---

Query Syntax

```
[SOURce[1];]POWer:ALC:PMETer[:LEVEL][:AMPLitude]? 
[MAximum] 
[MINimum] 
[DEFault]
```

Returned format:

```
$pmeter<$NL>
```

Where:

- $pmeter$ ::= The current entered initial power meter reading if no argument is specified.
- $pmeter$ ::= The maximum initial power meter reading that can be set if the MAXimum argument is specified.
- $pmeter$ ::= The minimum initial power meter reading that can be set if the MINimum argument is specified.
- $pmeter$ ::= The default (preset) initial power meter reading if the DEFault argument is specified.

---

See Also

```
[SOURce[1];]POWer:ALC:PMETer:STEP
[SOURce[1];]POWer:ALC:SOURce
UNIT:POWer:VOLlage
```

2a-4
[SOURce[1]:]POWer:ALC:PMETer:STEP

[SOURce[1]:]POWer:ALC:PMETer[:LEVEL]:STEP[:INCrement]

\{ incr
   MAXimum
   MINimum
   DEFault \}

The "[SOURce[1]:]POWer:ALC:PMETer:STEP" command selects the increment value for the entered initial power meter reading.

The parameters are as follows:

- **incr**: Sets the increment value for the initial power meter reading. The allowable range for the parameter is 0.01 dB to 130 dB when Option 1E1 is installed or 0.01 dB to 45 dB if Option 1E1 is not installed.
- **MAXimum**: Sets the increment value for the initial power meter reading to its maximum allowable value.
- **MINimum**: Sets the increment value for the initial power meter reading to its minimum allowable value.
- **DEFault**: Sets the increment value for the initial power meter reading to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]POWer:ALC:PMETer" command, the initial power meter reading will be increased or decreased by a step size set with the "[SOURce[1]:]POWer:ALC:PMETer:STEP" command.

Numeric power meter reading increment value entries have a resolution of 0.01 dB.

If an initial power meter reading increment value entry is made that is not within the allowable parameter range, an error message will be generated and it will be set to either its maximum or minimum limit. The preset value for the initial power meter reading increment value is 1 dB.
Query Syntax

[SOURce[1]:]POWer:ALC:PMETer[:LEVEL]:STEP[:INCREMENT]

[ MAXimum ]
[ MINimum ]
[ DEFault ]

Returned format:

incr<NL>

Where:

- \( \text{incr} ::= \) The current power meter reading increment value if no argument is specified.
- \( \text{incr} ::= \) The maximum power meter reading increment value that can be set if the MAXimum argument is specified.
- \( \text{incr} ::= \) The minimum power meter reading increment value that can be set if the MINimum argument is specified.
- \( \text{incr} ::= \) The default (preset) power meter reading increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer:ALC:PMETer
UNIT:POWer:VOLTage
The "[SOURce[1]:]POWer:ALC:SOURce" command selects the type of leveling for output power automatic level control.

The parameters are as follows:

- INTernal: Selects internal leveling.
- DIODe: Selects external diode detector leveling.
- PMETer: Selects external power meter leveling.

The (EXT DIODE) (diode detector leveling), (EXT METER) (power meter leveling), and INT LEVEL (internal leveling) entries in Chapter 6 of the HP 83731B/32B Synthesized Signal Generators User's Guide and HP 83731A/32A Synthesized Signal Generators User's Guide provide detailed information on the type of leveling you select.

When the synthesizer is set to the preset state, internal leveling is selected.

---

Query Syntax

[SOURce[1]:]POWer:ALC:SOURce?

Returned format:

data<NL>

Where:

- *source* ::= "INT" if internal leveling is currently selected.
- *source* ::= "DIO" if external diode detector leveling is currently selected.
- *source* ::= "PMET" if external power meter leveling is currently selected.
See Also

[EXT_DIODE]
[EXT_METER]
[INT_LEVEL]
[SOURce[1]:]POWer:ALC:PMeter
[SOURce[1]:]POWer[:LEVel]
To Use External Diode Detector Leveling
To Use External Power Meter Leveling
Carrier Commands
Carrier Commands

This sub-chapter contains detailed information on all programming commands pertaining to carrier control.
[SOURce[1]:]FREQuency[:CW]:FIXed

[SOURce[1]:]FREQuency[:CW]:FIXed

\{\text{freq}\}
\{\text{MAXimum}\}
\{\text{MINimum}\}
\{\text{UP}\}
\{\text{DOWN}\}
\{\text{DEFAULT}\}

The "[SOURce[1]:]FREQuency[:CW]:FIXed" command sets the output frequency of the synthesizer.

The parameters are as follows:

\textit{freq} Sets the synthesizer output frequency.

\textit{MAXimum} Sets the synthesizer output frequency to the maximum allowable value.

\textit{MINimum} Sets the synthesizer output frequency to the minimum allowable value.

\textit{UP} Increases the synthesizer output frequency by the current output frequency increment value.

\textit{DOWN} Decreases the synthesizer output frequency by the current output frequency increment value.

\textit{DEFAULT} Sets the synthesizer output frequency to its default (preset) value.

The frequency entered is the CW frequency if no modulation is chosen, or the carrier frequency of any modulation type that is chosen. The preset value for the frequency parameter is 3 GHz.

The allowable range for the frequency parameter is 1.0 GHz to 20 GHz for the HP 83731A/31B or 0.01 GHz to 20 GHz for the HP 83732A/32B. If a frequency parameter entry is made that is outside the allowable range, an error message will be generated and the actual frequency will be set to either its upper or lower limit. Frequency resolution is 1 kHz. If Option 1B8 is installed, frequency resolution is 1 Hz.
Carrier Commands
[SOURce[1]:]FREQuency[:CW]:FIXed

Query Syntax

[SOURce[1]:]FREQuency[:CW]:FIXed]? [MAXimum] MINimum [DEFault]

Returned format:
.freq<NL>

Where:
- .freq ::= The current output frequency if no argument is specified.
- .freq ::= The maximum output frequency that can be set if the MAXimum argument is specified.
- .freq ::= The minimum output frequency that can be set if the MINimum argument is specified.
- .freq ::= The default (preset) output frequency if the DEFault argument is specified.

See Also

[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP
[SOURce[1]:]FREQuency:MULTiplier
UNIT:FREQuency

2b-4
[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP

[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP[:INCrement]

\( \text{incr} \)
\{ \text{MAXimum} \}
\{ \text{MINimum} \}
\text{DEFault}

The "[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP" command selects the increment value for the synthesizer output frequency.

The parameters are as follows:

\( \text{incr} \) Sets the increment value for output frequency. The allowable range (without Option 1E8) for the parameter is 1 kHz to 19.99 GHz. If Option 1E8 is installed, the allowable range for the parameter is 1 Hz to 19.99 GHz.

MAXimum Sets the output frequency increment value to its maximum allowable value.

MINimum Sets the output frequency increment value to its minimum allowable value.

DEFault Sets the output frequency increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]FREQuency[:CW]:FIXed]" command, the output frequency will be increased or decreased by the step size set with the "[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP" command.

If an output frequency increment value entry is made that is not within the allowable parameter range, an error message will be generated and the incremental value will be set to either its maximum or minimum limit. The preset value for the output frequency increment value is 100 MHz.
Query Syntax

\[
[SOURce[1]:]FREQuency[:CW]:FIXed]:STEP[:INCrement]?
\]

Returned format:

\[incr\]<NL>

Where:

- \(incr\) := The current output frequency increment value if no argument is specified.
- \(incr\) := The maximum output frequency increment value that can be set if the MAXimum argument is specified.
- \(incr\) := The minimum output frequency increment value that can be set if the MINimum argument is specified.
- \(incr\) := The default (preset) output frequency increment value if the DEFAULT argument is specified.

See Also

\[SOURce[1]:]FREQuency[:CW]:FIXed\]
UNIT:FREQuency
[SOURce[1]:]FREQuency:MULTiplier

\[
[SOURce[1]:]FREQuency:MULTiplier\]

\[
\{\begin{align*}
mult \\
MAXimum \\
MINimum \\
UP \\
DOWN \\
DEFault
\end{align*}\}
\]

The "[SOURce[1]:]FREQuency:MULTiplier" command sets the multiplier value so that the synthesizer display will indicate the frequency at the output of an external frequency multiplier.

The parameters are as follows:

- **mult**: Sets the multiplier value. The allowable range for the parameter is 1 to 100.
- **MAXimum**: Sets the multiplier value to its maximum allowable value.
- **MINimum**: Sets the multiplier value to its minimum allowable value.
- **UP**: Increases the multiplier value by the current multiplier value increment value.
- **DOWN**: Decreases the multiplier value by the current multiplier value increment value.
- **DEFault**: Sets the multiplier value to its default (preset) value.

If a frequency multiplier value is entered that is out of range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the multiplier value is 1.

Entering a frequency multiplier value is useful when an output frequency will be generated with external multiplier equipment. Setting the multiplier value scales the display so that the frequency shown on the display will be the frequency at the output of the external frequency multiplier, not at the synthesizer RF OUTPUT connector.

When the multiplier function is being used and you enter a frequency parameter value with the "[SOURce[1]:]FREQuency:[CW]:FIXed" command,
be aware that the entered frequency divided by the multiplier value (the frequency before multiplication) has a minimum resolution of 1 kHz. As an example, assume a multiplier value of 2 has been entered and you attempt to enter a frequency of 4,000,001,000 Hz. The actual frequency that the synthesizer would need to generate would be 2,000,000,500 Hz. The synthesizer, however, can not output this signal because the standard specified resolution is 1 kHz. In this case, the actual output frequency would be rounded to 2,000,001,000 Hz and the display would show 4,000,002,000 Hz.

Query Syntax

[SOURce[1]:]FREQuency:MUlTiplier? [MAXimum] [MINimum] [DEFault]

Returned format:

mul<NL>

Where:

- mul ::= The current multiplier value if no argument is specified.
- mul ::= The maximum multiplier value that can be set if the MAXimum argument is specified.
- mul ::= The minimum multiplier value that can be set if the MINimum argument is specified.
- mul ::= The default (preset) multiplier value if the DEFault argument is specified.
See Also

[SOURce[1]:]FREQuency[:CW]:FIXed
[SOURce[1]:]FREQuency:MULTiplier:STEP
To Generate Millimeter Signals
[SOURce[1]:]FREQuency:MULTiplier:STEP

 incr
 MAXimum
 MINimum
 DEFault

The "[SOURce[1]:]FREQuency:MULTiplier:STEP" command selects the increment value for the external frequency multiplier value.

The parameters are as follows:

* incr*  Sets the multiplier increment value. The allowable range for the parameter is 1 to 99.

* MAXimum*  Sets the multiplier increment value to its maximum allowable value.

* MINimum*  Sets the multiplier increment value to its minimum allowable value.

* DEFault*  Sets the multiplier increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]FREQuency:MULTiplier" command, the multiplier value will be increased or decreased by a step size set with the "[SOURce[1]:]FREQuency:MULTiplier:STEP" command.

If a multiplier increment value entry is made that is not within its allowable parameter range, an error message will be generated and it will be set to either its maximum or minimum limit. The preset value for the multiplier increment value is 1.
Query Syntax

[SOURce[1]:]FREQuency:MULTiplier:STEP[:INCrement]?

[MAXimum]

[MINimum]

[DEFault]

Returned format:

incr<NL>

Where:

- incr ::= The current multiplier increment value if no argument is specified.
- incr ::= The maximum multiplier increment value that can be set if the MAXimum argument is specified.
- incr ::= The minimum multiplier increment value that can be set if the MINimum argument is specified.
- incr ::= The default (preset) multiplier increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FREQuency:MULTiplier
Carrier Commands
2c

Instrument Information
Commands
Instrument Information Commands

This sub-chapter contains detailed information on all programming commands pertaining to instrument-specific information.
*IDN? (Identification Query)

*IDN?
The "*IDN?" query returns a string that contains the instrument model number, serial number, and firmware revision number.

When the "*IDN?" query is received by the instrument, it returns the following string:

HEWLETT-PACKARD, 8373XX, ser no, REVXX.Y

Where 8373XX is the instrument model number (HP 83731A, HP 83731B, HP 83732A, or HP 83732B), ser no is the instrument serial number, and XX.Y is the firmware revision number.

Note that "*IDN?" should always be the last query in a command line.
*OPT? (Option Identification Query)

*OPT?
The "*OPT?" query returns a list of the synthesizer option numbers.

In response to the "*OPT?" query, the synthesizer will return a string in the following form:

option#1,option#2,option#3,....option#n,

The possible synthesizer options returned with this command are shown in the following table. If the synthesizer contains none of the options stated in the following table, "0" will be returned.

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E1</td>
<td>Add step attenuator.</td>
</tr>
<tr>
<td>1E2</td>
<td>Add internal AM and FM/φM sources.</td>
</tr>
<tr>
<td>1E5</td>
<td>Add high stability timebase.</td>
</tr>
<tr>
<td>1E9</td>
<td>Add 1 Hz Frequency Resolution.</td>
</tr>
<tr>
<td>1E9</td>
<td>3.5 mm RF Output connector.</td>
</tr>
<tr>
<td>800</td>
<td>Add phase modulation.</td>
</tr>
</tbody>
</table>
OUTPut:IMPedance?

The "OUTPut:IMPedance?" query returns the output impedance of the synthesizer RF OUTPUT connector.

---

**NOTE**
The synthesizer output impedance is not selectable, therefore, "+5.0000000000000E+001" will always be returned in response to this query. This query is provided for SCPI compatibility.

When the "OUTPut:IMPedance?" query is sent, the following is returned:

`imp<NL>`

Where:

- `imp ::=` The current output impedance if no argument is specified. In this version of the synthesizer, "+5.0000000000000E+001" will always be returned.
- `imp ::=` The maximum output impedance that can be obtained when the MAXimum argument is specified. In this version of the synthesizer, "+5.0000000000000E+001" will always be returned.
- `imp ::=` The minimum output impedance that can be obtained when the MINimum argument is specified. In this version of the synthesizer, "+5.0000000000000E+001" will always be returned.
- `imp ::=` The default (preset) output impedance if the DEFault argument is specified. In this version of the synthesizer, "+5.0000000000000E+001" will always be returned.
[SOURce[1]:]ROSCillator:SOURce?

The "[SOURce[1]:]ROSCillator:SOURce?" query returns the source of the synthesizer timebase reference.

When the "[SOURce[1]:]ROSCillator:SOURce?" query is sent, the following is returned:

Sour

Where:

- **Sour** ::= "INT" if the synthesizer internal timebase reference is currently in use.
- **Sour** ::= "EXT" if an external timebase reference is currently in use.

The synthesizer timebase is automatically switched to external if a signal greater than 0 dBm is applied to the 10 MHz IN BNC connector.

See Also

Connectors
SYSTem:ERRor?

SYSTem:ERRor?
The “SYSTem:ERRor?” query returns the oldest uncleared error number and error description from the synthesizer HP-IB error queue.

**NOTE**
The HP-IB error queue is separate from the front panel error queue (that is read by pressing the MSG key). Reading and clearing the HP-IB error queue has no effect on the front panel error queue.

When an error is read, it is cleared as long as the error condition no longer exists.

When the “SYSTem:ERRor?” query is sent, only the oldest unread error in the HP-IB error queue will be returned.

**NOTE**
The list of error messages in Chapter 3 is organized in ascending error number order. Use the error number enclosed in parentheses when looking up the error condition in Chapter 3.

The HP-IB error queue can contain a maximum of 16 error messages. If the HP-IB error queue overflows, the 16th error in the queue will be replaced with -350,"Queue overflow". If the queue is empty, the message 0,"No error" will be returned.
NOTE
The HP-IB error queue returns the oldest error message when queried. Preset has no effect on the
HP-IB error queue; it is only cleared at power up, by sending the "CLS" command, or by reading its
entire contents.

See Also

*CLS
Error Messages
SYSTem:VERSion?

The "SYSTem:VERSion?" query returns the SCPI (Standard Commands for Programmable Instruments) version number that the synthesizer supports.

When the "SYSTem:VERSion?" query is sent, the following is returned:

`vers<NL>

Where:

- `vers ::=` The SCPI version number currently supported by the synthesizer.
*TST? (Self-Test Query)

*TST?
The “*TST?” query causes the instrument to perform a self-test.

No external equipment is required to run the instrument self-test. Prior to running the self-test, disconnect any equipment that is connected to the RF OUTPUT as the synthesizer might generate high output power during the self-test. When the self-test is complete, the synthesizer is set to the preset state.

The result of the instrument self-test will be placed in the output queue. A 0 indicates that the test passed and a non-zero value indicates that one or more of the self-test segments failed.
2d. Instrument State Commands
Instrument State Commands
Instrument State Commands

This sub-chapter contains detailed information on all programming commands pertaining to the state of the synthesizer.
*LRN? (Learn Device Setup Query)

*LRN?
The "*LRN?" query returns an HP-IB command that contains the current state of the synthesizer.

The information returned in response to the "*LRN?" query can be stored in a string variable in computer memory. When the string is issued to the synthesizer, the instrument settings are changed back to the state when the "*LRN?" query was executed.

The instrument settings captured by executing the "*LRN?" query include everything that is saved by executing the "*SAV" command. This includes user settings, including any active user special functions (and everything else affected by sending the "*RST" command).

NOTE
The instrument will not return the contents of the save/recall registers in response to executing the "*LRN?" query, nor the user flatness correction arrays.

The *LRN? response may have any ASCII character including "LF", so you must use the "USING" option of the "ENTER" BASIC command to cause the array variable to fill up until a <LF><EOI> sequence occurs.
See Also

*RCL
*RST
*SAV
MEMory:RAM:INITialize

MEMory:RAM:INITialize[:ALL]
The "MEMory:RAM:INITialize" command clears all of the synthesizer Random Access Memory (RAM).

When the "MEMory:RAM:INITialize" command is sent, all user settings are set to the preset state, save/recall registers are erased, and level correction data is cleared. Sending the "MEMory:RAM:INITialize" command does not clear factory calibration data stored in the instrument EEPROM. This command is useful when removing the synthesizer from a secure area as the setup history of the synthesizer will be erased.

See Also

ERASE MEMORY
*RST
SYSTem:PRESet
*RCL (Recall Command)

*RCL register

The "*RCL" command allows you to recall a previously stored instrument state from one of ten register locations.

The parameter is as follows:

\[ \text{register} \]

The number of the register where the desired instrument state has been stored. The number must be an integer from 0 to 9.

If you attempt to recall an instrument state from a register location to which an instrument state had not been previously saved, the preset state is recalled.

Instrument state registers are located in battery-backed RAM.

See Also

*SAV
*RST (Reset Command)

*RST

The "*RST" command sets the synthesizer to its initial state for programming.

The "*RST" (reset) conditions are shown in the following table:
### Table 2d-1. PRESET Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>:AM:DEPTh</td>
<td>6dB</td>
<td>:PM:SOURce</td>
<td>EXT</td>
</tr>
<tr>
<td>:AM:SENSitivity</td>
<td>-10 dB/Volt</td>
<td>:PM:SENSitivity</td>
<td>Tred/Volt</td>
</tr>
<tr>
<td>:AM:STATe</td>
<td>OFF</td>
<td>:PM:COUPling</td>
<td>AC</td>
</tr>
<tr>
<td>:AM:SOURce</td>
<td>EXT</td>
<td>:PD:WE:LEVel</td>
<td>0 dBm</td>
</tr>
<tr>
<td>:AM:INternal:FUNC</td>
<td>SIN</td>
<td>:PD:WE:ALC:PMETER:LEVel</td>
<td>0 dBm</td>
</tr>
<tr>
<td>:AM:INternal:FREQuency</td>
<td>5 kHz</td>
<td>:PD:WE:ATmuation:AUTO</td>
<td>ON</td>
</tr>
<tr>
<td>:CORrection:STATe</td>
<td>OFF</td>
<td>:PD:WE:PROtection:STATe</td>
<td>OFF</td>
</tr>
<tr>
<td>:CORrection:SE:Select</td>
<td>FDAT1</td>
<td>:PULM:SOURce</td>
<td>EXT</td>
</tr>
<tr>
<td>:CORrection:SE:STATe</td>
<td>OFF</td>
<td>:PULM:STATe</td>
<td>OFF</td>
</tr>
<tr>
<td>:DISPlay:WINDOW:STATe</td>
<td>ON</td>
<td>:PULM:EXTernal:POLarity</td>
<td>NORM</td>
</tr>
<tr>
<td>:FM:DEVision</td>
<td>1 MHz</td>
<td>:PULS:DELay</td>
<td>1 µs</td>
</tr>
<tr>
<td>:FM:STATe</td>
<td>OFF</td>
<td>:PULS:FREQuency</td>
<td>10 kHz</td>
</tr>
<tr>
<td>:FM:SOURce</td>
<td>EXT</td>
<td>:PULS:PERiod</td>
<td>100 µs</td>
</tr>
<tr>
<td>:FM:COUPling</td>
<td>AC</td>
<td>:PULS:DUPLe:STATe</td>
<td>OFF</td>
</tr>
<tr>
<td>:FM:SENSitivity</td>
<td>5 MHz/Volt</td>
<td>:PULS:TRANsition:LEADING</td>
<td>FAST</td>
</tr>
<tr>
<td>:FM:INternal:FUNC</td>
<td>SIN</td>
<td>:PULS:TRANsition:STATe</td>
<td>OFF</td>
</tr>
<tr>
<td>:FM:INternal:FREQuency</td>
<td>100 kHz</td>
<td>:PULS:TRANsition:TRAling</td>
<td>FAST</td>
</tr>
<tr>
<td>:FREQuency:CM</td>
<td>3 GHz</td>
<td>:PULS:WIDch</td>
<td>10 µs</td>
</tr>
<tr>
<td>:FREQuency:MULtiplier</td>
<td>1</td>
<td>:SYST:COMMunicat:GPIB:ADDres</td>
<td>10²</td>
</tr>
<tr>
<td>:MODulation:OVDR</td>
<td>OFF</td>
<td>:SYST:LANGuage</td>
<td>*SCPI</td>
</tr>
<tr>
<td>:OUTPut:STATe</td>
<td>ON</td>
<td>:TRIG:SEQUence:SOURce</td>
<td>IMM</td>
</tr>
<tr>
<td>:OUTPut:PROtection:STATe</td>
<td>ON</td>
<td>:TRIG:SEQ2:SOURce</td>
<td>IMM</td>
</tr>
<tr>
<td>:PM:DEViation</td>
<td>3 rad⁻¹</td>
<td>:TRIG:SEQ2:SLPe</td>
<td>NEG</td>
</tr>
<tr>
<td>:PM:INternal:FUNC</td>
<td>SIN</td>
<td>:UNIT:FREQuency</td>
<td>HZ</td>
</tr>
<tr>
<td>:PM:INternal:FREQuency</td>
<td>10 kHz¹</td>
<td>:UNIT:POWer</td>
<td>DBM</td>
</tr>
<tr>
<td>:PM:RANGe</td>
<td>AUTO¹</td>
<td>:UNIT:TIME</td>
<td>S</td>
</tr>
<tr>
<td>:PM:STATe</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Only available on HP 83731B/32B.
2. When Option 1E1 is installed, the preset power is —90 dBm for HP 83731A/32A instruments, and —110 dBm for HP 83731B/32B instruments.
3. Do not change with preset. These are the default values when RAM is lost.
See Also

SYSTEM:PRESet
*SAV (Save Command)

*SAV register

The "*SAV" command allows you to save the instrument state in one of ten register locations.

The parameter is as follows:

register The number of the register where the instrument state is to be stored. The number must be an integer from 0 to 9.

All user settings that are affected by preset will be saved. Level correction tables will not be saved.

Saving the instrument state to a given register location will write over any instrument state previously stored in that register.

Instrument state registers are located in battery-backed RAM.

See Also

*RCL

2d-10
SYSTem:PRESet

The "SYSTem:PRESet" command sets the synthesizer to the preset state.

The "SYSTem:PRESet" (preset) conditions are identical to those of the *RST command.
### Table 2d-2. PRESet Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Condition</th>
<th>Parameter</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>:AM:DEPTH</td>
<td>8 dB</td>
<td>:PM:SOURce</td>
<td>EXT,</td>
</tr>
<tr>
<td>:AM:SENSivity</td>
<td>-10 dB/Volt</td>
<td>:PM:SENSivity</td>
<td>1 red/Volt(^1)</td>
</tr>
<tr>
<td>:AM:STATE</td>
<td>OFF</td>
<td>:PM:COUPling</td>
<td>AC(^1)</td>
</tr>
<tr>
<td>:AM:SOURce</td>
<td>EXT</td>
<td>:POWER:LEVel</td>
<td>0 dBm(^2)</td>
</tr>
<tr>
<td>:AM:TYPE</td>
<td>EXP</td>
<td>:POWER:AC:SOURce</td>
<td>INT</td>
</tr>
<tr>
<td>:AM:INInternal:FUNC</td>
<td>SIN(^1)</td>
<td>:POWER:AC:PMETer:LEVel</td>
<td>ON</td>
</tr>
<tr>
<td>:AM:INInternal:FREQuency</td>
<td>5 kHz</td>
<td>:POWER:ATTenuation:AUTO</td>
<td>OFF</td>
</tr>
<tr>
<td>:CORection:STATE</td>
<td>OFF</td>
<td>:PULM:SOURce</td>
<td>EXT</td>
</tr>
<tr>
<td>:CORection:SSet:SELECT</td>
<td>FDAT1</td>
<td>:PULM:STATE</td>
<td>OFF</td>
</tr>
<tr>
<td>:DISPlay:WINDow:STATE</td>
<td>ON</td>
<td>:PULM:EXternal:POLarity</td>
<td>NORM</td>
</tr>
<tr>
<td>:FM:DEVIation</td>
<td>1 MHz</td>
<td>:PULS:eDELay</td>
<td>1 µs</td>
</tr>
<tr>
<td>:FM:STATE</td>
<td>OFF</td>
<td>:PULS:eFREQuency</td>
<td>10 kHz</td>
</tr>
<tr>
<td>:FM:SOURce</td>
<td>EXT</td>
<td>:PULS:ePERiod</td>
<td>100 µs</td>
</tr>
<tr>
<td>:FM:COUPling</td>
<td>AC</td>
<td>:PULS:eDOUble:STATE</td>
<td>OFF</td>
</tr>
<tr>
<td>:FM:SENSitivity</td>
<td>5 MHz/Volt</td>
<td>:PULS:eTRANsition:LEAding</td>
<td>FAST</td>
</tr>
<tr>
<td>:FM:INInternal:FUNC</td>
<td>SIN(^1)</td>
<td>:PULS:eTRANsition:STAted</td>
<td>OFF</td>
</tr>
<tr>
<td>:FM:INInternal:FREQuency</td>
<td>100 kHz</td>
<td>:PULS:eTRANsition:TRAiling</td>
<td>FAST</td>
</tr>
<tr>
<td>:FREQuency:CW</td>
<td>3 GHz</td>
<td>:PULS:eWIdth</td>
<td>10 µs</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier</td>
<td>1</td>
<td>:SYS:tem:COMMunicate:GPIB:ADDress</td>
<td>19(^3)</td>
</tr>
<tr>
<td>:MULtiplex:ODVR</td>
<td>OFF(^3)</td>
<td>:SYS:tem:LANGuage</td>
<td>^SCCP(^3)</td>
</tr>
<tr>
<td>:OUTPut:STATE</td>
<td>ON</td>
<td>:TRIGger:SEQ:USe:SOURce</td>
<td>IMM</td>
</tr>
<tr>
<td>:OUTPut:PROtection:STATE</td>
<td>ON</td>
<td>:TRIGger:SEQ2:SOURce</td>
<td>IMM</td>
</tr>
<tr>
<td>:PM:DEVIation</td>
<td>3 rads(^1)</td>
<td>:TRIGger:SEQ2:SDLPe</td>
<td>HZ</td>
</tr>
<tr>
<td>:PM:INInternal:FUNC</td>
<td>SIN(^1)</td>
<td>:UNIT:FREQuency</td>
<td>DBM</td>
</tr>
<tr>
<td>:PM:INInternal:FREQuency</td>
<td>10 kHz(^1)</td>
<td>:UNIT:POWer</td>
<td>S</td>
</tr>
<tr>
<td>:PM:RANGE</td>
<td>AUTO(^1)</td>
<td>:UNIT:TIME</td>
<td></td>
</tr>
<tr>
<td>:PM:STATE</td>
<td>OFF(^1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Only available on HP 83731B/32B.
2 When Option 1E1 is installed, the preset power is —90 dBm for HP 83731A/32A instruments, and —110 dBm for HP 83731B/32B instruments.
3 Do not change with preset. These are the default values when RAM is lost.
See Also

*RST
Instrument State Commands
Level Correction Commands

This sub-chapter contains detailed information on all programming commands pertaining to level correction.
MEMory:CATalog[:ALL]?

MEMory:CATalog[:ALL]?
The “MEMory:CATalog[:ALL]?” query lists all level correction tables.

This command always returns the following:
1604,0, "FDAT1, TABLE, 401", "FDAT2, TABLE, 401", "FDAT3, TABLE, 401", "FDAT4, TABLE, 401".

See Also

MEMory:CATalog:TABLE?
MEMory:CATalog:TABLE?

The "MEMory:CATalog:TABLE?" query lists all level correction tables.

This command always returns the following:
1604,0, "FDAT1, TABLE, 401", "FDAT2, TABLE, 401", "FDAT3, TABLE, 401", "FDAT4, TABLE, 401".

See Also

MEMory:CATalog[:ALL]?
**MEMory:TABLE:FREQuency**

\[
\text{MEMory:TABLE:FREQuency} \{ \text{freq, freq, freq...freq} \}
\]

The “MEMory:TABLE:FREQuency” command is used to load the frequency points into the level correct table selected using the “MEMory:TABLE:SELect” command.

The parameter is as follows:

- **freq**
  
  The frequency points that make up the frequency portion of a level correct table. Each “freq” parameter can be a numeric value or one of two optional parameters. These are explained further below:

  - If the “freq” parameter is a numeric value, the parameter range is 1 GHz to 20 GHz for the HP 83731A/31B and 0.01 GHz to 20 GHz for the HP 83732A/32B.
  - If the “freq” parameter is replaced with MAXimum, that frequency element of the level correct table will be set to its maximum allowable value.
  - If the “freq” parameter is replaced with MINimum, that frequency element of the level correct table will be set to its minimum allowable value.

The string of frequency points must be separated by commas and can be from 2 to 401 frequency points long. If the string of frequency points is not in ascending order, an error message is generated and the string of frequency points is rejected (the previous frequency points in the table are unaffected).

If a frequency point entry is made that is not within its allowable range, an error message will be generated and the parameter will be set to either its upper or lower limit. The resolution for all frequency points is 1 kHz. All tables are preset at the factory with no frequency points loaded. Once loaded with frequency points, pressing the [PRESET] key has no effect on frequency points loaded into the tables.
Level Correction Commands

MEMory:TABLE:FREQuency

NOTE
The total number of frequency points loaded using this command must be identical to the number of correction factors loaded with the "MEMory:TABLE:LOSS:MAGNitude" command. If they aren't identical, an error message will be generated when you try to use the table to correct power at the RF OUTPUT connector.

Query Syntax

MEMory:TABLE:FREQuency? [MAXimum] [MINimum]

Returned format:

fdata<NL>

Where:

- fdata ::= The string of frequency points (separated by commas) that are currently loaded in the table selected with the "MEMory:TABLE:SELect" command if no argument is used.
- fdata ::= The maximum allowable frequency value for any frequency point if the MAXimum argument is specified.
- fdata ::= The minimum allowable frequency value for any frequency point if the MINimum argument is specified.

2e-6
See Also

MEMory:TABLE:FREQuency:POINts?
MEMory:TABLE:LOSS[:MAGnitude]
MEMory:TABLE:LOSS[:MAGnitude]:POINts?
MEMory:TABLE:SELECT
To Use the Level Correct Routine
MEMory:TABLE:FRQency:POINts?

MEMory:TABLE:FRQency:POINts? [MAXimum] [MINimum]

The "MEMory:TABLE:FRQency:POINts?" query returns the number of frequency points loaded into the level correct table currently selected using the "MEMory:TABLE:SELECT" command.

When the "MEMory:TABLE:FRQency:POINts?" query is sent, the following is returned:

poin<NL>

Where:

- poin := The number of frequency points currently loaded into the selected level correct table if no argument is specified.
- poin := The maximum number of frequency points that can be loaded into a table when the MAXimum argument is specified.
- poin := The minimum number of frequency points that can be loaded into a table when the MINimum argument is specified.

See Also

MEMory:TABLE:FRQency
MEMory:TABLE:SELECT
To Use the Level Correct Routine

2e-8
MEMory:TABLE:LOSS[:MAGNitude]

MEMory:TABLE:LOSS[:MAGNitude] \{ cf, cf, cf, ... cf \}
\{ MAXimum \}
\{ MINimum \}

The "MEMory:TABLE:LOSS[:MAGNitude]" command is used to load the correction factors into the level correct table selected using the "MEMory:TABLE:SELect" command.

The parameter is as follows:

- **cf**
  - The correction factors that make up the correction factor portion of a level correct table. Each "cf" parameter can be a numeric value or one of two optional parameters. These are explained further below:
    - If the "cf" parameter is a numeric value, the parameter range is -40 dB to +40 dB.
    - If the "cf" parameter is replaced with MAXimum, that correction factor element of the level correct table will be set to its maximum allowable value.
    - If the "cf" parameter is replaced with MINimum, that correction factor element of the level correct table will be set to its minimum allowable value.

The string of correction factors must be separated by commas and can be from 2 to 401 correction factors long.

If a correction factor entry is made that is not within its allowable range, an error message will be generated and the parameter will be set to either its upper or lower limit. The resolution for all correction factors is 0.01 dB. All tables are preset at the factory with no correction factors loaded. Once loaded with correction factors, pressing the [PRESET] key has no effect on correction factors loaded into the tables.
Level Correction Commands

MEMory:TABLE:LOSS[:MAGNitude]

**NOTE**
The total number of correction factors loaded using this command must be identical to the number of frequency points loaded with the "MEMory:TABLE: FREQuency" command. If they aren't identical, an error message will be generated when you try to use the table to correct power at the RF OUTPUT connector.

---

Query Syntax

MEMory:TABLE:LOSS[:MAGNitude]? [MAXimum] [MINimum]

Returned format:

cfdata<NL>

Where:

- `cfdata ::= The string of correction factors (separated by commas) that are currently loaded in the table selected with the "MEMory:TABLE:SELect" command if no argument is used.
- `cfdata ::= The maximum allowable decibel value for any correction factor if the MAXimum argument is specified.
- `cfdata ::= The minimum allowable decibel value for any correction factor if the MINimum argument is specified.
See Also

MEMory:TABLE:FREQuency
MEMory:TABLE:FREQuency:POINts?
MEMory:TABLE:LOSS[:MAGNitude]:POINts?
MEMory:TABLE:SELECT
To Use the Level Correct Routine
MEMory:TABLE:LOSS[:MAGNitude]:POINts?

MEMory:TABLE:LOSS[:MAGNitude]:POINts? [MAXimum]
[MINimum]

The "MEMory:TABLE:LOSS[:MAGNitude]:POINts?" query returns the number of correction factors loaded into the level correct table currently selected using the "MEMory:TABLE:SELect" command.

When the "MEMory:TABLE:LOSS[:MAGNitude]:POINts?" query is sent, the following is returned:

poin<NL>

Where:

- **poin**: The number of correction factors currently loaded into the selected level correct table if no argument is specified.
- **poin**: The maximum number of correction factors that can be loaded into a table when the MAXimum argument is specified.
- **poin**: The minimum number of correction factors that can be loaded into a table when the MINimum argument is specified.

See Also

MEMory:TABLE:LOSS[:MAGNitude]
MEMory:TABLE:SELect
To Use the Level Correct Routine

2e-12
MEMory:TABLE:SELECT

MEMory:TABLE:SELECT FDAT:tableno

The "MEMory:TABLE:SELECT" command selects the level correct table where level correct data will be loaded.

The parameter is as follows:

tableno  The number of the level correct table where level correct data will be loaded. The number must be an integer from 1 to 4.

This command selects one of four level correct tables where level correct data will be loaded using the "MEMory:TABLE: FREQency" and "MEMory:TABLE:LOSS[:MAGNitude]" commands.

If a table number entry is made that is not within the allowable range, the level correct table entry is rejected and no action is taken by the synthesizer. The table is preset at the factory to 1. Pressing the [PRESET] key has no effect on this command.

NOTE

The "MEMory:TABLE:SELect" command is used to select a table for data loading only. The "[SOURce][1]:CORRev:SELect"] command is used to select the level correct table that is used to correct power at the synthesizer RF OUTPUT connector.
Level Correction Commands

MEMory:TABLE:SELECT

Query Syntax

MEMory:TABLE:SELECT?

Returned format:
FDATableno<NL>

Where:
- tableno ::= The level correct table currently selected to be loaded with level correct data.

See Also

MEMory:TABLE:FREQuency
MEMory:TABLE:LOSS[:MAGNitude]
[SOURce[1]:]CORRection:CSET[:SELect]
To Use the Level Correct Routine
[SOURce[1]:]CORRection:CSET[:SELect]

[SOURce[1]:]CORRection:CSET[:SELect]FDATtableno

The "[SOURce[1]:]CORRection:CSET[:SELect]" command selects the level correct table that is used to correct power at the synthesizer RF OUTPUT connector.

The parameter is as follows:

tableno The number of the level correct table that is used to correct power at the synthesizer RF OUTPUT connector. The number must be an integer from 1 to 4.

This command selects one of four level correct tables that are used to correct power at the synthesizer RF OUTPUT connector.

If a table number entry is made that is not within the allowable range, the level correct table entry is rejected and no action is taken by the synthesizer. Pressing the [PRESET] key selects level correct table number 1.

Notes

1. The "[SOURce[1]:]CORRection:CSET[:SELect]" command is used to select the level correct table that is used to correct power at the synthesizer RF OUTPUT connector. The "MEMORY:TABLE:SELECT" command is used to select a table for data loading.

2. If you attempt to use a level correct table that has an error, an error message is generated and no correction is applied to the synthesizer RF OUTPUT connector.
Query Syntax

[SOURce[1]:]CORRection:CSET[:SELECT]?

Returned format:
FDATtableno<NL>

Where:
- tableno ::= The level correct table currently selected to correct power at the synthesizer RF OUTPUT connector.

See Also

MEMory:TABLE:SELECT
[SOURce[1]:]CORRection:CSET:STATe
[SOURce[1]:]CORRection[:STATe]
To Use the Level Correct Routine
[SOURce1:]CORRection:CSET:STATe

[SOURce1:]CORRection:CSET:STATe \{\text{ON} \ \text{OFF}\}

The "[SOURce1:]CORRection:CSET:STATe" command turns level correction on or off.

The parameters are as follows:

- **ON**: Turns level correction on.
- **OFF**: Turns level correction off.

Level correction must be turned on using this command and all corrections must be turned on using the "[SOURce1:]CORRection[:STATe]" command in order to turn the level correct function on. The preset condition for this command is off.

**NOTE**

If you attempt to use a level correct table that has an error, an error message is generated and no correction is applied to the synthesizer RF OUTPUT connector.
Level Correction Commands

[SOURce[1]:]CORRection:CSET:STATe

Query Syntax

[SOURce[1]:]CORRection:CSET:STATe?

Returned format: state<NL> Where:

- state ::= "+1" if level correction is currently turned on.
- state ::= "+0" if level correction is currently turned off.

See Also

[SOURce[1]:]CORRection:CSET[:SELECT]
[SOURce[1]:]CORRection[:STATe]

To Use the Level Correct Routine
[SOURce[1]:]CORRection:FLATness[:DATA]

[SOURce[1]:]CORRection :FLATness[:DATA]
  \{freq,level,...freq,level\}
  \{MAXimum\}
  \{MINimum\}
  \{DEFault\}

The "[SOURce[1]:]CORRection:FLATness[:DATA]" command sets the user frequency and level correction values. These values must be sent in frequency, level correction pairs. The input frequency range is dependent upon installed options; the level correction range is -40 dB to +40 dB.

For example:

CORRection:FLATness 1e9,0.1,2e9,0.2,3e9,0.3

The synthesizer will sort the entered list by frequency automatically. An instrument preset has no effect on the user level correction data. Note that this mnemonic cannot be used in a macro.

The parameters are as follows:

freq,level: Sets the user frequency and level correction values.
MAXimum: Sets the user frequency and level correction to the maximum allowable values.
MINimum: Sets the user frequency and level correction to the minimum allowable values.
DEFault: Sets the user frequency and level correction to the default (preset) values.
Level Correction Commands
[SOURce[1]:]CORRection:FLATness[:DATA]

Query Syntax

[SOURce[1]:]CORRection:FLATness[:DATA]? [MAXimum] MINimum [DEFault]

Returned format:
freq,level<NL>

Where:
- freq,level ::= The current frequency and level correction values if no argument is specified.
- freq,level ::= The maximum frequency and level correction values that can be set if the MAXimum argument is specified.
- freq,level ::= The minimum frequency and level correction values that can be set if the MINimum argument is specified.
- freq,level ::= The default (preset) frequency and level correction values if the DEFault argument is specified.

See Also

[SOURce[1]:]CORRection:FLATness:POINts

2e-20
[SOURce[1]:]CORREction:FLATness:POINts


The "[SOURce[1]:]CORREction:FLATness:POINts" command sets the number of user frequency and level correction points (or pairs).

The parameters are as follows:

- \textit{points} Sets the number of user frequency and level correction points.
- \text{MAXimum} Sets the number of user frequency and level correction points to the maximum number.
- \text{MINimum} Sets the number of user frequency and level correction points to the minimum number.
- \text{DEFault} Sets the number of user frequency and level correction points to the default (preset) number.

---

Query Syntax

[SOURce[1]:]CORREction:FLATness:POINts? \{ \text{MAXimum} \linebreak[2] \text{MINimum} \linebreak[2] \text{DEFault} \}

Returned format:

\textit{points}<\text{NL}>

Where:

- \textit{points} ::= The current number of frequency and level correction pairs if no argument is specified.
Level Correction Commands

[SOURce[1]:]CORRection:FLAtness:POINts

- *points ::=* The maximum number of frequency and level correction pairs that can be set if the MAXimum argument is specified.
- *points ::=* The minimum number of frequency and level correction pairs that can be set if the MINimum argument is specified.
- *points ::=* The default (preset) number of frequency and level correction pairs if the DEFault argument is specified.

---

See Also

[SOURce[1]:]CORRection:FLATness[:DATA]
[SOURce[1]:]CORRection[:STATe]

\[
[SOURce[1]:]CORRection[:STATe]\{\text{ON} \mid \text{OFF}\}
\]

The "[SOURce[1]:]CORRection[:STATe]" command turns all corrections on or off.

**NOTE**

This command is provided for SCPI compatibility only. In this version of the synthesizer, the only correction available is level correction.

The parameters are as follows:

- **ON**
  - Turns all corrections on.
- **OFF**
  - Turns all corrections off.

All corrections must be turned on using this command and level corrections must be turned on using the "[SOURce[1]:]CORRection:CSET:STATe" command in order to turn the level correct function on. The preset condition for this command is off.

**NOTE**

If you attempt to use a level correct table that has an error, an error message is generated and no correction is applied to the synthesizer RF OUTPUT connector.
Level Correction Commands

[SOURce[1]:]CORRection[:STATe]

---

Query Syntax

[SOURce[1]:]CORRection[:STATe]?

Returned format:

state<NL>

Where:

- state ::= "+1" if all corrections are currently turned on.
- state ::= "+0" if all corrections are currently turned off.

---

See Also

[SOURce[1]:]CORRection:CSET[:SELect]
[SOURce[1]:]CORRection:CSET:STATe

To Use the Level Correct Routine

---

2e-24
**SYSTem:COMMunicate:PMETer:ADDRess**

```plaintext
SYSTem:COMMunicate:PMETer:ADDRess {address MAXimum MINimum}
```

The "SYSTem:COMMunicate:PMETer:ADDRess" command allows you to change the HP-IB address that the synthesizer uses when communicating with an external power meter during the level correct routine.

The parameters are as follows:

- **address**: The HP-IB address of the external power meter. The valid address range is 00 to 30 (decimal).
- **MAXimum**: Sets the power meter HP-IB address to its maximum allowable value.
- **MINimum**: Sets the power meter HP-IB address to its minimum allowable value.

---

**NOTE**

The "SYSTem:COMMunicate:PMETer:ADDRess" command sets the address that the synthesizer will use when communicating with the external power meter or when receiving data from the external power meter during the level correct routine. **This command does not set the address at the power meter.**

The external power meter HP-IB address set at the factory is 13. Pressing the [PRES] key or sending the *RST or SYSTem:PRESet commands will not modify the address.
Level Correction Commands

SYS:COMM:PMET:ADDR

Query Syntax

SYS:COMM:PMET:ADDR? [MAXimum] [MINimum]

Returned format:

address<NL>

Where:

- *address* ::= The current external power meter HP-IB address when no optional argument is specified.
- *address* ::= The maximum allowable power meter HP-IB address when the MAXimum argument is specified.
- *address* ::= The minimum allowable power meter HP-IB address when the MINimum argument is specified.

See Also

To Use the Level Correct Routine
Macro Commands

This sub-chapter contains detailed information on all programming commands pertaining to macros.
*DMC (Define Macro Command)

*DMC "name", "commands"

The "*DMC" command allows you to create a macro that consists of any combination of synthesizer programming commands.

The parameters are as follows:

* name  The name for the macro. The name can consist of upper-case or lower-case alpha characters, numeric characters 0 through 9, or the underscore (_). The name must begin with an alpha character and can be up to 255 characters long.

* commands  The synthesizer programming commands to be defined by the macro name. This must be IEEE String Program Data or Block Program Data format and can be up to 255 characters long.

Before macros that have been created by the *DMC command can be used, they must be enabled using the *EMC command.

See Also

*EMC
*GMC?
*LMC?
*PMC
*RMC
*EMC (Enable Macros)

*EMC { 0 
     1 }

The "*EMC" command enables or disables macros created with the "*DMC" command.

The parameters are as follows:

0     Disables macros created with the "*DMC" command.
1     Enables macros created with the "*DMC" command.

The preset condition for the "*EMC" command is "0" (disabled).

Query Syntax

*EMC?

Returned format:

state<NL>

Where:

* state ::= "+0" if macros are disabled or "+1" if macros are enabled.
See Also

*DMC
*GMC?
*LMC?
*PMC
*RMC
**GMC? (Get Macro Contents Query)**

*GMC? "name"*

The "*GMC" query returns the commands that are in a given macro defined by the "*DMC" command.

The parameter is as follows:

*name*  The name of the macro for which you want to get the list of commands. This macro must have been previously defined with the "*DMC" command.

The synthesizer returns the list of macro commands in IEEE 488.2 Definite Length Arbitrary Block Response Data format.

---

**See Also**

*DMC
*EMC
*LMC?
*PMC
*RMC
*LMC? (List Macro Query)

*LMC?
The "*LMC?" query returns a listing of the names of all macros that have been defined by the "*DMC" command.

In response to the "*LMC?" query, the synthesizer will return a list of macro names defined. The macro names will be returned as string data separated by commas.

If no macros have been defined, the synthesizer will return the empty string (""") in response to the "*LMC?" query.

See Also

*DMC
*EMC
*GMC?
*PMC
*RMC
MEMory:FREE:MACRo?

The "MEMory:FREE:MACRo?" query returns two numbers. The first is the number of bytes available for use in defining new macros. The second is the number of bytes currently being used for existing macros.

See Also

*DMC
*EMC
*GMC?
*PMC
*RMC
*PMC (Purge Macros Command)

*PMC
The "*PMC" command purges all macros that have been defined.

The "*PMC" command purges all defined macros. Purged macros are erased from memory and cannot be recovered. To selectively purge certain macros, use the "*RMC" command.

See Also

*DMC
*EMC
*GMC?
*LMC?
*RMC
*RMC (Remove Macro Command)

*RMC "name"

The "*RMC" command selectively purges a macro from the synthesizer memory.

The parameter is as follows:

name The name of the macro that you want to purge. This macro must have been previously defined with the "*DMC" command.

The "*RMC" command purges only the macro whose name is stated with the command. The purged macro is erased from memory and can not be recovered. Only one macro can be purged per "*RMC" command. To purge all defined macros with one command, use the "*PMC" command.

If the "*RMC" command is sent and the macro to be purged does not exist, an error message will be generated.

See Also

*DMC
*EMC
*GMC?
*LMC?
*PMC

2f-10
Miscellaneous Commands
Miscellaneous Commands

This sub-chapter contains detailed information on all miscellaneous programming commands.
DISPlay[:WINDow][:STATe]

\[
\text{DISPlay[:WINDow][:STATe]} \{ \text{ON} \ \text{OFF} \}
\]

The "DISPlay[:WINDow][:STATe]" command turns the fluorescent displays and LED annunciators on and off.

The parameters are as follows:

- **ON**
  - Turns the fluorescent displays and LED annunciators on.

- **OFF**
  - Turns the fluorescent displays and LED annunciators off.

The display state is stored in the instrument state registers along with other instrument state data, so if sensitive instrument settings are stored to a register, the settings are not revealed when the register is recalled. The preset condition for the "DISPlay[:WINDow][:STATe]" command is ON.

**NOTE**

Once the display has been turned off, cycling the LINE POWER switch off and then on will not restore the display.
Query Syntax

```
DISPLAY[:WINDow][:STATE]? 
```

Returned format:

```
state<NL>
```

Where:

- `state` ::= "+1" if the fluorescent displays and LED annunciators are currently turned on.
- `state` ::= "+0" if the fluorescent displays and LED annunciators are currently turned off.
SYSTem:KEY

\[ \text{SYSTem:KEY} \left\{ \begin{array}{c} \text{keycode} \\ \text{MAXimum} \\ \text{MINimum} \end{array} \right\} \]

The “SYSTem:KEY” command simulates pressing a front panel key.

The parameters are as follows:

- **keycode**: The key code of the key to be pressed. The valid key code range is 0 to 62.
- **MAXimum**: Sets the keycode to its maximum allowable value.
- **MINimum**: Sets the keycode to its minimum allowable value.

Note that the key code represents the front panel key to be pressed. There is no unique key code for shifted functions and special functions. Note also that key codes cannot simply be strung together in a command. If more than one key code is to appear on the same command line, the subsequent key codes must be preceded by “:KEY”.

The valid key codes are shown in the following table:
### Table 2g-1. Synthesizer Key Codes

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Key Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIFT</td>
<td>0</td>
</tr>
<tr>
<td>PRESET</td>
<td>1</td>
</tr>
<tr>
<td>INT LEVEL</td>
<td>2</td>
</tr>
<tr>
<td>LOG AM ON/OFF</td>
<td>3¹</td>
</tr>
<tr>
<td>LOG/LIN ON/OFF</td>
<td>3²</td>
</tr>
<tr>
<td>MSG</td>
<td>4</td>
</tr>
<tr>
<td>RECALL</td>
<td>5</td>
</tr>
<tr>
<td>EXT DIODE</td>
<td>6</td>
</tr>
<tr>
<td>INT DEPTH</td>
<td>7</td>
</tr>
<tr>
<td>LOCAL</td>
<td>8</td>
</tr>
<tr>
<td>SFCL</td>
<td>9</td>
</tr>
<tr>
<td>EXT METER</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>FM ON/OFF</td>
<td>20¹</td>
</tr>
<tr>
<td>FM/AM ON/OFF</td>
<td>20²</td>
</tr>
<tr>
<td>EXT ON/OFF</td>
<td>21</td>
</tr>
<tr>
<td>DELAY</td>
<td>22</td>
</tr>
<tr>
<td>FREQ</td>
<td>23</td>
</tr>
<tr>
<td>INT DEV [FM/AM Key Group]</td>
<td>24²</td>
</tr>
<tr>
<td>INT ON/OFF</td>
<td>25</td>
</tr>
<tr>
<td>WIDTH</td>
<td>26</td>
</tr>
<tr>
<td>INT RATE [AM Key Group]</td>
<td>28²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Key Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT RATE [FM/AM Key Group]</td>
<td>29²</td>
</tr>
<tr>
<td>TRIG ON/OFF</td>
<td>30</td>
</tr>
<tr>
<td>PRI</td>
<td>31</td>
</tr>
<tr>
<td>POWER LEVEL</td>
<td>32</td>
</tr>
<tr>
<td>dB</td>
<td>33</td>
</tr>
<tr>
<td>dBm</td>
<td>34</td>
</tr>
<tr>
<td>GHz</td>
<td>34</td>
</tr>
<tr>
<td>ms</td>
<td>34</td>
</tr>
<tr>
<td>←</td>
<td>37</td>
</tr>
<tr>
<td>↓</td>
<td>38</td>
</tr>
<tr>
<td>↓</td>
<td>39</td>
</tr>
<tr>
<td>↓</td>
<td>40</td>
</tr>
<tr>
<td>↓</td>
<td>41</td>
</tr>
<tr>
<td>SFCL ON</td>
<td>42</td>
</tr>
<tr>
<td>MHz</td>
<td>42</td>
</tr>
<tr>
<td>us</td>
<td>45</td>
</tr>
<tr>
<td>➜</td>
<td>46</td>
</tr>
<tr>
<td>STEP SIZE</td>
<td>47</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>kHz</td>
<td>50</td>
</tr>
</tbody>
</table>

1  83731A022
2  83731B028

---

2g-6
Table 2g-1. Synthesizer Key Codes (continued)

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Key Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>50</td>
</tr>
<tr>
<td>SPCL OFF</td>
<td>50</td>
</tr>
<tr>
<td>RF ON/OFF</td>
<td>53</td>
</tr>
<tr>
<td>BACK SPACE</td>
<td>54</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Key Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td>58</td>
</tr>
<tr>
<td>ENTER</td>
<td>58</td>
</tr>
<tr>
<td>rad</td>
<td>56</td>
</tr>
<tr>
<td>/</td>
<td>56</td>
</tr>
<tr>
<td>Clockwise Knob Rotation</td>
<td>61^1</td>
</tr>
<tr>
<td>Counterclockwise Knob Rotation</td>
<td>62^2</td>
</tr>
</tbody>
</table>

1. Sending this key code simulates rotating the knob clockwise one step by its finest resolution.
2. Sending this key code simulates rotating the knob counterclockwise one step by its finest resolution.

If a key code is sent that is between 0 and 62, but does not appear in the table, it will be ignored.

Query Syntax

SYSTem:KEY? [MAXimum | MINimum]

Returned format:

keycode<NL>

Where:

- **keycode** ::= The last key pressed if no optional argument is specified. If -1 is returned, no key has been pressed since the synthesizer has been powered up or preset.
- **keycode** ::= The maximum allowable key code when the MAXimum argument is specified.
- **keycode** ::= The minimum allowable key code when the MINimum argument is specified.
Miscellaneous Commands
Modulation Commands
Modulation Commands

This sub-chapter contains detailed information on all programming commands pertaining to modulation control.
The "[SOURce[1]:]AM[:DEPTh]" command selects the AM depth when in internal logarithmic or linear AM mode. When a numeric value is sent with no suffix (i.e., dBm or PCT), the logarithmic AM depth parameter is set. When a suffix is used, then the appropriate linear or logarithmic parameter is set. The linear and logarithmic parameters are independent, but are both controlled by this command.

The parameters are as follows:

- **depth**: Sets the internal logarithmic AM depth. In linear mode, the allowed range is 0 to 100% with 0.1% resolution. In logarithmic mode, the allowed range is 0 to 60 dB with 0.01 dB resolution.
- **MAXimum**: Sets the internal AM depth to the maximum allowable value.
- **MINimum**: Sets the internal logarithmic AM depth to the minimum allowable value.
- **UP**: Increases the internal logarithmic AM depth by the current logarithmic AM depth increment value.
- **DOWN**: Decreases the internal logarithmic AM depth by the current logarithmic AM depth increment value.
Modulation Commands

[SOURce1]:AM[:DEPTH]

DEFault
Sets the internal logarithmic and linear AM depth to its
default (preset) value.

NOTE
When the internal AM depth is set between 30 dB and 60 dB, the entry resolution is 0.01 dB,
however, the hardware resolution might be slightly greater than 0.01 dB. The hardware resolution will
always be less than 0.015 dB.

Query Syntax

[SOURce1]:AM[:DEPTH]? [MAXimum] [MINimum] [DEFault]

Returned format:

depth<NL>

Where:

• depth ::= The current internal linear or logarithmic AM depth is dependent
  upon the setting of AM:TYPE.
• depth ::= The maximum internal logarithmic AM depth that can be set if
  the MAXimum argument is specified.
• depth ::= The minimum internal logarithmic AM depth that can be set if
  the MINimum argument is specified.
• depth ::= The default internal logarithmic AM depth if the DEFault
  argument is specified.
See Also

[SOURce[1];AM[:DEPTH]:STEP
[SOURce[1];AM:TYPE
[SOURce[1]:]AM[:DEPTh]:STEP

[SOURce[1]:]AM[:DEPTh]:STEP[:INCrement] \{ incr MAXimum MINimum DEFault \}

NOTE
This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM[:DEPTh]:STEP" command selects the increment value for internal logarithmic or linear AM depth in a manner analogous to AM depth.

The parameters are as follows:

\textit{incr} \hspace{1cm} \textit{Sets the increment value for internal logarithmic or linear AM depth. In logarithmic mode, the allowable range for the parameter is 0.01 \text{ dB} to 60 \text{ dB}; in linear mode, the allowable range is 0.1\% to 100\%.

MAXimum \hspace{1cm} \text{Sets the logarithmic AM depth increment value to its maximum allowable value.}

MINimum \hspace{1cm} \text{Sets the logarithmic AM depth increment value to its minimum allowable value.}

DEFault \hspace{1cm} \text{Sets the logarithmic AM depth increment value to its default (preset) value.}

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]AM[:DEPTh]" command, the internal logarithmic or linear AM depth will be increased or decreased by a step size set with the "[SOURce[1]:]AM[:DEPTh]:STEP" command.

2h-6
If a logarithmic or linear AM depth increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the internal logarithmic AM depth increment value is 3 dB and the resolution is 0.01 dB.

---

**Query Syntax**

```
[SOURce[1]:]AM[:DEPTh]:STEP[:INCRement]? [MAXimum] [MINimum] [DEFault]
```

Returned format:

```
incr<NL>
```

Where:

- `incr ::=` The current internal logarithmic or linear AM depth increment value if no argument is specified.
- `incr ::=` The maximum internal logarithmic AM depth increment value that can be set if the MAXimum argument is specified.
- `incr ::=` The minimum internal logarithmic AM depth increment value that can be set if the MINimum argument is specified.
- `incr ::=` The default (preset) internal logarithmic AM depth increment value if the DEFault argument is specified.

---

**See Also**

```
[SOURce[1]:]AM[:DEPTh]
```
[SOURce[1]:]AM:INT:FREQ

\[
[SOURce[1]:]AM:INT:FREQ \{ \text{freq} \\
\hspace{1cm} \text{MAXimum} \\
\hspace{1cm} \text{MINimum} \\
\hspace{1cm} \text{DEFault} \}
\]

**NOTE**
This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM:INT:FREQ" command sets the internal AM modulation rate.

The parameters are as follows:

- **freq**  
  Sets the internal AM modulation rate. The allowable range for the parameter is 0.5 Hz to 100 kHz with a resolution of 0.5 Hz. The default (preset) value is 5 kHz.

- **MAXimum**  
  Sets the internal AM modulation rate to its maximum allowable value.

- **MINimum**  
  Sets the internal AM modulation rate to its minimum allowable value.

- **DEFault**  
  Sets the internal AM modulation rate to its default (preset) value of 5 kHz.

If an internal AM modulation rate entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. If internal modulation overdrive mode is on, the upper limit is set to 1 MHz.
Query Syntax


Returned format:

freq<NL>

Where:

- *freq ::= The current internal AM modulation rate if no argument is specified.*
- *freq ::= The maximum internal AM modulation rate that can be set if the MAXimum argument is specified.*
- *freq ::= The minimum internal AM modulation rate that can be set if the MINimum argument is specified.*
- *freq ::= The default (preset) internal AM modulation rate if the DEFault argument is specified.*

See Also

[SOURce[1]:] AM:INT:FREQ:STEP
[SOURce[2]:] FREQuency
[SOURce[1]:]AM:INT:FREQ:STEP

[SOURce[1]:]AM:INT:FREQ:STEP[:INCrement]

\{ incr
\{ MAXimum \}
\{ MINimum \}
\{ DEFault \}

**NOTE**
This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM:INT:FREQ:STEP" command selects the increment value for the internal AM modulation rate.

The parameters are as follows:

- **incr**
  Sets the increment value for the internal AM modulation rate. The allowable range for the parameter is 0.5 Hz to 99.9995 kHz with a resolution of 0.5 Hz. The default (preset) value is 100 Hz.

- **MAXimum**
  Sets the internal AM modulation increment value to its maximum allowable value.

- **MINimum**
  Sets the internal AM modulation increment value to its minimum allowable value.

- **DEFault**
  Sets the internal AM modulation increment value to its default (preset) value of 100 Hz.

If an internal AM modulation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.

2h-10
Query Syntax


Returned format:
incr<NL>

Where:
- $\textit{incr}$ ::= The current internal AM modulation increment value if no argument is specified.
- $\textit{incr}$ ::= The maximum internal AM modulation increment value that can be set if the MAXimum argument is specified.
- $\textit{incr}$ ::= The minimum internal AM modulation increment value that can be set if the MINimum argument is specified.
- $\textit{incr}$ ::= The default (preset) internal AM modulation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]AM:INT:FREQ
[SOURce[2]:]FREQ:STEP
[SOURce[1]:]AM:INT:FUNC

[SOURce[1]:]AM:INT
:FUNC[SINusoid|SQUAre|TRIAngle|RAMP|UNIFORM|GAUSSian]

NOTE
This command is only available with Option 1E2 installed.

The "[SOURce[1]:]AM:INT:FUNC" command selects the waveform of the internal AM modulation generator. The default (preset) waveform is SINusoid.

Query Syntax

[SOURce[1]:]AM:INT:FUNC?

Returned format:
waveform<NL>

Where:

- waveform ::= SINUSOID if the currently selected waveform is a sinusoidal waveform.
- waveform ::= SQUARE if the currently selected waveform is a square waveform.
- waveform ::= TRIANGLE if the currently selected waveform is a triangle waveform.
- waveform ::= RAMP if the currently selected waveform is a ramp waveform.

2h-12
- `waveform ::= UNIFORM` if the currently selected waveform is a uniform waveform.
- `waveform ::= GAUSSIAN` if the currently selected waveform is a gaussian noise waveform.

See Also

SOURce2:FUNC
The "[SOURce[1]:]AM:SENSitivity" command sets linear AM sensitivity if the AM:TYPE selection is LINear. The exponential AM sensitivity can only be set to $-10 \text{ dB/Volt}$ when the AM:TYPE selection is EXPonential.

The parameters are as follows:

- **sens**
  - Sets the linear AM sensitivity in HP 83731B/32B models only. The allowable range for the parameter is $30\%$/Volt to $100\%$/Volt. The default (preset) value is $30\%$/Volt. The exact suffix syntax is PCT/VOLT for linear mode; dB/Volt for exponential mode.

- **MAXimum**
  - Sets the AM modulation rate to its maximum allowable value.

- **MINimum**
  - Sets the AM modulation rate to its minimum allowable value.

- **DEFault**
  - Sets the AM sensitivity to its default (preset) value or $30\%$/Volt (linear) and $-10 \text{ dB/Volt}$ (exponential).

If a linear AM sensitivity entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. If an exponential AM sensitivity entry is made other than $-10 \text{ dB/Volt}$, an error message will be generated and the AM sensitivity will remain set to $-10 \text{ dB/Volt}$. 

2h-14
Query Syntax

[SOURce[1]:]AM:SENSitivity? [MAXimum] [MINimum] [DEFault]

Returned format:
sens<NL>

Where:

- `sens ::=` The current AM sensitivity value if no argument is specified.
- `sens ::=` The maximum AM sensitivity value that can be set if the MAXimum argument is specified.
- `sens ::=` The minimum AM sensitivity value that can be set if the MINimum argument is specified.
- `sens ::=` The default (preset) AM sensitivity value if the DEFault argument is specified.

See Also

[SOURce[1]:]AM:TYPE
[SOURce[1]:]AM:SOURce

[SOURce[1]:]AM:SOURce \{ INTernal
FEED
EXTernal \}

**NOTE**
This command is only available with Option 1E2 installed. Otherwise the parameter is permanently set to EXTernal.

The "[SOURce[1]:]AM:SOURce" command sets the amplitude modulation source to either the internal (feed) source or the external source.

The parameters are as follows:

- **FEED**
  - Selects the internal amplitude modulation source.

- **INTernal**
  - Selects the internal amplitude modulation source.

- **EXTernal**
  - Selects the external amplitude modulation source.

When the FEED or INTernal parameter is set with this command, the synthesizer will use the internal AM. When the EXTernal parameter is set with this command, the external amplitude modulation source is chosen, allowing amplitude modulation of the synthesizer with an external signal applied to the front panel AM IN connector.

When the synthesizer is set to the preset state, the amplitude modulation source is set to external.
Query Syntax

[SOURce[1]:] AM:SOURce?

Returned format:

source<NL>

Where:

- `source ::= "FEED"` if the amplitude modulation source is the internal feed source.
- `source ::= "EXT"` if the amplitude modulation source is the external source.
[SOURce[1]:]AM:STATE

[SOURce[1]:]AM:STATE \{ ON
          OFF \}

The "[SOURce[1]:]AM:STATE" command turns amplitude modulation on or off.
The parameters are as follows:
ON
   Turns amplitude modulation on.
OFF
   Turns amplitude modulation off.

From preset, when AM is turned on, LOG AM will be selected since the
preset value of AM:TYPE is EXPonential, and thus the LOG AM annunciator
will become lit. If AM:TYPE is selected to be LINear, the LIN AM annunciator
will become lit.

Query Syntax

[SOURce[1]:]AM:STATE?

Returned format:
state<NL>

Where:
- state ::= "+1" if AM is currently turned on.
- state ::= "+0" if AM is currently turned off.
See Also

Connectors
[SOURce[1]:]AM:TYPE
[SOURce[1]:]AM:TYPE

\{ EXPonential \}
\{ LINear \}

The "[SOURce[1]:]AM:TYPE" command is used to set the amplitude modulation type.

The parameters are as follows:

EXPenential  Exponential (logarithmic) amplitude modulation will be selected.
LINear        Linear amplitude modulation will be selected.

---

Query Syntax

[SOURce[1]:]AM:TYPE?

Returned format:

EXP<NL>
LIN<NL>

---

See Also

[SOURce[1]:]AM:STATe

2h-20
The "[SOURce[1]:]FM:COUPling" command selects either AC or DC coupling for the FM/ϕM IN connector.

The parameters are as follows:

- **AC**  AC-couples the FM/ϕM IN connector.
- **DC**  DC-couples the FM/ϕM IN connector.

When the "[SOURce[1]:]FM:COUPling" command is sent, the pertinent annunciator (either AC FM or DC FM) will be lit to indicate the current status of FM coupling (when FM is turned on).

When DC FM is off, the synthesizer circuitry is configured so that the FM/ϕM IN connector will accept a modulating signal with a minimum rate of 1 kHz. When DC FM is on, the FM/ϕM IN connector will accept a modulating signal with a minimum rate of 0 Hz (DC). When the synthesizer is set to the preset state, FM coupling is set to AC.

### Advantages of DC FM

When DC FM is selected, the modulation index is unlimited.

\[
\text{modulation index} = \frac{\text{peak deviation}}{\text{modulation rate}}
\]

Where modulation rate can range down to 0 Hz (DC).
Modulation Commands
[SOURce[1]:]FM:COUPling

Disadvantages of DC FM

When DC FM is enabled, the synthesizer internal phase locked loop circuits are disabled, causing the output frequency accuracy and stability to be degraded.

Query Syntax

[SOURce[1]:]FM:COUPling?

Returned format:

coupl<NL>

Where:

- coupl := "AC" if the FM/ΦM IN connector is currently AC-coupled.
- coupl := "DC" if the FM/ΦM IN connector is currently DC-coupled.

See Also

Connectors
[SOURce[1]:]FM:SENSitivity?
[SOURce[1]:]FM:STATe

2h-22
The "[SOURce[1]:]FM[:DEViation]" command selects the FM deviation when in internal FM mode.

The parameters are as follows:

- **dev**: Sets the internal FM deviation. The allowable range for the parameter is 0 Hz to 10 MHz.
- **MAXimum**: Sets the internal FM deviation to the maximum allowable value.
- **MINimum**: Sets the internal FM deviation to the minimum allowable value.
- **UP**: Increases the internal FM deviation by the current FM deviation increment value.
- **DOWN**: Decreases the internal FM deviation by the current FM deviation increment value.
- **DEFault**: Sets the internal FM deviation to its default (preset) value.

If an FM deviation entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to
Modulation Commands
[SOURce[1]:FM[:DEViation]]

either its upper or lower limit. The preset value for FM deviation is 10 kHz and the resolution is 0.01 Hz.

If internal modulation overdrive is set on, the maximum upper limit allowed is 15 MHz. FM deviation will not be automatically increased as the carrier frequency is returned to a larger value. FM deviation will automatically be decreased if the current value exceeds the limits specified in Table 2h-1 as the CW frequency is decreased.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Maximum FM Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz to &lt; 16 MHz</td>
<td>39.1 kHz</td>
</tr>
<tr>
<td>16 MHz to &lt; 32 MHz</td>
<td>78.1 kHz</td>
</tr>
<tr>
<td>32 MHz to &lt; 64 MHz</td>
<td>156 kHz</td>
</tr>
<tr>
<td>64 MHz to &lt; 128 MHz</td>
<td>312.5 kHz</td>
</tr>
<tr>
<td>128 MHz to &lt; 256 MHz</td>
<td>625 kHz</td>
</tr>
<tr>
<td>256 MHz to &lt; 500 MHz</td>
<td>1.25 MHz</td>
</tr>
<tr>
<td>500 MHz to &lt; 1 GHz</td>
<td>2.5 MHz</td>
</tr>
<tr>
<td>1 GHz to &lt; 2 GHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>2 GHz to 20 GHz</td>
<td>10 MHz</td>
</tr>
</tbody>
</table>

Table 2h-1. Maximum FM Deviation in Internal FM Mode

Query Syntax

[SOURce[1]:FM[:DEViation]? [MAXimum] [MINimum] [DEFault]

Returned format:

dev<NL>

2h-24
Where:

- \( \text{dev} \) ::= The current internal FM deviation if no argument is specified.
- \( \text{dev} \) ::= The maximum internal FM deviation that can be set if the \text{MAX}imum argument is specified.
- \( \text{dev} \) ::= The minimum internal FM deviation that can be set if the \text{MIN}imum argument is specified.
- \( \text{dev} \) ::= The default internal FM deviation if the \text{DEF}ault argument is specified.

See Also

- [SOURce[1]:FM:DEViation]:STEP
- [SOURce[1]:FM:TYPE]
The "[SOURce1]:FM[:DEViation]:STEP" command selects the increment value for internal FM deviation.

The parameters are as follows:

* **incr**
  Sets the increment value for internal FM deviation. The allowable range for the parameter is 0.01 Hz to 10 MHz.

* **MAXimum**
  Sets the FM deviation increment value to its maximum allowable value.

* **MINimum**
  Sets the FM deviation increment value to its minimum allowable value.

* **DEFault**
  Sets the FM deviation increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce1]:FM[:DEViation]" command, the internal FM deviation will be increased or decreased by a step size set with the "[SOURce1]:FM[:DEViation]:STEP" command.

If an FM deviation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset
value for the internal FM deviation increment value is 100 kHz and the resolution is 0.01 Hz.

Query Syntax

[SOURce[1]:]FM[:DEViation]:STEP[:INCR]men? [MAXimum] [MINimum] [DEFault]

Returned format:
incr<NL>

Where:
- incr ::= The current internal FM deviation increment value if no argument is specified.
- incr ::= The maximum internal FM deviation increment value that can be set if the MAXimum argument is specified.
- incr ::= The minimum internal FM deviation increment value that can be set if the MINimum argument is specified.
- incr ::= The default (preset) internal FM deviation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FM[:DEViation]
[SOURce[1]:]FM: INT: FREQ

[SOURce[1]:]FM: INT: FREQ  \{freq
  MAXimum
  MINimum
  DEFault\}

**NOTE**
This command is only available with Option 1E2 installed.

The "[SOURce[1]:]FM:INT:FREQ" command sets the FM internal modulation rate.

The parameters are as follows:

- **freq**
  Sets the FM internal modulation rate. The allowable range for the parameter is 1 kHz to 1 MHz with a resolution of 0.5 Hz.

- **MAXimum**
  Sets the FM internal modulation rate to its maximum allowable value.

- **MINimum**
  Sets the FM internal modulation rate to its minimum allowable value.

- **DEFault**
  Sets the FM internal modulation rate to its default (preset) value of 100 kHz.

If an FM internal modulation rate entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. If internal modulation overdrive mode is on, or if FM COUPle mode is on, the lower limit is 0.5 Hz.
Query Syntax

[SOURce[1]:]FM:INT:FREQ? [MAXimum] [MINimum] [DEFault]

Returned format:
 freq<NL>

Where:

- \( freq :: = \) The current FM internal modulation rate if no argument is specified.
- \( freq :: = \) The maximum FM modulation rate that can be set if the MAXimum argument is specified.
- \( freq :: = \) The minimum FM modulation rate that can be set if the MINimum argument is specified.
- \( freq :: = \) The default (preset) FM modulation rate if the DEFault argument is specified.

See Also

[SOURce[1]:]FM:INT:FREQ:STEP
[SOURce[3]:]FREQ
The "[SOURce[1]:]FM:INT:FREQ:STEP" command selects the increment value for the FM internal modulation rate.

The parameters are as follows:

- **incr**: Sets the increment value for the FM internal modulation rate. The allowable range for the parameter is 0.5 Hz to 1 MHz with a resolution of 0.5 Hz. The default (preset) value is 1 kHz.

- **MAXimum**: Sets the FM internal modulation increment value to its maximum allowable value.

- **MINimum**: Sets the FM internal modulation increment value to its minimum allowable value.

- **DEFAULT**: Sets the FM internal modulation increment value to its default (preset) value of 1 kHz.

If an FM internal modulation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.
Query Syntax

[SOURce[1]:]FM:INT:FREQ:STEP?  [MAXimum]
                      MINimum
                      DEFault

Returned format:
incr\n
Where:

- \textit{incr} ::= The current FM internal modulation increment value if no argument is specified.
- \textit{incr} ::= The maximum FM internal modulation increment value that can be set if the MAXimum argument is specified.
- \textit{incr} ::= The minimum FM internal modulation increment value that can be set if the MINimum argument is specified.
- \textit{incr} ::= The default (preset) FM internal modulation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]FM:INT:FREQ
[SOURce[1]:]FM:INT:FUNC

[SOURce[1]:]FM:INT
:FUNC[SINusoid|SQUAre|TRIAngle|RAMP|UNIFORM|GAUSSian]

**NOTE**
This command is only available with Option 1E2 installed.

The “[SOURce[1]:]FM:INT:FUNC” command selects the waveform of the internal FM modulation generator. The default (preset) waveform is SINusoid.

---

**Query Syntax**

`[SOURce[1]:]FM:INT:FUNC?`

Returned format:

`waveform<NL>`

Where:

- `waveform ::= SINUSOID` if the currently selected waveform is a sinusoidal waveform.
- `waveform ::= SQUARE` if the currently selected waveform is a square waveform.
- `waveform ::= TRIANGLE` if the currently selected waveform is a triangle waveform.
- `waveform ::= RAMP` if the currently selected waveform is a ramp waveform.

2h-32
• \textit{waveform} ::= UNIFORM if the currently selected waveform is a uniform noise waveform.
• \textit{waveform} ::= GAUSSIAN if the currently selected waveform is a gaussian noise waveform.

See Also

SOURce3:FUNC
[SOURce[1]:]FM:SENSitivity

{SENS
  MAXimum
  MINimum
  DEFault}

FM sensitivity is a ratio of the frequency deviation from the carrier per unit change of the external modulating signal amplitude. In the synthesizer, sensitivity is displayed as the carrier deviation per volt. Note that FM sensitivity is selectable only in ranges determined by the chosen carrier frequency.

sens
Sets the FM sensitivity. The allowable range for the parameter is shown in Table 2h-2.

MAXimum
Sets the FM sensitivity to the maximum allowable value.

MINimum
Sets the FM sensitivity to the minimum allowable value.

DEFault
Sets the internal FM deviation to its default (preset) value of 5 MHz/V at 3 GHz CW frequency.

The FM sensitivity is coupled to the CW frequency. As a result, any entered value will automatically adjust to the closest preset value for the given CW frequency. Refer to Table 2h-2.

2h-34
Table 2h-2. FM Sensitivity to CW Frequency

<table>
<thead>
<tr>
<th>Range 1</th>
<th>10 MHz-16 MHz</th>
<th>16 MHz-64 MHz</th>
<th>64 MHz-256 MHz</th>
<th>256 MHz-1 GHz</th>
<th>1 GHz-20 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range 1</td>
<td>78.125 kHz/V</td>
<td>156.25 kHz/V</td>
<td>625 kHz/V</td>
<td>2.5 MHz/V</td>
<td>10 MHz/V</td>
</tr>
<tr>
<td>Range 2</td>
<td>39062 Hz/V</td>
<td>78.125 kHz/V</td>
<td>312.5 kHz/V</td>
<td>1.25 MHz/V</td>
<td>5 MHz/V</td>
</tr>
<tr>
<td>Range 3</td>
<td>23437 Hz/V</td>
<td>46.875 kHz/V</td>
<td>187.5 kHz/V</td>
<td>750 kHz/V</td>
<td>3 kHz/V</td>
</tr>
<tr>
<td>Range 4</td>
<td>7812 Hz/V</td>
<td>15.625 kHz/V</td>
<td>62.5 kHz/V</td>
<td>250 kHz/V</td>
<td>1 MHz/V</td>
</tr>
<tr>
<td>Range 5</td>
<td>2343 Hz/V</td>
<td>4.687 kHz/V</td>
<td>18.75 kHz/V</td>
<td>75 kHz/V</td>
<td>300 kHz/V</td>
</tr>
<tr>
<td>Range 6</td>
<td>781 Hz/V</td>
<td>1562 Hz/V</td>
<td>6.25 kHz/V</td>
<td>25 kHz/V</td>
<td>100 kHz/V</td>
</tr>
<tr>
<td>Range 7</td>
<td>234 Hz/V</td>
<td>468 Hz/V</td>
<td>1.875 kHz/V</td>
<td>7.5 kHz/V</td>
<td>30 kHz/V</td>
</tr>
</tbody>
</table>

NOTE
HP 83731A/32A models have only one value for FM sensitivity of 5 MHz/V (i.e., Range 2).

Query Syntax

[SOURce[1]:] FM:SENSitivity? [MAXimum] [MINimum] [DEFault]

Returned format:
sens<NL>
Modulation Commands

[SOURce[1]:]FM:SENSitivity

Where:

- \( \text{sens} ::= \) The current FM sensitivity if no argument is specified.
- \( \text{sens} ::= \) The maximum FM sensitivity that can be obtained when the MAXimum argument is specified.
- \( \text{sens} ::= \) The minimum FM sensitivity that can be obtained when the MINimum argument is specified.
- \( \text{sens} ::= \) The preset FM sensitivity when the DEFault argument is specified.

See Also

Connectors

[SOURce[1]:]FM:STATe
[SOURce[1]:]FREQuency:MULTiplier
UNIT:FREQuency

2h-36
The "[SOURce[1]:]FM:SOURce" command sets the frequency modulation source to either the internal (feed) source or the external source.

The parameters are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEED</td>
<td>Selects the internal frequency modulation source.</td>
</tr>
<tr>
<td>INTernal</td>
<td>Selects the internal frequency modulation source.</td>
</tr>
<tr>
<td>EXTernal</td>
<td>Selects the external frequency modulation source.</td>
</tr>
</tbody>
</table>

When the FEED or INTernal parameter is sent with this command, the synthesizer will use the internal FM source. When the EXTernal parameter is sent with the command, the external frequency modulation source is chosen, allowing frequency modulation of the synthesizer with an external signal applied to the front panel FM/φM IN connector.

When the synthesizer is set to the preset state, the frequency modulation source is set to EXTernal.
Query Syntax

\[ \text{SOURce[1]}:\text{FM:SOURce?} \]

Returned format:

source\n
Where:

- \( \text{source} ::= \text{"FEED"} \) if the frequency modulation source is the internal feed source.
- \( \text{source} ::= \text{"EXT"} \) if the frequency modulation source is the external source.
[SOURce[1]:]FM:STATe

[SOURce[1]:]FM:STATe \{ \text{ON} \  \text{OFF} \}

The "[SOURce[1]:]FM:STATe" command turns frequency modulation on or off.
The parameters are as follows:
ON \hspace{1cm} \text{Turns frequency modulation on.}
OFF \hspace{1cm} \text{Turns frequency modulation off.}

When frequency modulation is turned on, either the AC FM or DC FM annunciator will be lit, depending on whether or not FM coupling has been set to AC or DC. When the synthesizer is set to the preset state, frequency modulation is turned off.

---

Query Syntax

[SOURce[1]:]FM:STATe?

Returned format:
state<NL>

Where:

• \text{state} ::= "+1" \text{ if FM is currently turned on.}
• \text{state} ::= "+0" \text{ if FM is currently turned off.}

---

\textbf{NOTE}

FM:STATE and PM:STATE are mutually exclusive. Only one can be on at any given time.
Modulation Commands

[SOURce[1]:]FM:STATe

See Also

Connectors
[SOURce[1]:]FM:COUPling
[SOURce[1]:]FM:SENSitivity?
[SOURcem]:MODulation:AOFF

The "[SOURcem]:MODulation:AOFF" command turns all modulations (AM, FM, PM, and pulse modulation) off.

The "[SOURcem]:MODulation:AOFF" command turns all modulations off. There is no method for turning all modulations on using this command. To turn all modulations on, the "[SOURcem]:MODulation:STATe" command or the individual modulation state commands must be used.

See Also

[SOURcem]:AM:STATe
[SOURcem]:FM:STATe
[SOURcem]:MODulation:STATe
[SOURcem]:PULM:STATe
[SOURcem]:PM:STATe
[SOURce[1]:]MODulation:OVDR

NOTE
This command is only available on HP 83731B/328 models with Option 1E2.

The "[SOURce[1]:]MODulation:OVDR" command turns internal modulation overdrive range on and off. This command allows several internal modulation features to be set to values not normally allowed. These operation states may be out of specifications.

See Also

[SOURce[1]:]FM:[DEViation]
[SOURce[1]:]FM:INT:FREQ
[SOURce[1]:]AM:INT:FREQ

2h-42
[SOURce[1]:]PM:COUPling

[SOURce[1]:]PM:COUPling \{ AC \\
DC \}

**NOTE**
This command is only available with Option 800 installed.

The "[SOURce[1]:]PM:COUPling" command selects either AC or DC coupling for the FM/ϕM IN connector.

The parameters are as follows:

- **AC**
  AC couples the FM/ϕM IN connector.

- **DC**
  DC couples the FM/ϕM IN connector.

**NOTE**
This feature is only applicable in external mode.

When the synthesizer is set to the preset state, PM coupling is set to AC.
Modulation Commands

[SOURce[1]:]PM:COUPling

---

Query Syntax

[SOURce[1]:]PM:COUPling?

Returned format:

coupl<NL>

Where:

- `coupl ::= "AC"` if the FM/ϕM IN connector is currently AC-coupled.
- `coupl ::= "DC"` if the FM/ϕM IN connector is currently DC-coupled.

---

See Also

Connectors

[SOURce[1]:]PM:SENSitivity?

[SOURce[1]:]PM:STATE
The "[SOURce[1]:]PM[:DEViation]" command selects the Phase Modulation (PM) deviation when in internal PM mode.

The parameters are as follows:

- **dev**: Sets the internal PM deviation. The allowable range for the parameter is 0 rads to 200 rads.
- **MAXimum**: Sets the internal PM deviation to the maximum allowable value.
- **MINimum**: Sets the internal PM deviation to the minimum allowable value.
- **DEFault**: Sets the internal PM deviation to its default (preset) value of 3 rads.

If a PM deviation entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. The preset value for PM deviation is 3 rads and the resolution is 10 m rads.

For PM rates of 30 kHz or less, the maximum deviation is defined by the high range. Refer to Table 2h-3.
### Table 2h-3.
**Maximum Deviation Defined As A Function of PM:INT:FREQ**

<table>
<thead>
<tr>
<th>Range</th>
<th>PM:INT:FREQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;30 kHz</td>
</tr>
<tr>
<td>10 MHz to 16 MHz</td>
<td>1.625 rads</td>
</tr>
<tr>
<td>16 MHz to 32 MHz</td>
<td>3.125 rads</td>
</tr>
<tr>
<td>32 MHz to 64 MHz</td>
<td>6.25 rads</td>
</tr>
<tr>
<td>64 MHz to 128 MHz</td>
<td>12.5 rads</td>
</tr>
<tr>
<td>128 MHz to 256 MHz</td>
<td>25 rads</td>
</tr>
<tr>
<td>256 MHz to 500 MHz</td>
<td>50 rads</td>
</tr>
<tr>
<td>500 MHz to 1 GHz</td>
<td>100 rads</td>
</tr>
<tr>
<td>1 GHz to 2 GHz</td>
<td>200 rads</td>
</tr>
</tbody>
</table>

**NOTE**

If PM:INT:FREQ is above 30 kHz, and PM:DEV is set above what is allowed by Table 2h-3, PM:INT:FREQ will be bumped downwards to 30 kHz.
Query Syntax

[SOURce[1]:]PM[:DEViation]?

[Maximum]
[MINimum]
[DEFault]

Returned format:

\textit{dev}<\text{NL}>

Where:

- \textit{dev} ::= The current internal PM deviation if no argument is specified.
- \textit{dev} ::= The maximum internal PM deviation that can be set if the MAXimum argument is specified.
- \textit{dev} ::= The minimum internal PM deviation that can be set if the MINimum argument is specified.
- \textit{dev} ::= The default internal PM deviation if the DEFault argument is specified.

See Also

[SOURce[1]:]PM[:DEViation]:STEP
The "[SOURce[1]:]PM[:DEViation]:STEP" command selects the increment value for internal FM deviation.

The parameters are as follows:

- **incr**: Sets the increment value for internal PM deviation. The allowable range for the parameter is 10 mrad to 10 rad.
- **MAXimum**: Sets the PM deviation increment value to its maximum allowable value.
- **MINimum**: Sets the PM deviation increment value to its minimum allowable value.
- **DEFault**: Sets the PM deviation increment value to its default (preset) value.

If a PM deviation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The default (preset) value for the internal PM deviation increment value is 1 rad and the resolution is 10 mrad.
Query Syntax

[SOURce[1]:]PM[:DEViation]:STEP[:INCREMENT]? [MAXimum] [MINimum] [DEFault]

Returned format:

incr\<NL>

Where:

- **incr**: The current internal PM deviation increment value if no argument is specified.
- **incr**: The maximum internal PM deviation increment value that can be set if the MAXimum argument is specified.
- **incr**: The minimum internal PM deviation increment value that can be set if the MINimum argument is specified.
- **incr**: The default (preset) internal PM deviation increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PM[:DEViation]
[SOURce[1]:]PM:INT:FREQ

[SOURce[1]:]PM:INT:FREQ { freq
  MAXimum
  MINimum
  DEFault }

**NOTE**
This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:INT:FREQ" command sets the PM internal modulation rate.

The parameters are as follows:

- **freq**: Sets the PM internal modulation rate. The allowable range for the parameter is 0.5 Hz to 1 MHz with a resolution of 0.5 Hz.
- **MAXimum**: Sets the PM internal modulation rate to its maximum allowable value.
- **MINimum**: Sets the PM internal modulation rate to its minimum allowable value.
- **DEFault**: Sets the PM internal modulation rate to its default (preset) value of 10 kHz.

If a PM internal modulation rate entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.
NOTE
If PM:DEV is currently in high range (see Table 2h-3), and PM:INT:RATE is set to above 30 kHz, PM:DEV will be bumped downward.

Query Syntax

[SOURce[1]:]PM:INT:FREQ? [MAXimum] [MINimum] [DEFault]

Returned format:
freq<NL>

Where:
- freq ::= The current PM internal modulation rate if no argument is specified.
- freq ::= The maximum PM modulation rate that can be set if the MAXimum argument is specified.
- freq ::= The minimum PM modulation rate that can be set if the MINimum argument is specified.
- freq ::= The default (preset) PM modulation rate if the DEFault argument is specified.
Modulation Commands
[SOURce[1]:]PM:INT:FREQ

See Also
[SOURce[1]:]PM:INT:FREQ:STEP
[SOURce[1]:]PM:DEV
[SOURce[1]:]PM:INT:FREQ:STEP

\[
[SOURce[1]:]PM:INT:FREQ:STEP[ :INCR\text{ement} ]
\{ incr \} \{ MAXimum \} \{ MINimum \} \{ DEFault \}
\]

**NOTE**
This command is only available on HP 83731B/328 models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:INT:FREQ:STEP" command selects the increment value for the PM internal modulation rate.

The parameters are as follows:

- **incr** Sets the increment value for the PM internal modulation rate. The allowable range for the parameter is 0.5 Hz to 1 MHz with a resolution of 0.5 Hz.
- **MAXimum** Sets the PM internal modulation increment value to its maximum allowable value.
- **MINimum** Sets the PM internal modulation increment value to its minimum allowable value.
- **DEFault** Sets the PM internal modulation increment value to its default (preset) value of 1 kHz.

If a PM internal modulation increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit.
Modulation Commands
[SOURce[1]:]PM:INT:FREQ:STEP

---

Query Syntax

[SOURce[1]:]PM:INT:FREQ:STEP?

[MAXimum]
[MINimum]
[DEFault]

Returned format:

\[\text{incr}\langle\text{NL}\rangle\]

Where:

- \(\text{incr} ::= \) The current PM internal modulation increment value if no argument is specified.
- \(\text{incr} ::= \) The maximum PM internal modulation increment value that can be set if the \text{MAXimum} argument is specified.
- \(\text{incr} ::= \) The minimum PM internal modulation increment value that can be set if the \text{MINimum} argument is specified.
- \(\text{incr} ::= \) The default (preset) PM internal modulation increment value if the \text{DEFault} argument is specified.

---

See Also

[SOURce[1]:]PM:INT:FREQ

---

2h-54
[SOURce[1]:]PM:INT:FUNC

[SOURce[1]:]PM:INT
:FUNC[::SINusoid::SQUARE::TRIAngle::RAMP::UNIFORM::GAUSSian]

**NOTE**
This command is only available with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:INT:FUNC" command selects the waveform of the internal phase modulation generator. The default (preset) waveform is SINusoid.

---

**Query Syntax**

[SOURce[1]:]PM:INT:FUNC?

Returned format:

`waveform<NL>`

Where:

- `waveform ::= SINUSOID` if the currently selected waveform is a sinusoidal waveform.
- `waveform ::= SQUARE` if the currently selected waveform is a square waveform.
- `waveform ::= TRIANGLE` if the currently selected waveform is a triangle waveform.
Modulation Commands

[SOURce1]:PM:INT:FUNC

- \textit{waveform} ::= RAMP if the currently selected waveform is a ramp waveform.
- \textit{waveform} ::= UNIFORM if the currently selected waveform is a uniform noise waveform.
- \textit{waveform} ::= GAUSSIAN if the currently selected waveform is a gaussian noise waveform.

See Also

SOURce4:FUNC

2h-56
[SOURce[1]:]PM:RANGe

[SOURce[1]:]PM:RANGe
  AUTO
  LOW
  HIGH

**NOTE**
This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed.

The "[SOURce[1]:]PM:RANGe" command selects the phase modulation range based on the value of phase deviation. In this version of the synthesizer, only source #4 is available for use during internal phase modulation.

The parameters are as follows:

**AUTO**
Selects phase modulation range automatically.

**LOW**
Sets the phase modulation range from 15 mrad to 4 rad.

**HIGH**
Sets the phase modulation range from .781 rad to 200 rad.

The PM range is coupled to CW frequency, PM rate, and PM deviation. When any one of these parameters is changed, while in PM:RANGe AUTO, the range will automatically change from LOW to HIGH, or HIGH to LOW depending on which range will meet the new set of parameters.

An error message will be generated if the synthesizer cannot meet all three parameters, and either PM rate or PM deviation will be limited. Low range offers better carrier phase noise but lower maximum deviation. High range offers higher maximum phase deviations but lower carrier phase noise.
Modulation Commands

[SOURce[1]:]PM:RANGE

Query Syntax

[SOURce[1]:]PM:RANGE?

Returned format:

rang<NL>

See Also

PM:[DEViation]
[SOURce[1]:]MODulation:OVDR

2h-58
[SOURce[1]:]PM:SENSitivit\textit{y}\left\{ sens\right.\text{ MAXimum, MINimum, DEFault}\left.\right\} \right.

\textbf{NOTE}
This command is only available on HP 83731B/32B models with Option 800 installed.

PM sensitivity is a ratio of the phase deviation from the carrier per unit change of the modulating signal amplitude. In the synthesizer, sensitivity is displayed as the carrier deviation per volt. Note that there are only two values of PM sensitivity available dependent upon carrier frequency.

The parameters are as follows:

\begin{itemize}
  \item \textit{sens} \quad \text{Sets the PM sensitivity. The allowable range for the parameter is shown in Table 2h-4.}
  \item MAXimum \quad \text{Sets the PM sensitivity to the maximum allowable value.}
  \item MINimum \quad \text{Sets the PM sensitivity to the minimum allowable value.}
  \item DEFault \quad \text{Sets the internal PM deviation to its default (preset) value.}
\end{itemize}

Entered values will automatically adjust to the closest preset value for the given CW frequency. Refer to Table 2h-4.
Table 2h-4. PM Sensitivity to CW Frequency

<table>
<thead>
<tr>
<th>Range</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz to &lt; 15 MHz</td>
<td>390 mrad/V</td>
<td>7.81 mrad/V</td>
</tr>
<tr>
<td>15 MHz to &lt; 64 MHz</td>
<td>781 mrad/V</td>
<td>15.6 mrad/V</td>
</tr>
<tr>
<td>64 MHz to &lt; 256 MHz</td>
<td>3.12 rad/V</td>
<td>62.5 mrad/V</td>
</tr>
<tr>
<td>256 MHz to &lt; 1 GHz</td>
<td>12.5 rad/V</td>
<td>250 mrad/V</td>
</tr>
<tr>
<td>1 GHz to 20 GHz</td>
<td>50 rad/V</td>
<td>1 rad/V</td>
</tr>
</tbody>
</table>

Query Syntax

\[
[SOURce[1]:]PM:SENSitivity? [MAXimum] MINimum [DEFault]
\]

Returned format:

\[\text{sens}<\text{NL}>\]

Where:

- \text{sens} ::= The current PM sensitivity if no argument is specified.
- \text{sens} ::= The maximum PM sensitivity that can be obtained when the MAXimum argument is specified.
- \text{sens} ::= The minimum PM sensitivity that can be obtained when the MINimum argument is specified.
- \text{sens} ::= The preset PM sensitivity when the DEFault argument is specified.
See Also

[SOURce[1]:]PM:STATe
[SOURce[1]:]PM:SOURce

[SOURce[1]:]PM:SOURce

\{ \text{INTernal} \}

\{ \text{FEED} \}

\{ \text{EXTernal} \}

\textbf{NOTE}
This command is only available on HP 83731B/32B models with Option 1E2 and Option 800 installed. Otherwise the parameter is permanently set to EXTernal.

The "[SOURce[1]:]PM:SOURce" command sets the phase modulation source to either the internal (feed) source or the external source.

The parameters are as follows:

- **FEED** Selects the internal phase modulation source.
- **INTernal** Selects the internal phase modulation source.
- **EXTernal** Selects the external phase modulation source.

When the FEED parameter is sent with this command, the synthesizer will use the internal PM source. When the EXTernal parameter is sent with the command, the external phase modulation source is chosen, allowing phase modulation of the synthesizer with an external signal applied to the front panel FM/φM IN connector.

When the synthesizer is set to the preset state, the phase modulation source is set to external.
Query Syntax

[SOURce[1]:]PM:SOURce?

Returned format:
source<NL>

Where:
- \textit{source} ::= "FEED" if the phase modulation source is the internal feed source.
- \textit{source} ::= "EXT" if the phase modulation source is the external source.

See Also

[SOURce[1]:]PM:FEED
[SOURce[1]:]PM:STATe

[SOURce[1]:]PM:STATe \{ ON \{ OFF \}

**NOTE**
This command is only available on HP 83731B/32B models with Option 800 installed.

The "[SOURce[1]:]PM:STATe" command turns internal or external phase modulation on or off.

The parameters are as follows:
ON
   Turns phase modulation on.
OFF
   Turns phase modulation off.

When the synthesizer is set to the preset state, phase modulation is turned off. In the OFF mode, no internal or external phase modulation is allowed, regardless of the SOURce and TYPE setting.

**NOTE**
PM:STATe and FM:STATe are mutually exclusive. Only one can be on at a time.
Query Syntax

[SOURce[1]:]PM:STATe?

Returned format:

state<NL>

Where:

- state ::= "+1" if PM is currently turned on.
- state ::= "+0" if PM is currently turned off.

See Also

Connectors
[SOURce[1]:]PM:COUPling
[SOURce[1]:]PM:SENSitivity?
[SOURce[1]:]PM:SOURce
[SOURce[1]:]PULM:EXTernal:POLarity

[SOURce[1]:]PULM:EXTernal:POLarity \{ NORMal \ INverted \}

The "[SOURce[1]:]PULM:EXTernal:POLarity" command selects either inverted or non-inverted polarity for the external pulse input at the PULSE/TRIG IN, GATE IN connector.

The parameters are as follows:

NORMal

Selects non-inverted polarity for the external pulse input at the PULSE/TRIG IN, GATE IN connector.

INVerted

Selects inverted polarity for the external pulse input at the PULSE/TRIG IN, GATE IN connector.

When inverted external pulse modulation is selected, the INVERT EXT annunciatior will be lit. If non-inverted external pulse modulation is selected, the EXT annunciatior will be lit.

When the synthesizer is set to the preset state, the external pulse input polarity is set to non-inverted (NORM).

**NOTE**

The polarity of the external pulse input can be set at any time, but the pulse source must be set to external using the "[SOURce[1]:]PULM:SOURce" command and pulse modulation must be turned on using the "[SOURce[1]:]PULM:STAtE" command before external pulse mode is used.
Query Syntax

[SOURce[1]:]PULM:EXTERNAL:POLarity?

Returned format:

polarity<NL>

Where:

- polarity ::= "NORM" if the polarity of the external pulse input is currently set to non-inverted.
- polarity ::= "INV" if the polarity of the external pulse input is currently set to inverted.

See Also

Connectors
[SOURce[1]:]PULM:SOURce
[SOURce[1]:]PULM:STATE
[SOURce[1]:]PULM:SOURce

[SOURce[1]:]PULM:SOURce { INTernal } { EXternal }

The "[SOURce[1]:]PULM:SOURce" command sets the pulse modulation source to either internal or external.

The parameters are as follows:

INT
Selects the internal pulse modulation source.

EXT
Selects the external pulse modulation source.

When the synthesizer is set to the preset state, the pulse modulation source is set to external.

The pulse modulation source is set to external for external and inverted external pulse modulation. The pulse modulation source is set to internal for internal, internal triggered, doublet, and gated pulse modulation.

Query Syntax

[SOURce[1]:]PULM:SOURce?

Returned format:

source<NL>

Where:

- **source** ::= "INT" if the pulse modulation source is internal.
- **source** ::= "EXT" if the pulse modulation source is external.

2h-68
See Also

Connectors
[SOURce[1]:]PULM:STATe
[SOURce[1]:]PULM:EXTERNAL:POLarity
TRIGger[:SEQUence[1]]:START:SOURce
[SOURce[1]:]PULM:STATe

[SOURce[1]:]PULM:STATe \{ ON \ OFF \}

The "[SOURce[1]:]PULM:STATe" command turns pulse modulation on or off.

The parameters are as follows:

ON \hspace{1cm} \text{TURNS PULSE MODULATION ON.}

OFF \hspace{1cm} \text{TURNS PULSE MODULATION OFF.}

When the synthesizer is set to the preset state, pulse modulation is turned off.

When pulse modulation is turned off, all pulse modulation modes are off. When pulse modulation is turned on, the pulse modulation mode is determined by the parameters set with the following commands:

- [SOURce[1]:]PULM:SOURce
- [SOURce[1]:]PULM:EXTernal:POLarity
- TRIGger:SEQUence[1]:START:SOURce
- TRIGger:SEQUence2:STOP:SOURce
- [SOURce[1]:]PULSe:DOUble[:STATe]

Query Syntax

[SOURce[1]:]PULM:STATe?

Returned format:

\text{state}\langle\text{NL}\rangle

Where:

- \text{state} := "+1" \text{ if pulse modulation is currently on.}
- \text{state} := "+0" \text{ if pulse modulation is currently off.}

2h:70
See Also

[SOURce[1];]PULM:EXTernal:POLarity
[SOURce[1];]PULM:SOURce
[SOURce[1];]PULSe:DOUBLE:STATe
TRIGger[:SEQUence[1];]::START;:SOURce
TRIGger::SEQUence2;:STOP:SOURce
[SOURce[1]:]PULSe:DELay

\[
\begin{align*}
\text{delay} & \\
\text{MAXimum} & \\
\text{MINimum} & \\
\text{UP} & \\
\text{DOWN} & \\
\text{DEFault} & 
\end{align*}
\]

The "[SOURce[1]:]PULSe:DELay" command selects the pulse delay to be used in internal, doublet, or triggered internal pulse modes.

The parameters are as follows:

- **delay**: Sets the pulse delay. The allowable range for the parameter is $-419 \text{ ms}$ to $+419 \text{ ms}$ when using internal pulse mode or $+225 \text{ ns}$ to $+419 \text{ ms}$ when using internal triggered or doublet pulse modes.
- **MAXimum**: Sets the pulse delay to the maximum allowable value.
- **MINimum**: Sets the pulse delay to the minimum allowable value.
- **UP**: Increases the pulse delay by the current pulse delay increment value.
- **DOWN**: Decreases the pulse delay by the current pulse delay increment value.
- **DEFault**: Sets the pulse delay to its default (preset) value.

Numeric pulse delay entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse delay entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for pulse delay is $1 \mu\text{s}$. 

2h-72
Notes

1. In triggered internal pulse mode, the sum of pulse width and pulse delay cannot exceed 419 ms.
2. The pulse delay can be set at any time, but other parameters must be set before internal, doublet, or triggered internal pulse mode is used.

Query Syntax

[SOURce[1]:]PULSe:DELay? [MAXimum] [MINimum] [DEFault]

Returned format:

delay<NL>

Where:

- delay := The current pulse delay if no argument is specified.
- delay := The maximum pulse delay that can be set if the MAXimum argument is specified.
- delay := The minimum pulse delay that can be set if the MINimum argument is specified.
- delay := The default (preset) pulse delay if the DEFault argument is specified.
Modulation Commands

[SOURce[1]:PULSe:DELay

See Also

[SOURce[1]:PULSe:DELay:STEP
[SOURce[1]:PULM:SOURce
[SOURce[1]:PULM:STATe
[SOURce[1]:PULSe:WIDTh
[SOURce[1]:TRIGger[:SEQUence[1]]:STARt:SOURce

2h-74
[SOURce[1]:]PULSe:DELay:STEP

\[
\{ \text{incr} \} \\
\{ \text{MAXimum} \} \\
\{ \text{MINimum} \} \\
\{ \text{DEFault} \}
\]

The "[SOURce[1]:]PULSe:DELay:STEP" command selects the increment value for pulse delay.

The parameters are as follows:

**incr**
Sets the increment value for pulse delay. The allowable range for the parameter is 25 ns to 838 ms in internal pulse mode or 25 ns to 418.775 ms in internal triggered or doublet pulse modes.

**MAXimum**
Sets the pulse delay increment value to its maximum allowable value.

**MINimum**
Sets the pulse delay increment value to its minimum allowable value.

**DEFault**
Sets the pulse delay increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:DELay" command, the pulse delay will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:DELay:STEP" command.

Numeric pulse delay increment value entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse delay increment value entry is made that is not within the allowable parameter range, it will be set to either its maximum or minimum limit. The preset value for the pulse delay increment value is 25 ns.
Modulation Commands

[SOURce[1]:]PULSe:DELay:STEP

---

Query Syntax

[SOURce[1]:]PULSe:DELay:STEP[:INCREMENT]? [MAXimum] [MINimum] [DEFault]

Returned format:

incr<NL>

Where:

- \( \text{incr} ::= \) The current pulse delay increment value if no argument is specified.
- \( \text{incr} ::= \) The maximum pulse delay increment value that can be set if the MAXimum argument is specified.
- \( \text{incr} ::= \) The minimum pulse delay increment value that can be set if the MINimum argument is specified.
- \( \text{incr} ::= \) The default (preset) pulse delay increment value if the DEFault argument is specified.

---

See Also

[SOURce[1]:]PULSe:DELay

2h-76
[SOURce[1]:]PULSe:DOUBLE[:STATE]

[SOURce[1]:]PULSe:DOUBLE[:STATE]{ON OFF}

The "[SOURce[1]:]PULSe:DOUBLE[:STATE]" command turns the pulse doublet feature on or off.

The parameters are as follows:
ON
    Turns pulse doublet on.
OFF
    Turns pulse doublet off.

When the synthesizer is set to the preset state, pulse modulation is turned off.

Query Syntax

[SOURce[1]:]PULSe:DOUBLE[:STATE]?

Returned format:
state<NL>

Where:
- state ::= "+1" if pulse doublet is currently on.
- state ::= "+0" if pulse doublet is currently off.
Modulation Commands
[SOURce[1];]PULSe:DOUBLe:STATe

See Also

[SOURce[1];]PULM:SOURce
[SOURce[1];]PULSe:WIDTh
[SOURce[1]:]PULSe:FREQuency

\[
\{ \begin{array}{l}
\text{freq} \\
\text{MAXimum}
\end{array} \}
\]

The "[SOURce[1]:]PULSe:FREQuency" command selects the pulse repetition frequency (PRF). PRF is used during internal pulse modulation or gated pulse modulation.

The parameters are as follows:

- **freq**: Sets the pulse repetition frequency (PRF). The allowable range for the parameter is 2.5 Hz to 3.3 MHz.
- **MAXimum**: Sets the pulse repetition frequency to the maximum allowable value.
- **MINimum**: Sets the pulse repetition frequency to the minimum allowable value.
- **UP**: Increases the pulse repetition frequency by the current pulse repetition frequency increment value.
- **DOWN**: Decreases the pulse repetition frequency by the current pulse repetition frequency increment value.
- **DEFault**: Sets the pulse repetition frequency to its default (preset) value.

If a pulse repetition frequency entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. The preset value for pulse repetition frequency is 10 kHz.

The resolution for the PRF parameter can be found by rounding the reciprocal of PRF (1/PRF or PRI) to the nearest 25 ns and then taking the reciprocal of that value. For example, assume a PRF of 432 kHz is needed. The reciprocal of 432 kHz is 1/432 kHz or 2315 ns. This value rounded to
the nearest 25 ns is 2325 ns. Taking the reciprocal of 2325 ns is 1/2325 ns or 430.107526 kHz. Therefore, if you enter a PRF of 432 kHz, the display will show 432 kHz, but the actual PRF generated by the instrument will be 430.107526 kHz.

Notes

1. Changing the PRF parameter automatically causes the PRI parameter set with the "[SOURce[1]:]PULSe:PERiod" command to change since these two parameters are reciprocals of each other.

2. The pulse repetition frequency can be set at any time, but other parameters must be set before internal or gated pulse mode is used.

Query Syntax

[SOURce[1]:]PULSe:_FREQUENCY? [MAXimum] [MINimum] [DEFAULT]

Returned format:

freq<NL>

Where:

- freq ::= The current pulse repetition frequency if no argument is specified.
- freq ::= The maximum pulse repetition frequency that can be set if the MAXimum argument is specified.
- freq ::= The minimum pulse repetition frequency that can be set if the MINimum argument is specified.
- `freq ::=` The default pulse repetition frequency if the DEFAULT argument is specified.

---

**See Also**

[SOURce[1]:]PULM:SOURce
[SOURce[1]:]PULM:STATe
[SOURce[1]:]PULSe:FREQuency:STEP
[SOURce[1]:]PULSe:PERiod

---

2h-81
[SOURce[1]:]PULSe:FREQuency:STEP

[SOURce[1]:]PULSe:FREQuency:STEP[<INcrement>]

\[
\begin{cases}
\text{incr} & \text{Sets the increment value for pulse repetition frequency (PRF). The allowable range for the parameter is 0.001 Hz to 3.2999975 MHz.} \\
\text{MAXimum} & \text{Sets the pulse repetition frequency increment value to its maximum allowable value.} \\
\text{MINimum} & \text{Sets the pulse repetition frequency increment value to its minimum allowable value.} \\
\text{DEFault} & \text{Sets the pulse repetition frequency increment value to its default (preset) value.}
\end{cases}
\]

The "[SOURce[1]:]PULSe:FREQuency:STEP" command selects the increment value for pulse repetition frequency.

The parameters are as follows:

- \textit{incr}
- \textit{MAXimum}
- \textit{MINimum}
- \textit{DEFault}

When the "UP" or "DOWN" parameters are used with the 
"[SOURce[1]:]PULSe:FREQuency" command, the pulse repetition frequency will be increased or decreased by a step size set with the 
"[SOURce[1]:]PULSe:FREQuency:STEP" command.

If a pulse repetition frequency increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the pulse repetition frequency increment value is 100 Hz.

The resolution for the PRF increment value is 1 mHz (millihertz); entries with a resolution finer than 1 mHz will be rounded to the nearest 1 mHz.

2h-82
Query Syntax

[SOURce[1]:]PULSE:FREQuency:STEP[:INCREMENT]? [MAXimum] MINimum [DEFault]

Returned format:
incr\langle NL\rangle

Where:

- incr ::= The current pulse repetition frequency increment value if no argument is specified.
- incr ::= The maximum pulse repetition frequency increment value that can be set if the MAXimum argument is specified.
- incr ::= The minimum pulse repetition frequency increment value that can be set if the MINimum argument is specified.
- incr ::= The default (preset) pulse repetition frequency increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PULSE:FREQuency
The "[SOURce[1]:]PULSe:PERiod" command selects the pulse repetition interval (PRI). PRI is used during internal pulse modulation or gated pulse modulation.

The parameters are as follows:

- **period**: Sets the pulse repetition interval (PRI). The allowable range for the parameter is 300 ns to 419 ms.
- **MAXimum**: Sets the pulse repetition interval to the maximum allowable value.
- **MINimum**: Sets the pulse repetition interval to the minimum allowable value.
- **UP**: Increases the pulse repetition interval by the current pulse repetition interval increment value.
- **DOWN**: Decreases the pulse repetition interval by the current pulse repetition interval increment value.
- **DEFault**: Sets the pulse repetition interval to its default (preset) value.

If a pulse repetition interval entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its upper or lower limit. The preset value for pulse repetition interval is 100 µs.

The resolution for PRI parameter entries is 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns.
Notes

1. Changing the PRI parameter automatically causes the PRF parameter set with the "[SOURce[1]:]PULSe:FREQuency" command to change since these two parameters are reciprocals of each other.

2. The pulse repetition interval can be set at any time, but other parameters must be set before internal or gated pulse mode is used.

Query Syntax

[SOURce[1]:]PULSe:PERiod? [MAXimum] [MINimum] [DEFault]

Returned format:

period<NL>

Where:

- **period** ::= The current pulse repetition interval if no argument is specified.
- **period** ::= The maximum pulse repetition interval that can be set if the MAXimum argument is specified.
- **period** ::= The minimum pulse repetition interval that can be set if the MINimum argument is specified.
- **period** ::= The default (preset) pulse repetition interval if the DEFault argument is specified.
Modulation Commands
[SOURce[1]:]PULSe:PERiod

See Also

[SOURce[1]:]PULM:SOURce
[SOURce[1]:]PULM:STATe
[SOURce[1]:]PULSe:FREQuency
[SOURce[1]:]PULSe:PERiod:STEP
[SOURce[1]:]PULSe:PERiod:STEP

\( [\text{SOURce[1]:}]\text{PULSe:PERiod:STEP}[\text{:INCR}ement] \{ \text{incr} \text{ MAXimum} \text{ MINimum} \text{ DEFault} \} \)

The "[SOURce[1]:]PULSe:PERiod:STEP" command selects the increment value for pulse repetition interval.

The parameters are as follows:

- **incr**: Sets the increment value for pulse repetition interval (PRI). The allowable range for the parameter is 25 ns to 418.9997.
- **MAXimum**: Sets the pulse repetition interval increment value to its maximum allowable value.
- **MINimum**: Sets the pulse repetition interval increment value to its minimum allowable value.
- **DEFault**: Sets the pulse repetition interval increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:PERiod" command, the pulse repetition interval will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:PERiod:STEP" command.

If a pulse repetition interval increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the pulse repetition interval increment value is 1 \( \mu \text{s} \).

The resolution for PRI increment value entries is 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns.
Modulation Commands

[SOURce[1]:]PULSe:PERiod:STEP

---

Query Syntax

[SOURce[1]:]PULSe:PERiod:STEP[:INCRement]? [MAXimum] MINimum [DEFault]

Returned format:

incr<NL>

Where:

- `incr ::= The current pulse repetition interval increment value if no argument is specified.`
- `incr ::= The maximum pulse repetition interval increment value that can be set if the MAXimum argument is specified.`
- `incr ::= The minimum pulse repetition interval increment value that can be set if the MINimum argument is specified.`
- `incr ::= The default (preset) pulse repetition interval increment value if the DEFault argument is specified.`

---

See Also

[SOURce[1]:]PULSe:PERiod

---

2h-88
[SOURce[1]:]PULSe:TRANSition[:LEADing]

[SOURce[1]:]PULSe:TRANSition[:LEADing] \{ SLOW MEDIUM FAST \}

The "[SOURce[1]:]PULSe:TRANSition[:LEADing]" command allows you to manually select either a slow (300 ns), medium (30 ns), or fast (10 ns) pulse rise time.

**NOTE**

Manual pulse rise time selection must be turned on using the "[SOURce[1]:]PULSe:TRANSition:STATe" command for the chosen pulse rise time to be used by the synthesizer.

The parameters are as follows:

- **SLOW** Selects a 300 ns manual pulse rise time.
- **MEDIUM** Selects a 30 ns manual pulse rise time.
- **FAST** Selects a 10 ns manual pulse rise time.

**NOTE**

Manual pulse rise time is selectable only in the HP 83732A/32B below 1 GHz.
Modulation Commands
[SOURce[1];PULSe:TRANSition[:LEADing]]

**NOTE**
When you set the rise time using the "[SOURce[1];PULSe:TRANSition[:LEADing]]" command, the fall time set with the "[SOURce[1];PULSe:TRANSition:TRAIling]" command will be automatically set to the same value. There is no method of changing the fall time independently of the rise time.

When the synthesizer is set to the preset state, manual pulse rise time is set to FAST.

Application for Manual Pulse Rise Time and Fall Time Selection

A series of low-pass filters are used to reduce output harmonics when the synthesizer output frequency is less than 1 GHz. The filter pass bands can be narrow enough to induce pulse ringing if the pulse rise time is too fast.

The synthesizer automatically selects a slower pulse rise time (when "[SOURce[1];PULSe:TRANSition:STATe" is set to OFF) as the carrier frequency is decreased to minimize ringing and video feed-through caused by the low-pass filtering. The appropriate pulse rise time is automatically selected as follows:

<table>
<thead>
<tr>
<th>Output Frequency</th>
<th>Pulse Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz to 64 MHz</td>
<td>300 ns</td>
</tr>
<tr>
<td>64 MHz to 500 MHz</td>
<td>30 ns</td>
</tr>
<tr>
<td>Greater than 500 MHz</td>
<td>10 ns</td>
</tr>
</tbody>
</table>
In applications where a faster pulse rise time than that shown in the table is needed at a particular output frequency, you can manually choose a pulse rise time. The disadvantage of choosing a faster pulse rise time is degraded pulse performance.

---

**Query Syntax**

\[
[SOURce[1]:]PULSe:TRANsition[:LEADing]?
\]

Returned format:

*time*<NL>

Where:

- *time* ::= “SLOW” if the manually selected pulse rise time (and fall time) is currently set to slow (300 ns).
- *time* ::= “MED” if the manually selected pulse rise time (and fall time) is currently set to medium (30 ns).
- *time* ::= “FAST” if the manually selected pulse rise time (and fall time) is currently set to fast (10 ns).

---

**See Also**

[SOURce[1]:]PULSe:TRANsition:STATE
[SOURce[1]:]PULSe:TRANsition:TRAiling

---

2h-91
[SOURce[1]:]PULSe:TRANsition:STATe

[SOURce[1]:]PULSe:TRANsition:STATe \{ ON OFF \}

The "[SOURce[1]:]PULSe:TRANsition:STATe" command turns manual pulse rise time selection on or off.

The parameters are as follows:

ON  Turns manual pulse rise time selection on (you can select one of three pulse rise times using the "[SOURce[1]:]PULSe:TRANsition[:LEADing]" command).

OFF Turns manual pulse rise time selection off (the instrument automatically selects optimum pulse rise time for the selected carrier frequency range).

NOTE

Manual pulse rise time is selectable only in the HP 83732A/32B.

Once manual pulse rise time selection has been turned on using the "[SOURce[1]:]PULSe:TRANsition:STATe" command, one of three pulse rise times can be selected using the "[SOURce[1]:]PULSe:TRANsition[:LEADing]" command.

When the synthesizer is set to the preset state, pulse rise time selection is turned off.

2h-92
Application for Manual Pulse Rise Time Selection

A series of low-pass filters are used to reduce output harmonics when the synthesizer output frequency is less than 1 GHz. The filter pass bands can be narrow enough to induce pulse ringing if the pulse rise time is too fast.

The synthesizer automatically selects a slower pulse rise time as the carrier frequency is decreased to minimize ringing and video feed-through caused by the low-pass filtering. The appropriate pulse rise time is automatically selected as follows:

<table>
<thead>
<tr>
<th>Output Frequency</th>
<th>Pulse Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz to 64 MHz</td>
<td>300 ns</td>
</tr>
<tr>
<td>64 MHz to 500 MHz</td>
<td>30 ns</td>
</tr>
<tr>
<td>Greater than 500 MHz</td>
<td>10 ns</td>
</tr>
</tbody>
</table>

In applications where a faster pulse rise time than that shown in the table is needed at a particular output frequency, you can manually choose a pulse rise time. The disadvantage of choosing a faster pulse rise time is degraded pulse performance.

Query Syntax

[SOURce[1]:]PULSe:TRANsition:STATe?

Returned format:

state<NL>

Where:

- state ::= "+1" if manual pulse rise time selection is currently on.
- state ::= "+0" if manual pulse rise time selection is currently off.
Modulation Commands

[SOURce[1]:]PULSe:TRANsition:STATe

See Also

[SOURce[1]:]PULSe:TRANsition[:LEADing]
[SOURce[1]:]PULSe:TRANsition:TRAiling
[SOURce[1]:]PULSe:TRANsition:TRAiling

[SOURce[1]:]PULSe:TRANsition:TRAiling \{ SLOW
   MEDIum
   FAST \}

The "[SOURce[1]:]PULSe:TRANsition:TRAiling" command allows you to manually select either a slow (300 ns), medium (30 ns), or fast (10 ns) pulse fall time.

**NOTE**

Manual pulse fall time selection must be turned on using the "[SOURce[1]:]PULSe:TRANsition:STATE" command for the chosen pulse fall time to be used by the synthesizer.

The parameters are as follows:

- **SLOW** Selects a 300 ns manual pulse fall time.
- **MEDIum** Selects a 30 ns manual pulse fall time.
- **FAST** Selects a 10 ns manual pulse fall time.

**NOTE**

Manual pulse fall time is selectable only in the HP 83732A/32B below 1 GHz.
Modulation Commands

[SOURce[1]:]PULSe:TRANSition:TRAilng

NOTE

When you set the fall time using the "[SOURce[1]:]PULSe:TRANSition:TRAilng" command, the rise time set with the "[SOURce[1]:]PULSe:TRANSition(LEADing)" command will be automatically set to the same value. There is no method of changing the rise time independently of the fall time.

When the synthesizer is set to the preset state, manual pulse fall time is set to FAST.

Application for Manual Pulse Rise Time and Fall Time Selection

A series of low-pass filters are used to reduce output harmonics when the synthesizer output frequency is less than 1 GHz. The filter pass bands can be narrow enough to induce pulse ringing if the pulse rise time is too fast.

The synthesizer automatically selects a slower pulse rise time (when "[SOURce[1]:]PULSe:TRANSition:STATe" is set to OFF) as the carrier frequency is decreased to minimize ringing and video feed-through caused by the low-pass filtering. The appropriate pulse rise time is automatically selected as follows:

<table>
<thead>
<tr>
<th>Output Frequency</th>
<th>Pulse Rise Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 MHz to 64 MHz</td>
<td>300 ns</td>
</tr>
<tr>
<td>64 MHz to 500 MHz</td>
<td>30 ns</td>
</tr>
<tr>
<td>Greater than 500 MHz</td>
<td>10 ns</td>
</tr>
</tbody>
</table>

2h-96
In applications where a faster pulse rise time than that shown in the table is needed at a particular output frequency, you can manually choose a pulse rise time. The disadvantage of choosing a faster pulse rise time is degraded pulse performance.

---

**Query Syntax**

\[[\text{SOURce}[1]:]\text{PULSe:TRANsition:TRAilng}\]?

Returned format:

\*time\*<NL>

Where:

- *time* ::= "SLOW" if the manually selected pulse fall time (and rise time) is currently set to slow (300 ns).
- *time* ::= "MED" if the manually selected pulse fall time (and rise time) is currently set to medium (30 ns).
- *time* ::= "FAST" if the manually selected pulse fall time (and rise time) is currently set to fast (10 ns).

---

**See Also**

- \[[\text{SOURce}[1]:]\text{PULSe:TRANsition[:LEADing]}\]
- \[[\text{SOURce}[1]:]\text{PULSe:TRANsition:STATe}\]
[SOURce[1]:]PULSe:WIDTh

The "[SOURce[1]:]PULSe:WIDTh" command selects the pulse width to be used in internal, triggered internal, doublet, and gated pulse modes.

The parameters are as follows:

- **width**
  Sets the pulse width. The allowable range for the parameter is 0 ns to 419 ms.

- **MAXimum**
  Sets the pulse width to the maximum allowable value.

- **MINimum**
  Sets the pulse width to the minimum allowable value.

- **UP**
  Increases the pulse width by the current pulse width increment value.

- **DOWN**
  Decreases the pulse width by the current pulse width increment value.

- **DEFault**
  Sets the pulse width to its default (preset) value.

Numeric pulse width entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse width entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for pulse width is 10 μs.
Notes

1. In triggered internal pulse mode, the sum of pulse width and pulse delay cannot exceed 419 ms.
2. The pulse width can be set at any time, but other parameters must be set before internal, triggered internal, doublet, or gated pulse mode is used.

Query Syntax

```
[SOURce[1]:]PULSe:WIDTh?
```

Returned format:

`width<NL>`

Where:

- `width` := The current pulse width if no argument is specified.
- `width` := The maximum pulse width that can be set if the MAXimum argument is specified.
- `width` := The minimum pulse width that can be set if the MINimum argument is specified.
- `width` := The default (preset) pulse width if the DEFault argument is specified.
Modulation Commands

[SOURce[1]:] PULSe:WIDTh

See Also

[SOURce[1]:] PULM:SOURce
[SOURce[1]:] PULM:STATe
[SOURce[1]:] PULSe:DELay
[SOURce[1]:] PULSe:WIDTh:STEP
TRIGger[:SEQUence[1]:] STArt:SOURce

2h-100
[SOURce[1]:]PULSe:WIDTh:STEP

[SOURce[1]:]PULSe:WIDTh:STEP[:INCrement]\{incr
   MAXimum\}
   MINimum\}
   DEFault\}

The "[SOURce[1]:]PULSe:WIDTh:STEP" command selects the increment value for pulse width.

The parameters are as follows:

incr Sets the increment value for pulse width. The allowable range for the parameter is 25 ns to 419 ms.
MAXimum Sets the pulse width increment value to its maximum allowable value.
MINimum Sets the pulse width increment value to its minimum allowable value.
DEFault Sets the pulse width increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]PULSe:WIDTh" command, the pulse width will be increased or decreased by a step size set with the "[SOURce[1]:]PULSe:WIDTh:STEP" command.

Numeric pulse width increment value entries have a resolution of 25 ns; entries with a resolution finer than 25 ns will be rounded to the nearest 25 ns. If a pulse width increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the pulse width increment value is 100 ns.
Modulation Commands
[SOURce[1]:]PULSe:WIDT:STEP

Query Syntax

[SOURce[1]:]PULSe:WIDT:STEP[:INCR]eon? [MAXimum] [MINimum] [DEFault]

Returned format:
incr<NL>

Where:

- **incr** ::= The current pulse width increment value if no argument is specified.
- **incr** ::= The maximum pulse width increment value that can be set if the MAXimum argument is specified.
- **incr** ::= The minimum pulse width increment value that can be set if the MINimum argument is specified.
- **incr** ::= The default (preset) pulse width increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]PULSe:WIDT

2h-102
TRIGger[:SEQUence[1]:STARt]:SOURce

TRIGger[:SEQUence[1]:STARt]:SOURce \{ IMMEDIATE \ EXTERNAL \}

The "TRIGger[:SEQUence[1]:STARt]:SOURce" command sets the pulse trigger source.

The parameters are as follows:

IMMEDIATE Selects immediate pulse triggering (no external trigger).
EXTERNAL Selects external pulse triggering.

When the pulse trigger source has been set to EXTERNAL, an RF pulse will occur at the RF OUTPUT connector whenever a valid trigger signal occurs at the PULSE/TRIG IN, GATE IN connector. An external pulse trigger source is only valid when the pulse source set with the "[SOURce[1]:PULM:SOURce" command is internal.

The preset value for pulse trigger source is immediate (no external pulse trigger).

Query Syntax

TRIGger[:SEQUence[1]:STARt]:SOURce?

Returned format:
source\(<\text{NL}\)>

Where:

- source ::= "IMM" if the pulse trigger source is currently set to immediate (no external pulse trigger).
- source ::= "EXT" if the pulse trigger source is currently set to external.
See Also

Connectors
[SOURce[1]:]PULM:SOURce
[SOURce[1]:]PULM:STATE
TRIGger:SEQUence2:STOP:SOURce
TRIGger:SEQunce2:SLOPe

TRIGger:SEQquence2:SLOPe { NEGative }

The "TRIGger:SEQquence2:SLOPe" command is for SCPI compatibility only. This command is always set to NEGative.

See Also

TRIGger[:SEQunce[2]]:START:SOURce
TRIGger:SEQUence2:STOP:SOURce

TRIGger:SEQUence2:STOP:SOURce \{ IMMEDIATE \} \{ EXTERNAL \}

The "TRIGger:SEQUence2:STOP:SOURce" command sets the pulse trigger stop source.

The parameters are as follows:

IMMEDIATE Sets the trigger stop source to immediate (no external trigger).

EXTERNAL Sets the trigger stop source to external.

This command is used when setting the synthesizer to gated pulse mode. When the trigger stop source is set to external and the trigger source is also set to external using the "TRIGger[:SEQUence[1]]:START:SOURce" command, Gated pulse mode is chosen.

The preset value for pulse trigger stop source is immediate (no external pulse trigger).

Query Syntax

TRIGger:SEQUence2:STOP:SOURce?

Returned format:

source\<NL>

Where:

- source ::= "IMM" if the pulse trigger stop source is currently set to immediate (no external pulse trigger).
- source ::= "EXT" if the pulse trigger stop source is currently set to external.
See Also

Connectors
[SOURce[1]:PULM:SOURce
[SOURce[1]:PULM:STATe
TRIGger[:SEQUence[1]:STARt]:SOURce
Modulation Commands
Power Level Commands
Power Level Commands

This sub-chapter contains detailed information on all programming commands pertaining to power level control.
[SOURce[1]:POWer[:LEVEL]]

[SOURce[1]:POWer[:LEVEL]][:IMMEDIATE][:AMPLitude]

\[
\begin{align*}
&\text{max} \\
&\text{MAXimum} \\
&\text{MINimum} \\
&\text{UP} \\
&\text{DOWN} \\
&\text{DEFault}
\end{align*}
\]

The "[SOURce[1]:POWer[:LEVEL]" command sets the output power level of the synthesizer.

The parameters are as follows:

**ampl**
Sets the synthesizer output power level. The allowable range for the parameter is $-120$ dBm ($-100$ dBm on HP 83731A/32A) to $+30$ dBm if Option 1E1 is installed and $-15$ dBm to $+30$ dBm if Option 1E1 is not installed.

**MAXimum**
Sets the synthesizer output power level to the maximum allowable value.

**MINimum**
Sets the synthesizer output power level to the minimum allowable value.

**UP**
Increases the synthesizer output power level by the current power level increment value.

**DOWN**
Decreases the synthesizer output power level by the current power level increment value.

**DEFault**
Sets the synthesizer output power level to its default (preset) value.

The allowable range for the **ampl** parameter is $-120$ dBm ($-100$ dBm on HP 83731A/32A) to $+30$ dBm if Option 1E1 is installed and $-15$ dBm to $+30$ dBm if Option 1E1 is not installed.
Power Level Commands

[SOURce[1]:POWer:LEVel]

**NOTE**
The actual maximum internally leveled output power for your instrument at a given frequency can be found by increasing the synthesizer output power until the UNLVL annunciator lights.

If a power level entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. Power level resolution is 0.01 dB. The preset value is −110 dBm (−90 dBm on HP 83731A/32A) if Option 1E1 is installed and 0 dBm if Option 1E1 is not installed.

When the power level is modified, the synthesizer circuitry will ensure that transitions from one power level to another will not allow the level to exceed the maximum of the two levels if the instrument is in CW mode (not modulated). If the RF output is being amplitude modulated or pulse modulated, the synthesizer circuitry will ensure that transitions from one power level to another will not exceed the maximum of the two power levels by more than 0.5 dB typically.

**NOTE**
Changing frequency or power level while pulse modulating the output triggers an internal power level calibration. This calibration includes a CW calibration for approximately 10 ms for HP 83731B/32B; 30 ms for HP 83731A/32A. Refer to the "[SOURce[1]:POWer:PROTection" command for information on how to protect devices sensitive to CW power.

Four options are available for leveling of the output power. These are internal leveling, external diode leveling, external power meter leveling, and the level correct routine. Refer to the "[SOURce[1]:POWer:ALC" command and level correct-related commands for information on the different leveling options.
Query Syntax

[SOURce[1]:]:POWer[:LEVEL]:IMMediate][:AMPLitude]?

[ MAXimum ]
[ MINimum ]
[ DEFault ]

Returned format:

ampl<NL>

Where:

- \textit{ampl} ::= The current output power level if no argument is specified.
- \textit{ampl} ::= The maximum output power level that can be set if the MAXimum argument is specified.
- \textit{ampl} ::= The minimum output power level that can be set if the MINimum argument is specified.
- \textit{ampl} ::= The default (preset) output power level if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer:ALC:SOURce
[SOURce[1]:]POWer:PROTection:STAte
[SOURce[1]:]POWer[:LEVEL]:STEP
UNIT:POWer:VOLTage
[SOURce[1]:]POWer[:LEVEL]:STEP

[SOURce[1]:]POWer[:LEVEL][:IMMediate][:AMPLitude]

\begin{align*}
\text{incr} \\
\text{MAXimum} \\
\text{MINimum} \\
\text{DEFault}
\end{align*}

The "[SOURce[1]:]POWer[:LEVEL]:STEP" command selects the increment value for the synthesizer output power level.

The parameters are as follows:

- \textit{incr} Sets the increment value for output power level. The allowable range for the parameter is 0.01 dB to 150 dB if Option 1E1 is installed and 0.01 dB to 45 dB if Option 1E1 is not installed.

- \textit{MAXimum} Sets the power level increment value to its maximum allowable value.

- \textit{MINimum} Sets the power level increment value to its minimum allowable value.

- \textit{DEFault} Sets the power level increment value to its default (preset) value.

When the "UP" or "DOWN" parameters are used with the "[SOURce[1]:]POWer[:LEVEL]" command, the output power level will be increased or decreased by a step size set with the "[SOURce[1]:]POWer[:LEVEL]:STEP" command.

Numeric power level increment value entries have a resolution 0.01 dB.

If a power level increment value entry is made that is not within the allowable parameter range, an error message will be generated and the parameter will be set to either its maximum or minimum limit. The preset value for the power level increment value is 1 dB.
Query Syntax

[SOURce[1]:]POWer[:LEVEL][:IMMediate][:AMPLitude]

:STEP[:INCREMENT]?

[MAximum]

[MINimum]

[DEFault]

Returned format:

incr<NL>

Where:

- `incr ::=` The current power level increment value if no argument is specified.
- `incr ::=` The maximum power level increment value that can be set if the MAXimum argument is specified.
- `incr ::=` The minimum power level increment value that can be set if the MINimum argument is specified.
- `incr ::=` The default (preset) power level increment value if the DEFault argument is specified.

See Also

[SOURce[1]:]POWer[:LEVEL]

UNIT:POWer[:VOLTage]
21: Programmable Interface Commands
Programmable Interface Commands
Programmable Interface Commands

This sub-chapter contains detailed information on all programming commands pertaining to the programmable interface.
*OPC (Operation Complete)

*OPC
The "*OPC" command sets bit 0 in the Standard Event Status register to one (1) when the synthesizer has completed execution of all programming commands preceding it.

The "*OPC" command or the "*OPC?" query should appear as the last command in a command line.

The "*OPC?" query does not affect the Operation Complete bit in the Standard Event Status register.

Query Syntax

*OPC?
Returned format:
number<NL>
Where:

- $number$ ::= "+1" when bit 0 in the Standard Event Status register has been set to one.
Programmable Interface Commands

*OPC (Operation Complete)

See Also

*ESE
*ESR?
*SRE
*STB?
*WAI
SYSTem:COMMunicate:GPIB:ADDResS

SYSTem:COMMunicate:GPIB:ADDResS

\[
\begin{align*}
\text{SYSTem:COMMunicate:GPIB:ADDResS} & \left\{ \begin{array}{l}
\text{address} \\
\text{MAXimum} \\
\text{MINimum}
\end{array} \right.
\end{align*}
\]

The "SYSTem:COMMunicate:GPIB:ADDResS" command allows you to change the synthesizer HP-IB address.

The parameters are as follows:

- **address**: The HP-IB address of the synthesizer. The valid address range is 00 to 30 (decimal).
- **MAXimum**: Sets the synthesizer HP-IB address to its maximum allowable value.
- **MINimum**: Sets the synthesizer HP-IB address to its minimum allowable value.

The HP-IB address set at the factory is 19. Pressing the [PRESET] key or sending the *RST or SYSTem:PRESet commands will not change the HP-IB address. When the HP-IB address is changed, the new address takes effect immediately.

---

Query Syntax

SYSTem:COMMunicate:GPIB:ADDResS? [MAXimum] [MINimum]

Returned format:

\[address<\text{NL}>\]
Programmable Interface Commands

SYSTem:COMMunicate:GPIB:ADDResS

Where:

- $address := \text{The current HP-IB address of the synthesizer when no optional argument is specified.}$
- $address := \text{The maximum allowable synthesizer HP-IB address when the MAXimum argument is specified.}$
- $address := \text{The minimum allowable synthesizer HP-IB address when the MINimum argument is specified.}$

See Also

SYSTem:COMMunicate:GPIB:ADDResS:STEP
The "SYSTem:LANGuage" command sets the programming language that is accepted by the synthesizer.

The parameters are as follows:

"SCPI" Sets the programming language to "SCPI" (Standard Commands for Programmable Instruments). This is the current industry standard and is the language documented in this manual.

"COMP=8673" Sets the programming language to 8673 emulation. See 8673 Compatibility Guide section of this manual.

The programming language set at the factory is SCPI. Pressing the **PRES** key or sending the "RST or SYSTem:PRESet commands will not change the programming language.

**NOTE**
Double quotation marks are required as part of the argument.
Query Syntax

SYSTem:LANGuage?

Returned format:
lang<NL>

Where:
- \( \text{lang} ::= \) "SCPI" if SCPI programming language is currently chosen.

NOTE

This command may not operate if the language is chosen other than SCPI because command "syst:lang" is an SCPI command and probably does not exist in another language. However, for this instrument, the 8673 emulation mode is equipped with the SAid language query command.
UNIT:FREQuency

UNIT:FREQuency \{freq suffix\}

The "UNIT:FREQuency" command determines the default suffix that will be assumed for the numeric argument of all frequency-related programming commands if no suffix is used. It also determines the units for the data that frequency-related queries return.

The parameter is as follows:

freq suffix The default suffix to be assumed by all frequency-related programming commands when no suffix is used.

This command determines the default suffix that will be assumed for the numeric argument of all frequency-related programming commands when no suffix is used. The preset default suffix is hertz (HZ). For example, if you wanted to set the synthesizer output frequency to 2.5 GHz with the default suffix being hertz (the preset value), you could send the following command:

OUTPUT 719; "FREQ 2500000000"

If you were to change the default suffix to gigahertz by sending the command "UNIT:FREQ GHZ", the following command could be sent to set the synthesizer output frequency to 2.5 GHz:

OUTPUT 719; "FREQ 2.5"

The available default suffixes appear in the following table.
### Table 2j-1. Available Default Suffixes

<table>
<thead>
<tr>
<th>Default Suffix</th>
<th>Multiplication Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXHZ</td>
<td>$1 \times 10^{18}$</td>
</tr>
<tr>
<td>PEHZ</td>
<td>$1 \times 10^{15}$</td>
</tr>
<tr>
<td>THZ</td>
<td>$1 \times 10^{12}$</td>
</tr>
<tr>
<td>GHZ</td>
<td>$1 \times 10^9$</td>
</tr>
<tr>
<td>MHZ</td>
<td>$1 \times 10^6$</td>
</tr>
<tr>
<td>KHZ</td>
<td>$1 \times 10^3$</td>
</tr>
<tr>
<td>HZ</td>
<td>$1 \times 10^{-3}$</td>
</tr>
<tr>
<td>UHZ</td>
<td>$1 \times 10^{-6}$</td>
</tr>
<tr>
<td>NHZ</td>
<td>$1 \times 10^{-9}$</td>
</tr>
<tr>
<td>PHZ</td>
<td>$1 \times 10^{-12}$</td>
</tr>
<tr>
<td>FHZ</td>
<td>$1 \times 10^{-15}$</td>
</tr>
<tr>
<td>AHZ</td>
<td>$1 \times 10^{-18}$</td>
</tr>
</tbody>
</table>

**NOTE**

There is no suffix for $1 \times 10^{-3}$ when working with the HZ suffix.

---

**Query Syntax**

**UNIT:FREQuency?**

Returned format:

`freq suffix<NL>`

---

2j-10
Where:

- `freq suffix ::=` The current default suffix for frequency-related programming commands and queries.
UNIT:POWer|:VOLTage

UNIT:POWer|:VOLTage \{ level suffix \}

The "UNIT:POWer|:VOLTage" command determines the default suffix that will be assumed for the numeric argument of all power level-related programming commands if no suffix is used. It also determines the units for the data that power level-related queries return.

The parameter is as follows:

level suffix

The default suffix to be assumed by all power level-related programming commands when no suffix is used.

This command determines the default suffix that will be assumed for the numeric argument of all power level-related programming commands when no suffix is used. The preset default suffix is dBm (DBM). For example, if you wanted to set the synthesizer output power level to 13 dBm with the default suffix being dBm (the preset value), you could send the following command:

OUTPUT 719; "POW 13"

If you were to change the default suffix to milliwatts by sending the command "UNIT:POW MW", the following command could be sent to set the synthesizer output power level to 13 dBm.

OUTPUT 719; "POW 20"  20 mw is equal to 13 dBm.

There are several suffixes related to power level that can be used. These suffixes appear in the following table ("mult" can be left blank or replaced by the desired suffix multiplier, which is explained after the following table):

Table 2j-2. Power Level-Related Suffixes

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;mult&quot;V</td>
<td>Volts</td>
</tr>
<tr>
<td>&quot;mult&quot;W</td>
<td>Watts</td>
</tr>
<tr>
<td>DB&quot;mult&quot;V</td>
<td>Decibel Volts</td>
</tr>
<tr>
<td>DB&quot;mult&quot;W</td>
<td>Decibel Watts</td>
</tr>
</tbody>
</table>

2j-12
The suffixes in the above table can include an optional suffix multiplier in place of “mult”. For example, the volts suffix “V” can be preceded by the suffix multiplier “M” to yield MV (millivolts) or $1 \times 10^{-3}$ volts. The available suffix multipliers appear in the following table.

**Table 2j-3. Available Suffix Multipliers**

<table>
<thead>
<tr>
<th>Suffix Multiplier</th>
<th>Multiplication Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX</td>
<td>$1 \times 10^{18}$</td>
</tr>
<tr>
<td>PE</td>
<td>$1 \times 10^{15}$</td>
</tr>
<tr>
<td>T</td>
<td>$1 \times 10^{12}$</td>
</tr>
<tr>
<td>G</td>
<td>$1 \times 10^{9}$</td>
</tr>
<tr>
<td>MA</td>
<td>$1 \times 10^{6}$</td>
</tr>
<tr>
<td>K</td>
<td>$1 \times 10^{3}$</td>
</tr>
<tr>
<td>M⁻¹</td>
<td>$1 \times 10^{-3}$</td>
</tr>
<tr>
<td>U</td>
<td>$1 \times 10^{-6}$</td>
</tr>
<tr>
<td>N</td>
<td>$1 \times 10^{-9}$</td>
</tr>
<tr>
<td>P</td>
<td>$1 \times 10^{-12}$</td>
</tr>
<tr>
<td>F</td>
<td>$1 \times 10^{-15}$</td>
</tr>
<tr>
<td>A</td>
<td>$1 \times 10^{-18}$</td>
</tr>
</tbody>
</table>

1. The suffix "DBM" is equivalent to the suffix "DBMW."

---

**Query Syntax**

**UNIT:POWer**:VOLTage?

Returned format:

*level suffix*<NL>

Where:

- *level suffix* := The current default suffix (including the suffix multiplier) for power level-related programming commands and queries.
UNIT:TIME

UNIT:TIME \{ time suffix \}

The "UNIT:TIME" command determines the default suffix that will be assumed for the numeric argument of all time-related programming commands if no suffix is used. It also determines the units for the data that time-related queries return.

The parameter is as follows:

\textit{time suffix} \quad The default suffix to be assumed by all time-related programming commands when no suffix is used.

This command determines the default suffix that will be assumed for the numeric argument of all time-related programming commands when no suffix is used. The preset default suffix is seconds (S). For example, if you wanted to set pulse delay to 18 μs with the default suffix being seconds (the preset value), you could send the following command:

\texttt{OUTPUT 719; "PULS:DEL .000018"}

If you were to change the default suffix to microseconds by sending the command "UNIT:TIME US", the following command could be sent to set pulse delay to 18μs.

\texttt{OUTPUT 719; "PULS:DEL 18"}

The available default suffixes appear in the following table.
Table 2j-4. Available Default Suffixes

<table>
<thead>
<tr>
<th>Default Suffix</th>
<th>Multiplication Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXS</td>
<td>$1 \times 10^{16}$</td>
</tr>
<tr>
<td>PES</td>
<td>$1 \times 10^{15}$</td>
</tr>
<tr>
<td>TS</td>
<td>$1 \times 10^{12}$</td>
</tr>
<tr>
<td>GS</td>
<td>$1 \times 10^8$</td>
</tr>
<tr>
<td>MAS</td>
<td>$1 \times 10^6$</td>
</tr>
<tr>
<td>KS</td>
<td>$1 \times 10^4$</td>
</tr>
<tr>
<td>S</td>
<td>$1 \times 10^2$</td>
</tr>
<tr>
<td>MS</td>
<td>$1 \times 10^{-2}$</td>
</tr>
<tr>
<td>US</td>
<td>$1 \times 10^{-6}$</td>
</tr>
<tr>
<td>NS</td>
<td>$1 \times 10^{-9}$</td>
</tr>
<tr>
<td>PS</td>
<td>$1 \times 10^{-12}$</td>
</tr>
<tr>
<td>FS</td>
<td>$1 \times 10^{-15}$</td>
</tr>
<tr>
<td>AS</td>
<td>$1 \times 10^{-18}$</td>
</tr>
</tbody>
</table>

---

**Query Syntax**

**UNIT:TIME?**

Returned format:

*time suffix*<NL>

Where:

- *time suffix* ::= The current default suffix for time-related programming commands and queries.
*WAI (Wait-to-Continue Command)

*WAI

The "*WAI" command makes the synthesizer wait until pending operations have taken place, then continues executing commands that follow the "**WAI" command.

The "*WAI" command is useful when placed after those commands that are not necessarily finished executing before the next HP-IB command is executed when it is critical that they be finished executing. In general, SCPI commands execute sequentially but the "**WAI" command can be used to allow the hardware to settle after a command is executed.

See Also

*OPC
RF Output Control
Commands
RF Output Control Commands

This sub-chapter contains detailed information on all programming commands pertaining to RF output control.
OUTPut:PROTection[:STATE]

OUTPut:PROTection[:STATE] { ON OFF }

The "OUTPut: PROTection[:STATE]" command turns RF protection during frequency switching on or off. This function is useful when measuring the synthesizer frequency switching time.

The parameters are as follows:

ON       Turns RF protection on during frequency switching.
OFF      Turns RF protection off during frequency switching.

The synthesizer contains an RF protection circuit that momentarily attenuates output power and then brings the output power back up to the required level (in 20 ms nominal) when the synthesizer output frequency is changed. This circuit assures that the output power does not overshoot the power level set via the front panel or HP-IB during frequency switching.

When the synthesizer is set to the preset state, RF protection is turned on.

Notes

1. RF protection during frequency switching cannot be turned off when AM, FM, or pulse modulation is being used. It can only be turned off when the synthesizer is in CW mode.

2. Even when the synthesizer is in CW mode, and the RF protection during frequency switching function is turned off, the RF protection circuit will switch in when the synthesizer divider circuits switch or whenever frequency switches greater than 260 MHz occur.
Query Syntax

OUTPut:PROTection[:STATE]?

Returned format:
state<NL>

Where:
- \textit{state} ::= "+1" if RF protection during frequency switching is currently turned on.
- \textit{state} ::= "+0" if RF protection during frequency switching is currently turned off.

See Also

[SOURce[1]:FREQuency[:CW]:FIXed]
OUTPut[:STATe]

OUTPut[:STATe] \{ ON \ OFF \}

The "OUTPut[:STATe]" command turns the signal at the RF OUTPUT connector on and off.

The parameters are as follows:

ON          Turns the signal at the RF OUTPUT connector on.
OFF         Turns the signal at the RF OUTPUT connector off.

When the "OUTP:STAT OFF" command is sent to the synthesizer, the internal oscillators are turned off, and the internal RF power shutdown circuit is turned on. The preset state for the signal at the RF OUTPUT connector is on.

Query Syntax

OUTPut[:STATe]?

Returned format:

state<NL>

Where:

- \textit{state} ::= "+1" if the signal at the RF OUTPUT connector is currently turned on.
- \textit{state} ::= "+0" if the signal at the RF OUTPUT connector is currently turned off.
RF Output Control Commands

OUTPut[:STATe]

See Also

Connectors
[SOURce[1]:]POWer:ATTenuation:AUTO

[SOURce[1]:]POWer:ATTenuation:AUTO \{ \text{ON} \ \text{OFF} \ \text{ONCE} \}

The "[SOURce[1]:]POWer:ATTenuation:AUTO" command turns the attenuator hold function on or off.

The parameters are as follows:

ON \quad \text{Turns the attenuator hold function off.}
OFF \quad \text{Turns the attenuator hold function on.}
ONCE \quad \text{Turns the attenuator hold function off and then on.}

The attenuator hold function can be used to extend the vernier range to prevent the step attenuator from switching between two levels. Locking the step attenuator keeps the attenuator from switching between the two levels as leveled power is varied above and below the threshold level, thus saving wear on the attenuator.

When the "ONCE" parameter is used, the attenuator hold function is temporarily turned off so that the synthesizer can automatically update the attenuator setting, then it is turned on to lock the attenuator at that setting.

Advantages

Locking the step attenuator prevents switching between two levels when the leveled output power is set near an attenuator switching threshold. This is useful when using external leveling.
Disadvantages

When the step attenuator is locked, the output power dynamic range is limited to the vernier range at the current output frequency. The vernier range extends from a lower limit that is typically 5 dB lower than the specified value for that range to an upper limit that is frequency dependent on the synthesizer output frequency.

**NOTE**

In external diode detector leveling or external power meter leveling mode, the attenuator is always locked in the current range and cannot be unlocked using this function.

Query Syntax

```
[SOURce[1]:]POWer:ATTenuation:AUTO?
```

Returned format:

```
state<NL>
```

Where:

- `state ::= "+1"` if the attenuator hold function is currently off or `"+0"` if the attenuator hold function is currently on or set to "once."

2k-8
See Also

[SOURce[1]:POWer[:LEVEL]]
[SOURce[1]:]POWer:PROTection:STATe

[SOURce[1]:]POWer:PROTection:STATe \{ ON \{ OFF \}

The "[SOURce[1]:]POWer:PROTection:STATe" command turns the average power inhibit function on or off.

**NOTE**

This function is not available if Option 1E1 (step attenuator) is not installed.

The parameters are as follows:

ON  
Turns the average power inhibit function on.

OFF  
Turns the average power inhibit function off.

When the synthesizer is set to the preset state, the average power inhibit function is turned off.

The average power inhibit function can be used during pulse modulation to protect devices sensitive to high average power. When the output power level or frequency of the synthesizer is changed during pulse modulation, the internal leveling algorithm causes the RF output to be momentarily switched to CW to enable the synthesizer circuitry to sample the signal level and make a correction. If the output of the synthesizer is connected to circuitry that is average power-sensitive, damage to the circuitry could result during this CW calibration. When in internal leveling mode, the CW calibration is approximately 30 ms.

When the average power inhibit function is off (the preset condition), the CW calibration will accompany output power level and frequency changes. The CW calibration will also be present the first time pulse or logarithmic amplitude modulation is enabled. When average power inhibit is on, the
internal step attenuator will switch in 110 dB (90 dB on HP 83731A/32A) of attenuation during the CW calibration. This will protect power-sensitive circuitry connected to the RF OUTPUT connector, but will cause extra wear on the step attenuator. Turning the function on will also cause a momentary drop in signal power (approximately 200 ms) and will lengthen frequency and power level switching times by 70 ms.

---

**Pulsed Power Pre-Calibration Program**

As stated in the previous paragraph, the average power inhibit function causes the internal step attenuator to switch in 110 dB (90 dB on HP 83731A/32A) of attenuation whenever frequency or power level is changed. This causes extra wear on the step attenuator.

When you know the various frequencies and power levels that you will be using in a test routine, the following program can be used to gather the CW calibration values for frequency/power level pairs. After activating the special pulse modulation mode, calibration values can be sent for each frequency/power level pair and the CW calibration will be eliminated. This program provides an alternative to turning the average power inhibit function on and, therefore, minimizes wear on the step attenuator.

When the calibration portion of the program is run, you should disconnect average power sensitive circuitry from the RF OUTPUT to avoid damaging it. During the calibration, using a substitute load with the exact characteristics as the circuit load will preserve the specified CW-to-pulse level accuracy. The calibration should not be performed until the instrument has had sufficient time to warm up (usually 30 minutes). The calibration data remains valid as long as the ambient temperature remains stable. CW-to-pulse level accuracy degrades nominally by 0.07 dB/°C. For best accuracy, the calibration should be repeated whenever the ambient temperature changes.

The time the calibration routine takes to obtain the CW calibration values is equivalent to the normal frequency and power level switching times. In special pulse modulation mode, frequency and power level changes (without an attenuator range change) occur faster than during normal pulsed operation.
When running the following program, once the calibration is complete and special pulse modulation mode is entered, the following events will happen during pulsed frequency switching:

- The frequency ("FREQ "; Freqs(I); "MHz") command is sent: This causes the synthesizer to change frequency and the power level will drop to the minimum vernier level. The output power remains pulsed.
- The power level ("POW "; Powers(I); "DBM") command is sent: This causes the synthesizer to adjust only the attenuator range. The vernier remains at its minimum level.
- The ("DIAG:IBUS 23,"; Verniers(I)) command is sent: This adjusts the vernier level to its correct level. The synthesizer is now pulsing at the correct frequency and power level.

**NOTE**

The preceding commands must always be executed in the order presented for proper instrument operation. However, there are two cases when use of the frequency and/or power level commands can be minimized.

**Case 1** - If the synthesizer will only be operating at one frequency, the frequency command only needs to be sent once.

**Case 2** - If the synthesizer will only be operating at one attenuator range, the power level command only needs to be sent once.

```plaintext
10 OPTION BASE 1
20 DIM Freqs(100), Powers(100), Verniers(100)
30 Num_points=4
40 DATA 1000, 0, 1330, -4, 1750, 2000, 12
50 OUTPUT 719;"*RST"
60 OUTPUT 719;"PULM:SOUR EXT"
70 OUTPUT 719;"PULM:EXT:POL NORM"
80 OUTPUT 719;"PULM:STAT ON"
90 INPUT "DISCONNECT AVERAGE POWER SENSITIVE DEVICES
   FROM THE RF OUTPUT, THEN PRESS ENTER", A.
100 !
```

2k-12
FOR I=1 TO Num_points
READ Freqs(I), Powers(I)
OUTPUT 719;"FREQ ";Freqs(I);"MHZ;POW ";Powers(I);"DBM"
OUTPUT 719;"DIAG:IBUS? 23"
ENTER 719;Vernier(I)
NEXT I
!
OUTPUT 719;"DIAG:IBUS 73,16"
INPUT "CONNECT DUT TO OUTPUT AND PRESS ENTER. ",A
PRINT
!
FOR I=1 TO Num_points
OUTPUT 719;"FREQ ";Freqs(I);"MHZ;POW ";Powers(I);"DBM"
OUTPUT 719;"DIAG:IBUS 23 ";Verniers(I)
PRINT "SYNTHESIZER FREQUENCY IS CURRENTLY ";Freqs(I);"MHZ,
 AND POWER LEVEL IS CURRENTLY ";Powers(I);" dBm."
IF I=Num_points THEN GOTO 300
INPUT "PRESS ENTER WHEN YOU ARE READY TO GO TO THE NEXT
 FREQUENCY/POWER LEVEL PAIR. ",A
NEXT I
!
INPUT "PRESS ENTER TO EXIT SPECIAL PULSE MODULATION MODE. ",A
!
OUTPUT 719;"*RST"
PRINT
PRINT "NOTE: CYCLE SYNTHESIZER POWER OFF AND ON TO TERMINATE
 SPECIAL PULSE MODULATION MODE."
PRINT
PRINT "END OF PROGRAM"
END

Program Comments
10: Sets the lowest element of all arrays to 1.
20: Dimensions arrays.
30: Sets variable "Num_points" to 4 for this example.  
   "Num_points" must be equal to the number of 
   frequency/power level pairs in the DATA statement.
40: The frequency/power level pairs to be used by this program. 
The first number and every other number is a frequency; the
second number and every other number is a corresponding power level.

50: Presets the synthesizer.
60: Selects external pulse mode for this example. Modify this statement for your desired pulse mode.
70: Selects normal pulse polarity for this example. Modify this statement for your desired pulse polarity.
80: Turns pulse modulation on.
120: Reads frequency into the “I” position of array “Freqs” and power level into the “I” position of array “Powers”.
130: Sets synthesizer frequency and power level to the values in the arrays specified by “I”.
140: Queries the vernier DAC setting at the current frequency/power level.
150: Reads vernier DAC setting into the “I” position of array “Verniers”.
180: Activates special pulse modulation mode.
230: Sets synthesizer frequency and power level to the values in the arrays specified by “I”.
240: Sets vernier DAC to the value in the “I” position of array “Verniers”.
320: OUTPUT 719;“*RST”

---

Query Syntax

[SOURce[1]:]POWer:PROTection:STATe?

Returned format:

state<NL>

Where:

2k·14
- \textit{state} ::= "+1" if the average power inhibit function is currently on or "+0" if the average power inhibit function is currently off.

\begin{center}
\underline{See Also}
\end{center}

[SOURce[1]:POWer[:LEVEL]]
[SOURce[1]:PULM:SOURce]
[SOURce[1]:PULM:STATe]
Status Register Commands
Status Register Commands

This sub-chapter contains detailed information on all programming commands pertaining to the status register.
The Status Register System

You can find out the state of certain instrument hardware and firmware events and conditions by programming the status register system. The status register system is arranged in a hierarchical order. Three lower status groups provide information to the status byte group. The status byte group is used to determine the general nature of an event and the lower status groups are used to determine the specific nature of the event. A status group is a set of related registers whose contents are programmed in order to produce status summary bits. The hierarchy of the status register system is shown in Figure 21-1.

![Diagram of Status Register System Hierarchy]

General Status Group Model

Figure 21-2 shows the structure of a typical status group. Corresponding bits in the Condition Register are filtered by the Negative and Positive Transition Registers and stored in the Event Register. The contents of the Event Register are logically ANDed with the contents of the Enable Register and the result is logically ORed to produce a status summary bit.
Note that each status group does not necessarily contain all of the registers shown in Figure 21-2. For example, the Standard Event status group only contains an Event Register and an Enable Register. Each of the synthesizer status groups consists of some or all of the registers explained below:

**Condition Register**
A condition register continuously monitors the hardware and firmware status of the synthesizer. There is no latching or buffering for a condition register; it is updated in real time.

**Negative Transition Register**
A negative transition register specifies the bits in the condition register that will set corresponding bits in the event register when the condition bit changes from 1 to 0.

**Positive Transition Register**
A positive transition register specifies the bits in the condition register that will set corresponding bits in the event register when the condition bit changes from 0 to 1.
An event register latches transition events from the condition register as specified by the positive and negative transition registers. Bits in the event register are latched, and once set, they remain set until cleared by either querying the register contents or sending the "*CLS" command.

An enable register specifies the bits in the event register that can generate a summary bit. The synthesizer logically ANDs corresponding bits in the event and enable registers, and ORs all the resulting bits to produce a summary bit. Summary bits are, in turn, used by the Status Byte group.

---

**Synthesizer Status Groups**

The synthesizer status register system consists of the Status Byte group and three other status groups that provide input to the Status Byte group. The following paragraphs explain the information that is provided by each status group.

The Status Byte group is used to determine the general nature of an instrument event or condition. The Status Byte group consists of the Service Request Enable register and the Status Byte. The bits in the Status Byte provide you with the following information:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2</td>
<td>These bits are always set to 0.</td>
</tr>
<tr>
<td>3</td>
<td>A 1 in this bit position indicates that the Questionable Data summary bit has been set. The Questionable Event register can then be read to determine the specific condition that caused this bit to be set.</td>
</tr>
<tr>
<td>4</td>
<td>A 1 in this bit position indicates that the synthesizer has data ready in its output queue. Note that there are no lower status groups that provide input to this bit.</td>
</tr>
<tr>
<td>5</td>
<td>A 1 in this bit position indicates that the Standard Event summary bit has been set. The Standard Event Status register can then be read to determine the specific event that caused this bit to be set.</td>
</tr>
</tbody>
</table>
A 1 in this bit position indicates that the instrument has at least one reason to require service. The bits in the Status Byte are logically ANDed with the Service Request Enable register and the result is ORed and input to this bit.

A 1 in this bit position indicates that the Standard Operation summary bit has been set. The Operation Event register can then be read to determine the specific condition that caused this bit to be set.

**The Standard Event Status Group**

The Standard Event Status group is used to determine the specific event that set bit 5 in the Status Byte. The Standard Event Status group consists of the Standard Event Status register (an Event register) and the Standard Event Status Enable register. The bits in the Standard Event Status register provide you with the following information:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A one in this bit position indicates that all pending synthesizer operations were completed following execution of the &quot;*OPC&quot; command.</td>
</tr>
<tr>
<td>1</td>
<td>This bit is always set to 0.</td>
</tr>
<tr>
<td>2</td>
<td>A one in this bit position indicates that a query error has occurred. Query errors have SCPI error numbers from −499 to −400.</td>
</tr>
<tr>
<td>3</td>
<td>A one in this bit position indicates that a device dependent error has occurred. Device dependent errors have SCPI error numbers from −399 to −300 and 1 to 32767.</td>
</tr>
<tr>
<td>4</td>
<td>A one in this bit position indicates that an execution error has occurred. Execution errors have SCPI error numbers from −299 to −200.</td>
</tr>
<tr>
<td>5</td>
<td>A one in this bit position indicates that a command error has occurred. Command errors have SCPI error numbers from −199 to −100.</td>
</tr>
<tr>
<td>6</td>
<td>A one in this bit position indicates that at least one front panel key (except the LINE switch) has been pressed (even if the synthesizer is in Local Lockout (LLO) mode).</td>
</tr>
<tr>
<td>7</td>
<td>A one in this bit position indicates that the synthesizer has been turned off and then on.</td>
</tr>
</tbody>
</table>
The Standard Operation Status Group

The Standard Operation status group is used to determine the specific condition that set bit 7 in the Status Byte. The Standard Operation status group consists of the Operation Condition register, Operation Negative Transition register, Operation Positive Transition register, Operation Event register, and Operation Event Enable register. The bits in the Operation Event register provide you with the following information:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A one in this bit position indicates that the YIG oscillator calibration is currently being run.</td>
</tr>
<tr>
<td>1</td>
<td>A one in this bit position indicates that the synthesizer hardware is settling (for example, the power level is changing).</td>
</tr>
<tr>
<td>2 - 6</td>
<td>These bits are always set to 0.</td>
</tr>
<tr>
<td>7</td>
<td>A one in this bit position indicates that the synthesizer level correct routine is being run.</td>
</tr>
<tr>
<td>8 - 15</td>
<td>These bits are always set to 0.</td>
</tr>
</tbody>
</table>

The Questionable Data Status Group

The Questionable Data status group is used to determine the specific condition that set bit 3 in the Status Byte. The Questionable Data status group consists of the Questionable Condition register, Questionable Negative Transition register, Questionable Positive Transition register, Questionable Event register, and Questionable Event Enable register. The bits in the Questionable Event register provide you with the following information:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2</td>
<td>These bits are always set to 0.</td>
</tr>
<tr>
<td>3</td>
<td>A one in this bit position indicates that the RF output power might be uncalibrated or unleveled.</td>
</tr>
<tr>
<td>4</td>
<td>A one in this bit position indicates that the internal frequency reference oven is cold (Option 1E5 only).</td>
</tr>
<tr>
<td>5</td>
<td>A one in this bit position indicates that the synthesizer output frequency might be uncalibrated.</td>
</tr>
<tr>
<td>6</td>
<td>This bit is always set to 0.</td>
</tr>
<tr>
<td>7</td>
<td>A one in this bit position indicates that one or more of the modulations might be uncalibrated.</td>
</tr>
</tbody>
</table>
Status Register Commands

The Status Register System

8  This bit is set to 1 whenever bits 3, 5, or 7 in this register are set to 1.
9 - 15 These bits are always set to 0.

Status Register System Programming Example

In the following example, the Status Register System is programmed to set bit 6 of the status byte (the SRQ bit) high after the synthesizer hardware has settled. Bit 6 is monitored and, once it is set high, the controller prints "HARDWARE IS SETTLED" on its screen.

```
10  OUTPUT 719;"STAT:OPER:PTR 0"
20  OUTPUT 719;"STAT:OPER:NTR 2"
30  OUTPUT 719;"STAT:OPER:ENAB 2" "
40  OUTPUT 719;"*SRE 128" "
50  PRINT "SRQ IS SET UP" "
60  OUTPUT 719;"*CLS" "
70  A=SPOLL(719)"
80  OUTPUT 719;"FREQ 2.123GHz;POW -1.23dBm" "
90  Wait4srq: A=SPOLL(719)"
100 IF A=0 THEN GOTO Wait4srq"
110 PRINT "HARDWARE IS SETTLED" 
120 END"
```

Program Comments

10:  Disable all bits in the Operation Positive Transition register.
20:  Enable bit 2 (the "hardware settling" bit) in the Operation Negative Transition register.
30:  Enable bit 2 (the "hardware settling" bit) in the Operation Event Enable register.
40:  Enable bit 7 (the OPERation summary bit) in the Service Request Enable register to cause an SRQ.
60:  Clear any previous status conditions.
70:  Clear old SRQ state.
80: Set synthesizer output frequency and power.
90: Poll the SRQ state.
100: If no SRQ has been generated, keep polling.
**CLS (Clear Status Command)**

*CLS*

The "CLS" command clears the Operation Event register, Questionable Event register, and the Standard Status Event register.

Sending the "CLS" command sets all bits in the Operation Event register, Questionable Event register, and the Standard Status Event register to 0. Clearing these registers causes bits 3, 5, and 7 in the Status Byte register to be temporarily set to 0. The "CLS" command also clears the HP-IB error reporting queue and the Request-for-OFC flag.

If the CLS command immediately follows a Program Message Terminator, the output queue and the MAV bit will also be cleared.

The *CLS command does not clear data memories or any instrument settings.

---

**See Also**

*ESR?*
STATus:OPERation[:EVENt]?
STATus:QUEStionable[:EVENt]?
*STB?
*ESE (Standard Event Status Enable)

*ESE number

The "*ESE" command sets the Standard Event Status Enable register. This register selects which bits in the Standard Event Status Register can set bit 5 in the status byte.

The parameter is as follows:

number The number representing the value of bits in the Standard Event Status Enable register to be set. number can be from 0 to 255.

Bits in the Standard Event Status Enable register are logically ANDed with bits in the Standard Event Status register. If the result is 1, bit 5 in the status byte is set.

The decimal value of each bit in the Standard Event Status Enable register is shown in the following table.

Table 21-1. Standard Event Status Enable Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Enables</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>PON - Power on occurred.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>URQ - User request (key pressed).</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>CME - Command error occurred.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>EXE - Execution error occurred.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>DDE - Device dependent error occurred.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>QYE - Query error occurred.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>ROC - Request control (not used).</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>OPC - Operation complete.</td>
</tr>
</tbody>
</table>

At power on, the Standard Event Status Enable register is set to 0 unless the *PSC command has been set to 0 (zero).
Status Register Commands

*ESE (Standard Event Status Enable)

Query Syntax

*ESE?

Returned format:

number\<NL>

Where:

- \textit{number} ::= The current value of the Standard Event Status Enable register.

See Also

*CLS
*ESR?
*OPC
*PSC
*SRE
*STB?
*ESR? (Standard Event Status Register Query)

*ESR?
The "*ESR?" query returns the contents of the Standard Event Status register.

When you read the contents of the Event Status register, the value returned is the total bit weights of all the bits that are high at the time you read it.

The decimal value of each bit (the bit weight) in the Event Status register is shown in the following table.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Name</th>
<th>Condition</th>
</tr>
</thead>
</table>
| 7   | 128    | PDN  | 0 = no OFF to ON transition has occurred with the synthesizer power.  
|     |        |      | 1 = an OFF to ON transition has occurred with the synthesizer power. |
| 6   | 64     | URQ  | 0 = no front panel key has been pressed.  
|     |        |      | 1 = front panel key has been pressed.         |
| 5   | 32     | CME  | 0 = no command errors have been detected.  
|     |        |      | 1 = a command error has been detected.       |
| 4   | 16     | EXE  | 0 = no execution error has been detected.  
|     |        |      | 1 = an execution error has been detected.    |
| 3   | 8      | DDE  | 0 = no device dependent errors have been detected.  
|     |        |      | 1 = a device dependent error has been detected. |
| 2   | 4      | QYE  | 0 = no query errors have been detected.  
|     |        |      | 1 = a query error has been detected.         |
| 1   | 2      | RQC  | Not used - always 0.  
|     |        |      |                                          |
| 0   | 1      | OPC  | 0 = operation is not complete.  
|     |        |      | 1 = operation is complete.                  |

The Event Status register is cleared (set to 0) when the "*CLS" command is sent or after "*ESR?" is executed.

21-13
Status Reporting

When an error is reported to the HP-IB error queue, one of the Standard Event Status Register error bits will also be set. Which bit is set depends on the value of the error number. If the error number is from \(-199\) to \(-100\), the Command Error bit is set. If the error number is from \(-299\) to \(-200\), the Execution Error bit is set. If the error number is from \(-399\) to \(-300\) or from \(1\) to \(32767\), the Device Dependent Error bit is set. If the error number is from \(-499\) to \(-400\), the Query Error bit is set.

See Also

*CLS
*ESE
*OPC
*SRE
*STB?
**PSC (Power-On Status Clear)**

\[
\text{\texttt{PSC}} \begin{cases} 
0 \\
1 
\end{cases}
\]

The "*PSC" command enables or disables the automatic power-on clearing of the Service Request Enable (*SRE) register and the Standard Event Status Enable (*ESE) register. It also enables or disables the automatic power-on presetting of the SCPI STATus transition registers and enable registers.

The parameters are as follows:

0

Disables clearing of Service Request Enable (*SRE) register and Standard Event Status Enable (*ESE) register at power up as well as power-on presetting of the SCPI STATus transition registers and enable registers.

1

Enables clearing of Service Request Enable (*SRE) register and Standard Event Status Enable (*ESE) register at power up as well as power-on presetting of the SCPI STATus transition registers and enable registers.

The factory preset condition for the "*PSC" command is "1" (clearing enabled). Once the *PSC value is changed, it is not affected by pressing the [PRES] key or sending the "*RST" or "SYST:PRES" commands.

**Query Syntax**

\[
\text{\texttt{PSC?}}
\]

Returned format:

\[
\text{\texttt{state<NL>}}
\]
Status Register Commands

*PSC (Power-On Status Clear)

Where:

- \textit{state} ::= "+0" if clearing of the *SRE and *ESE registers at power-up is disabled or "+1" if clearing of the *SRE and *ESE registers at power-up is enabled.

---

See Also

*ESE
*SRE
**SRE (Service Request Enable)**

*SRE number*

The "*SRE" command sets the Service Request Enable register bits.

The parameter is as follows:

`number`  The number representing the value of bits in the Service Request Enable register to be set. `number` can be from 0 to 191.

The Service Request Enable register contains a mask value for the bits to be enabled to produce an SRQ in the status byte. A 1 in the Service Request Enable register will enable the corresponding bit in the status byte. A 0 will disable the bit.

The decimal value of each bit in the Service Request Enable register is shown in the following table.

**Table 21-2. Service Request Enable Register Bit Definitions**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Enables</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>SCPI operation summary bit.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Cannot be set.</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>ESB - Event Status Bit.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>MAV - Message Available.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>SCPI questionable summary bit.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Don't care.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Don't care.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Don't care.</td>
</tr>
</tbody>
</table>

At power on, the Service Request Enable register is set to 0 unless the *PSC command has been set to 0.
Status Register Commands

*SRE (Service Request Enable)

---

Query Syntax

*SRE?

Returned format:

number<NL>

Where:

- number ::= The current value of the Service Request Enable register.

---

See Also

*ESE
*ESR?
*PSC
*STB?
STATus:OPERation:CONDition?

The "STATus:OPERation:CONDition?" query returns the contents of the Operation Condition register.

The Operation Condition register is constantly updated as operational conditions occur. No conditions are saved in this register.

When you read the contents of the Operation Condition register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Operation Condition register using this command, the contents of the register are not altered.

The decimal value of each bit (the bit weight) in the Operation Condition register is shown in the following table.
### Table 21-3. Operation Condition Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Not used - always 0.</td>
</tr>
</tbody>
</table>
| 7   | 128    | 0 = instrument is not level correcting.  
|     |        | 1 = instrument is level correcting.     |
| 6   | 64     | Not used - always 0.      |
| 5   | 32     | Not used - always 0.      |
| 4   | 16     | Not used - always 0.      |
| 3   | 8      | Not used - always 0.      |
| 2   | 4      | Not used - always 0.      |
| 1   | 2      | 0 = instrument is not settling.  
|     |        | 1 = instrument is settling.   |
| 0   | 1      | 0 = instrument is not calibrating. 
|     |        | 1 = instrument is calibrating.   |

### See Also

- STATus:OPERation[:EVENt]?
- STATus:OPERation:ENABLE
- STATus:OPERation:PTRansition
- STATus:OPERation:NTRansition
- *STB?
STATus:OPERation:ENABLE

STATus:OPERation:ENABLE number

The "STATus:OPERation:ENABLE" command sets the contents of the Operation Event Enable register.

The parameter is as follows:

number The number representing the value of bits in the Operation Event Enable register to be set. The number must be from 0 to 32767.

The Operation Event Enable register contains a mask value for the bits to be enabled to set bit 7 in the status byte. A 1 in the Operation Event Enable register will enable the corresponding bit in the Operation Event register to set bit 7 in the status byte. A 0 will disable the bit.

The decimal value of each bit (the bit weight) in the Operation Event Enable register is shown in the following table.
### Table 21-4. Operation Event Enable Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>X - don't care.</td>
</tr>
</tbody>
</table>
| 7   | 128    | 0 = inhibit a "level correcting" event from setting bit 7 in the status byte.  
     |        | 1 = enable a "level correcting" event to set bit 7 in the status byte. |
| 6   | 64     | X - don't care. |
| 5   | 32     | X - don't care. |
| 4   | 16     | X - don't care. |
| 3   | 8      | X - don't care. |
| 2   | 4      | X - don't care. |
| 1   | 2      | 0 = inhibit a "settling" event from setting bit 7 in the status byte.  
     |        | 1 = enable a "settling" event to set bit 7 in the status byte. |
| 0   | 1      | 0 = inhibit a "calibrating" event from setting bit 7 in the status byte.  
     |        | 1 = enable a "calibrating" event to set bit 7 in the status byte. |

### Query Syntax

**STATus:OPERation:ENABle?**

Returned format:

`number<NL>`

Where:

- `number ::= The current value of the Operation Event Enable register.`
See Also

STATus:OPERation[:EVENt]?
STATus:OPERation:CONDition?
STATus:OPERation:PTRansition
STATus:OPERation:NTRansition
*STB?
STATus:OPERation[:EVENt]?

The "STATus:OPERation[:EVENt]?" query returns the contents of the Operation Event register.

The Operation Event register holds a record of the state changes in the Operation Condition register that were defined in the Operation Edge Registers.

When you read the contents of the Operation Event register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Operation Event register using this command, the register is cleared (set to zero).

The decimal value of each bit (the bit weight) in the Operation Event register is shown in the following table.
### Table 21-5. Operation Event Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Not used - always 0.</td>
</tr>
</tbody>
</table>
| 7   | 128    | 0 = a "level correcting" event has not occurred in the Operation Condition register that is defined by the Operation Edge registers.  
1 = a "level correcting" event has occurred in the Operation Condition register that is defined by the Operation Edge registers. |
| 6   | 64     | Not used - always 0. |
| 5   | 32     | Not used - always 0. |
| 4   | 16     | Not used - always 0. |
| 3   | 8      | Not used - always 0. |
| 2   | 4      | Not used - always 0. |
| 1   | 2      | 0 = a "settling" event has not occurred in the Operation Condition register that is defined by the Operation Edge registers.  
1 = a "settling" event has occurred in the Operation Condition register that is defined by the Operation Edge registers. |
| 0   | 1      | 0 = a "calibrating" event has not occurred in the Operation Condition register that is defined by the Operation Edge registers.  
1 = a "calibrating" event has occurred in the Operation Condition register that is defined by the Operation Edge registers. |

The Operation Event register is also set to 0 after the "*CLS*" command is sent.
Status Register Commands

**STATus:OPERation:EVENt?**

---

**See Also**

STATus:OPERation:CONDition?
STATus:OPERation:ENABLE
STATus:OPERation:PTRansition
STATus:OPERation:NTRansition
*STB?
STATus:OPERation:NTRansition

STATus:OPERation:NTRansition number
The "STATus:OPERation:NTRansition" command is used to define which bits in the Operation Condition register will set the corresponding bit in the Operation Event register on a one to zero state change.

The parameter is as follows:

number The number representing the value of bits in the Operation Negative Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Operation Negative Transition register is shown in the following table.
## Status Register Commands

**STATus:OPERation:NTRansition**

### Table 21-6. Operation Negative Transition Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>14</td>
<td>18384</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>13</td>
<td>6192</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>X - don't care.</td>
</tr>
</tbody>
</table>
| 7   | 128    | 0 = inhibit a one to zero state change of the "level correcting" bit from setting bit 7 in the Operation Event register.  
1 = enable a one to zero state change of the "level correcting" bit to set bit 7 in the Operation Event register. |
| 6   | 64     | X - don't care. |
| 5   | 32     | X - don't care. |
| 4   | 16     | X - don't care. |
| 3   | 8      | X - don't care. |
| 2   | 4      | X - don't care. |
| 1   | 2      | 0 = inhibit a one to zero state change of the "setting" bit from setting bit 1 in the Operation Event register.  
1 = enable a one to zero state change of the "setting" bit to set bit 1 in the Operation Event register. |
| 0   | 1      | 0 = inhibit a one to zero state change of the "calibrating" bit from setting bit 0 in the Operation Event register.  
1 = enable a one to zero state change of the "calibrating" bit to set bit 0 in the Operation Event register. |

### Query Syntax

**STATus:OPERation:NTRansition?**

Returned format:

```
number\<NL>
```

21-28
Status Register Commands

STATus:OPERation:NTTransi6ion

Where:

• number ::= The current value of the Operation Negative Transition register.

See Also

STATus:OPERation[:EVENT]?
STATus:OPERation:CONDition?
STATus:OPERation:ENABLE
STATus:OPERation:PTransi6ion
*STB?
STATus:OPERation:PTRansition

STATus:OPERation:PTRansition *number*

The "STATus:OPERation:PTRansition" command is used to define which bits in the Operation Condition register will set the corresponding bit in the Operation Event register on a zero to one state change.

The parameter is as follows:

*number* The number representing the value of bits in the Operation Positive Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Operation Positive Transition register is shown in the following table.
### Table 21.7. Operation Positive Transition Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>X - don’t care.</td>
</tr>
</tbody>
</table>
| 7   | 128    | 0 = inhibit a zero to one state change of the "level correcting" bit from setting bit 7 in the Operation Event register.  
1 = enable a zero to one state change of the "level correcting" bit to set bit 7 in the Operation Event register. |
| 6   | 64     | X - don’t care. |
| 5   | 32     | X - don’t care. |
| 4   | 16     | X - don’t care. |
| 3   | 8      | X - don’t care. |
| 2   | 4      | X - don’t care. |
| 1   | 2      | 0 = inhibit a zero to one state change of the "settling" bit from setting bit 1 in the Operation Event register.  
1 = enable a zero to one state change of the "settling" bit to set bit 1 in the Operation Event register. |
| 0   | 1      | 0 = inhibit a zero to one state change of the "calibrating" bit from setting bit 0 in the Operation Event register.  
1 = enable a zero to one state change of the "calibrating" bit to set bit 0 in the Operation Event register. |

---

**Query Syntax**

**STATus:OPERation:PTRansition?**

Returned format:

`number<NL>`
Status Register Commands

**STATus:OPERation:PTRansition**

Where:
- `number` := The current value of the Operation Positive Transition register.

---

**See Also**

- `STATus:OPERation[:EVENt]?`
- `STATus:OPERation:CONDition?`
- `STATus:OPERation:ENABLE`
- `STATus:OPERation:NTRansition`
- `*STB?`
STATus:PRESet

The "STATus:PRESet" command sets the following status registers to a known state:

- Operation Event Enable register
- Operation Negative Transition register
- Operation Positive Transition register
- Questionable Event Enable register
- Questionable Negative Transition register
- Questionable Positive Transition register

When the "STATus:PRESet" command is sent, the status registers are affected as shown in the following table.

<table>
<thead>
<tr>
<th>Register</th>
<th>Preset Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Event Enable register</td>
<td>0</td>
</tr>
<tr>
<td>Operation Negative Transition register</td>
<td>0</td>
</tr>
<tr>
<td>Operation Positive Transition register</td>
<td>32767</td>
</tr>
<tr>
<td>Questionable Event Enable register</td>
<td>32767</td>
</tr>
<tr>
<td>Questionable Negative Transition register</td>
<td>0</td>
</tr>
<tr>
<td>Questionable Positive Transition register</td>
<td>0</td>
</tr>
</tbody>
</table>
Status Register Commands

STATus:PRESet

See Also

STATus:OPERation[:EVENT]?  
STATus:OPERation:CONDition?  
STATus:OPERation:ENABLE  
STATus:OPERation:NTRansition  
STATus:OPERation:PTRansition  
STATus:QUESTionable[:EVENT]?  
STATus:QUESTionable:CONDition?  
STATus:QUESTionable:ENABLE  
STATus:QUESTionable:NTRansition  
STATus:QUESTionable:PTRansition  
*STB?
STATus:QUESTionable:CONDition?

The “STATus:QUESTionable:CONDition?” query returns the contents of the Questionable Condition register.

The Questionable Condition register is constantly updated as questionable conditions change. No conditions are saved in this register.

When you read the contents of the Questionable Condition register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Questionable Condition register using this command, the contents of the register are not altered.

The decimal value of each bit (the bit weight) in the Questionable Condition register is shown in the following table.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>0 = instrument is calibrated. 1 = instrument is un-calibrated.</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>0 = modulation circuitry is calibrated. 1 = modulation circuitry is un-calibrated.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>0 = frequency circuitry is locked. 1 = frequency circuitry is unlocked.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>0 = internal frequency reference oven has reached operating temperature. 1 = internal frequency reference oven is cold.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0 = output power is calibrated or leveled. 1 = output power is un-calibrated or uneleveled.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Not used - always 0.</td>
</tr>
</tbody>
</table>
Status Register Commands

STATus:QUESTionable:CONDition?

See Also

STATus:QUESTionable[:EVENt]?
STATus:QUESTionable:ENABle
STATus:QUESTionable:PTRansition
STATus:QUESTionable:NTRansition
*STB?
STATus:QUEStionable:ENABle

The "STATus:QUEStionable:ENABle" command sets the contents of the Questionable Event Enable register.

The parameter is as follows:

number

The number representing the value of bits in the Questionable Event Enable register to be set. The number must be from 0 to 32767.

The Questionable Event Enable register contains a mask value for the bits to be enabled to set bit 3 in the status byte. A 1 in the Questionable Event Enable register will enable the corresponding bit in the Questionable Event register to set bit 3 in the status byte. A 0 will disable the bit.

The decimal value of each bit (the bit weight) in the Questionable Event Enable register is shown in the following table.
### Table 21-10. Questionable Event Enable Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>X - don’t care.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>X - don’t care.</td>
</tr>
</tbody>
</table>

- **Bit 8 (256)**: 0 = inhibit an “instrument calibration” event from setting bit 3 in the status byte. 1 = enable an “instrument calibration” event to set bit 3 in the status byte.
- **Bit 7 (128)**: 0 = inhibit a “modulation circuitry calibration” event from setting bit 3 in the status byte. 1 = enable a “modulation circuitry calibration” event to set bit 3 in the status byte.
- **Bit 6 (64)**: X - don’t care.
- **Bit 5 (32)**: 0 = inhibit a “frequency circuitry lock” event from setting bit 3 in the status byte. 1 = enable a “frequency circuitry lock” event to set bit 3 in the status byte.
- **Bit 4 (16)**: 0 = inhibit a “reference oven temperature” event from setting bit 3 in the status byte. 1 = enable a “reference oven temperature” event to set bit 3 in the status byte.
Table 21-10. Questionable Event Enable Register Bit Definitions (continued)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>0 - inhibit an &quot;output power calibration&quot; event from setting bit 3 in the status byte.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 - enable an &quot;output power calibration&quot; event to set bit 3 in the status byte.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X - don't care.</td>
</tr>
</tbody>
</table>

Query Syntax

STATus:QUESTionable:ENABLE?

Returned format:

\[\text{number}\langle\text{NL}\rangle\]

Where:

- \text{number} ::= The current value of the Questionable Event Enable register.

See Also

STATus:QUESTionable[:EVENT]?
STATus:QUESTionable:CONDition?
STATus:QUESTionable:PTRansition
STATus:QUESTionable:NTRansition
*STB?
STATus:QUESTionable[:EVENt]?

The "STATus:QUESTionable[:EVENt]?"] query returns the contents of the Questionable Event register.

The Questionable Event register holds a record of the state changes in the Questionable Condition register that were defined in the Questionable Edge Registers.

When you read the contents of the Questionable Event register, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the Questionable Event register using this command, the register is cleared (set to zero).

The decimal value of each bit (the bit weight) in the Questionable Event register is shown in the following table.
Table 21-11. Questionable Event Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Not used - always 0.</td>
</tr>
</tbody>
</table>
| 8   | 256    | 0 = an "instrument calibration" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers.  
     1 = an "instrument calibration" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers. |
| 7   | 128    | 0 = a "modulation circuitry calibration" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers.  
     1 = a "modulation circuitry calibration" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers. |
| 6   | 64     | Not used - always 0. |
| 5   | 32     | 0 = a "frequency circuitry lock" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers.  
     1 = a "frequency circuitry lock" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers. |
| 4   | 16     | 0 = a "reference oven temperature" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers.  
     1 = a "reference oven temperature" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers. |
| 3   | 8      | 0 = an "output power calibration" event has not occurred in the Questionable Condition register that is defined by the Questionable Edge registers.  
     1 = an "output power calibration" event has occurred in the Questionable Condition register that is defined by the Questionable Edge registers. |
| 2   | 4      | Not used - always 0. |
| 1   | 2      | Not used - always 0. |
| 0   | 1      | Not used - always 0. |

The Questionable Event register is also set to 0 after the "*CLS" command is sent.
Status Register Commands

STATus:QUESTionable:EVENT?

See Also

STATus:QUESTionable:CONDition?
STATus:QUESTionable:ENABLE
STATus:QUESTionable:PTRansition
STATus:QUESTionable:NTRansition
*STB?
STATus:QUESTionable:NTRansition

STATus:QUESTionable:NTRansition number

The "STATus:QUESTionable:NTRansition" command is used to define which bits in the Questionable Condition register will set the corresponding bit in the Questionable Event register on a one to zero state change.

The parameter is as follows:

number The number representing the value of bits in the Questionable Negative Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Questionable Negative Transition register is shown in the following table.
### Table 21-12. Questionable Negative Transition Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>X - don't care.</td>
</tr>
</tbody>
</table>
| 8   | 256    | 0 = inhibit a one to zero state change of the "instrument calibration" bit from setting bit 8 in the Questionable Event register.  
1 = enable a one to zero state change of the "instrument calibration" bit to set bit 8 in the Questionable Event register. |
| 7   | 128    | 0 = inhibit a one to zero state change of the "modulation circuitry calibration" bit from setting bit 7 in the Questionable Event register.  
1 = enable a one to zero state change of the "modulation circuitry calibration" bit to set bit 7 in the Questionable Event register. |
| 6   | 64     | X - don't care. |
| 5   | 32     | 0 = inhibit a one to zero state change of the "frequency circuitry lock" bit from setting bit 5 in the Questionable Event register.  
1 = enable a one to zero state change of the "frequency circuitry lock" bit to set bit 5 in the Questionable Event register. |
| 4   | 16     | 0 = inhibit a one to zero state change of the "reference oven temperature" bit from setting bit 4 in the Questionable Event register.  
1 = enable a one to zero state change of the "reference oven temperature" bit to set bit 4 in the Questionable Event register. |
| 3   | 8      | 0 = inhibit a one to zero state change of the "output power calibration" bit from setting bit 3 in the Questionable Event register.  
1 = enable a one to zero state change of the "output power calibration" bit to set bit 3 in the Questionable Event register. |
| 2   | 4      | X - don't care. |
| 1   | 2      | X - don't care. |
| 0   | 1      | X - don't care. |
Query Syntax

STATus:QUEStionable:NTRansition?

Returned format:

\textit{number}<NL>

Where:

- \textit{number} ::= The current value of the Questionable Negative Transition register.

See Also

STATus:QUEStionable[:EVENt]?
STATus:QUEStionable:CONDition?
STATus:QUEStionable:ENABLE
STATus:QUEStionable:PTRANSition
*STB?
STATus:QUESTionable:PTRansition

STATus:QUESTionable:PTRansition number

The "STATus:QUESTionable:PTRansition" command is used to define which bits in the Questionable Condition register will set the corresponding bit in the Questionable Event register on a zero to one state change.

The parameter is as follows:

number The number representing the value of bits in the Questionable Positive Transition register to be set. The number must be from 0 to 32767.

The decimal value of each bit (the bit weight) in the Questionable Positive Transition register is shown in the following table.
## Table 21-14. Questionable Positive Transition Register Bit Definitions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32768</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>X - don't care.</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>X - don't care.</td>
</tr>
</tbody>
</table>
| 8   | 256    | 0 = inhibit a zero to one state change of the "instrument calibration" bit from setting bit 8 in the Questionable Event register.  
1 = enable a zero to one state change of the "instrument calibration" bit to set bit 8 in the Questionable Event register. |
| 7   | 128    | 0 = inhibit a zero to one state change of the "modulation circuitry calibration" bit from setting bit 7 in the Questionable Event register.  
1 = enable a zero to one state change of the "modulation circuitry calibration" bit to set bit 7 in the Questionable Event register. |
| 6   | 64     | X - don't care. |
| 5   | 32     | 0 = inhibit a zero to one state change of the "frequency circuitry lock" bit from setting bit 5 in the Questionable Event register.  
1 = enable a zero to one state change of the "frequency circuitry lock" bit to set bit 5 in the Questionable Event register. |
| 4   | 16     | 0 = inhibit a zero to one state change of the "reference oven temperature" bit from setting bit 4 in the Questionable Event register.  
1 = enable a zero to one state change of the "reference oven temperature" bit to set bit 4 in the Questionable Event register. |
Table 21-14. Questionable Positive Transition Register Bit Definitions (continued)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Condition</th>
</tr>
</thead>
</table>
| 3   | 8      | 0 = inhibit a zero to one state change of the "output power calibration" bit from setting bit 3 in the Questionable Event register.
     |        | 1 = enable a zero to one state change of the "output power calibration" bit to set bit 3 in the Questionable Event register. |
| 2   | 4      | X - don't care. |
| 1   | 2      | X - don't care. |
| 0   | 1      | X - don't care. |

Query Syntax

STATus:QUESTIONable:PTRANSition?

Returned format:

number<NL>

Where:

- number ::= The current value of the Questionable Positive Transition register.

See Also

STATus:QUESTIONable:[EVENt]?
STATus:QUESTIONable:CONDition?
STATus:QUESTIONable:ENABLE
STATus:QUESTIONable:NTRANSition
*STB?

21-48
*STB? (Read Status Byte Query)

*STB?
The "*STB?" query returns the current value of the synthesizer status byte.

When you read the contents of the status byte, the value returned is the total bit weights of all the bits that are high at the time you read it. When you read the contents of the status byte using the "**STB?" query, the status byte is not cleared.

The decimal value of each bit (the bit weight) in the status byte is shown in the following table.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Weight</th>
<th>Name</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
<td>OPER</td>
<td>0 = no operation status events have occurred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = an operation status event has occurred.</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>RQS/MSS</td>
<td>0 = instrument has no reason for service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = instrument is requesting service.</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>ESB</td>
<td>0 = no event status conditions have occurred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = an enabled event status condition has occurred.</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>MAV</td>
<td>0 = no output messages are ready.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = an output message is ready.</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>QUES</td>
<td>0 = no questionable conditions have occurred.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = a questionable condition has occurred.</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-</td>
<td>Not used - always 0.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-</td>
<td>Not used - always 0.</td>
</tr>
</tbody>
</table>

The MSS (Master Summary Status) bit and not RQS is reported on bit 6. The MSS indicates whether or not the device has at least one reason for requesting service. To read the status byte with RQS reported on bit 6, use the HP-IB serial poll.

At power-up, the status byte is momentarily cleared (set to 0). After being cleared, the status registers will report their bit values.
Status Register Commands

*STB? (Read Status Byte Query)

See Also

*CLS
*ESE
*ESR?
*SRE
Error Messages

If an error condition occurs in the synthesizer, it will always be reported to both the front panel and HP-IB error queues. These two queues are viewed and managed separately. The [MSG] key is used to view the contents of the front panel error queue. The HP-IB query "SYSTem:ERRor?" is used to view the contents of the HP-IB error queue.

If there are any error messages in the front panel error queue, the front panel MSG annunciator will be lit.

Pressing the [MSG] key repeatedly until the MSG annunciator turns off will empty the front panel error queue. The [MSG] key has no affect on the HP-IB error queue. Emptying the HP-IB error queue has no affect on the front panel queue, therefore, it will not affect the MSG annunciator.

There are some special error types that are called permanent errors. Permanent errors remain in the error queues until the error condition is cleared. Pressing the [MSG] key will empty the front panel error queue, but the permanent errors will be re-reported if the error conditions still exist. In the HP-IB error queue, the permanent errors are re-reported after the message. 0,"No error" is read using the "SYSTem:ERRor?" query or after the "*CLS" command is executed.
Error Messages List

The list of error messages in this chapter lists all of the error messages associated with synthesizer operation. An example of the error format found in the list of error messages is as follows:

2003  -222, "Data out of range;CW FREQ(2003)"

Select a CW frequency that is within range of the installed options. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

The following explains each element of an error message listing.

- **Manual Error Number** – The number 2003 to the left and in the parenthesis is called the Manual Error Number. The error message list is organized in ascending order off the manual error number. The manual error number will always be found in the parenthesis contained in the message.

- **Error Message** – The bold text -222, "Data out of range;CW FREQ(2003)" is the error message. When the (MSG) key is pressed, the error message is displayed in the left-most display. The entire message is returned by the HP-IB query "SYSTEM:ERROR?." The error message contains the following parts:
  - **SCPI Error Number** – The standard SCPI error number (-222 in the example) usually differs from the manual error number because the manual error number is unique for every possible message. Standard SCPI error numbers are always negative (except for 0, "No error"). If there is no standard SCPI error number for a message, the manual error number replaces it in the error message.
  - **SCPI Error Message** – The SCPI error message is data out of range in the example.
  - **Detailed Description** – All information after the semicolon is a detailed description of what exactly caused the error. In the example, CW FREQ tells you that CW frequency was out of range. If no detailed description exists, it will be omitted from the message.
Error Messages

Error Messages List

- Action Required — The text that appears below each error message listing contains corrective actions that should be followed in order to correct the error condition.

Notes

2. Error messages related to hardware failures are listed in the HP 83731A/32A and HP 83731B/32B Synthesized Signal Generators Service Guide (HP part number 83731-90131).
Messages

The following pages list all error messages in ascending manual error number order.

−440 −440,"Query UNTERMINATED after indefinite response;(−440)"
Correct the HP-IB controller program so that the query that returns indefinite length block data is the last item on the program line.

−430 −430,"Query DEADLOCKED;(−430)"
Correct the HP-IB controller program so that no more than eight queries are executed within the same line of the program.

−420 −420,"Query UNTERMINATED;(−420)"
Correct the HP-IB controller program so that the controller terminates commands with the newline character (NL) before the controller attempts to read query response data.

−410 −410,"Query INTERRUPTED;(−410)"
Check the HP-IB controller program to see if the controller is programmed to read the entire query response data before issuing a subsequent command.

−400 −400,"Query error;(−400)"
Some problem occurred while parsing an HP-IB query. Insure that your programming is correct and try the query again. Look at −440 through −400 for types of problems to look for.

−350 −350,"Queue overflow"
The error queue overflowed at this point and this message replaced the 16th error message. No action is required. Note: To clear the HP-IB error queue, use *CLS.

−330 −330,"Self-test failed;(−330)"
See the explanation for error number 4000.

−315 −315,"Configuration memory lost;(−315)"
See error 1803.
Error Messages

-314, -314,"Save/recall memory lost;(-314)"
   See error 1803.

-311, -311,"Memory error;(-311)"
   See error 1803.

-310, -310,"System error;(-310)"
   Some problem occurred while parsing an HP-IB command or query.
   Insure that your programming is correct and try the command again.

-300, -300,"Device specific error;(-300)"
   A remote command or query could not be executed because an error
   occurred in the synthesizer.

-278, -278,"Macro header not found;(-278)"
   A *GMC? or *RMC macro label could not be found in the list of defined
   macro labels. Use *LMC? to get a list of all the currently defined macro
   labels.

-277, -277,"Macro redefinition not allowed;(-277)"
   Indicates that a macro label in the *DMC command could no be defined
   because the macro label was already defined.

-276, -276,"Macro recursion error;(-276)"
   The nesting/recursion of macros is deeper than 4 levels. Don’t use
   more than 4 levels when defining macros of macros.

-275, -275,"Macro definition too long;(-275)"
   The macro definition must be 255 characters or less.

-274, -274,"Macro parameter error;(-274)"
   A macro parameter placeholder was improperly used.

-273, -273,"Illegal macro label;(-273)"
   Indicates that a macro label defined in the *DMC command has a legal
   string syntax; but, it is too long. It is the same as a common command
   header, or contain invalid header syntax.
-272  -272, "Macro execution error;(-272)"
   Indicates that a syntactically legal macro program data sequence could
   not be executed due to some error in the macro definition.

-271  -271, "Macro syntax error;(-271)"
   Indicates that a syntax error exists in the macro definition.

-270  -270, "Macro error;(-270)"
   An error occurred while attempting to define, query or use a macro.
   Check that the macros are correct using *LMC? and *GMC?.

-261  -261, "Math error in expression;(-261)"
   An expression could not be evaluated due to a math error; for
   example, a divide-by-zero was attempted.

-260  -260, "Expression error;(-260)"
   An expression could not be evaluated because it contains an error.

-241  -241, "Hardware missing;(-241)"
   The requested hardware does not exist in the synthesizer. Use *OPT?
   to check which options are installed.

-240  -240, "Hardware error;(-240)"
   The remote command or query could not be executed because of a
   hardware error.

-226  -226, "Tables not same length;(-226)"
   See error 731.

-225  -225, "Out of memory;(-225)"
   The synthesizer has run out of memory. The memory requested has
   not been allocated.

-224  -224, "Illegal parameter value;(-224)"
   Correct the HP-IB controller program so that the data included with
   the HP-IB command is an acceptable parameter for the command.
-223  -223,"Too much data;(-223)"
        Correct the HP-IB controller program so that there is less data on a
        single command line. The synthesizer does not have enough memory
        to buffer it all.

-222  -222,"Data out of range;(-222)"
        The parameter data was out of range. Unlike other -222 errors, details
        are not known about the command or query which caused this error.

-221  -221,"Settings conflict;(-221)"
       The current synthesizer state does not allow the remote command or
       query to be executed.

-220  -220,"Parameter error;(-220)"
        The parameter included with the remote command or query is
        incorrect.

-213  -213,"Init ignored;(-213)"
        Indicates that an initiate was ignored because a trigger was already in
        progress.

-212  -212,"Arm ignored;(-212)"
        An arming signal was received and recognized but was ignored.

-211  -211,"Trigger ignored;(-211)"
        A GET, *TRG or triggering signal was received and recognized but
        was ignored. Currently, there is no bus trigger capability in the
        synthesizer.

-210  -210,"Trigger error;(-210)"
        A trigger error occurred in the synthesizer.

-201  -201,"Invalid while in local;(-201)"
        The remote command or query cannot be executed when the
        synthesizer is in local mode.

-200  -200,"Execution error;(-200)"
        Some problem occurred while executing an HP-IB command or query.
        Insure that your programming is correct and try the command again.
-184, "Macro parameter error;(-184)"
  Indicates that a command inside the macro definition had the wrong
  number or type of parameters.

-183, "Invalid inside macro definition;(-183)"
  Indicates that the program message sequence sent with *DMC or *DDT
  command, is syntactically invalid.

-181, "Invalid outside macro definition;(-181)"
  Indicates that a macro parameter placeholder was encountered outside
  of the macro definition.

-180, "Macro error;(-180)"
  An error occurred while attempting to define, query or use a macro.
  Check that the macros are correct using *LMC? and *GMC?.

-178, "Expression data not allowed;(-178)"
  Correct the HP-IB controller program so that the data included with
  the HP-IB command does not contain parentheses.

-171, "Invalid expression;(-171)"
  The expression contained a syntax error like unmatched parenthesis or
  an illegal character.

-170, "Expression error;(-170)"
  The expression contains a syntax error.

-168, "Block data not allowed;(-168)"
  Correct the HP-IB controller program so that the data included with
  the HP-IB command does not contain block data (no # character).

-161, "Invalid block data;(-161)"
  Correct the HP-IB controller program so that it contains a correct block
  data type. A block data type should begin with "#" followed by a
  number.

-160, "Block data error;(-160)"
  The block data contains a syntax error.
-158 -158,"String data not allowed;(-158)"
Correct the HP-IB controller program so that the data included with
the HP-IB command does not contain string data (no single or double
quote characters).

-151 -151,"Invalid string data;(-151)"
Correct the HP-IB controller program so that the string data included
with the HP-IB command is terminated with a single or double quote.
The terminating quote must be the same as the leading quote of the
string. A string can also be valid if invalid characters are contained in
it.

-150 -150,"String data error;(-150)"
The string data was too long to be buffered in the synthesizer string
data area.

-148 -148,"Character data not allowed;(-148)"
Correct the HP-IB controller program so that the data included with
the HP-IB command is not character data.

-144 -144,"Character data too long;(-144)"
The character data element contains more than 12 characters.

-141 -141,"Invalid character data;(-141)"
Either the character data element contains an invalid character or the
particular element is not valid for the command or query.

-140 -140,"Character data error;(-140)"
The character data contains a syntax error.

-138 -138,"Suffix not allowed;(-138)"
Correct the HP-IB controller program so that the decimal data included
with the HP-IB command does not use a suffix. Use exponential
notation instead.
-134, "Suffix too long;(-134)"
   The suffix contained more than 12 characters.

-131, "Invalid suffix;(-131)"
   Correct the HP-IB controller program so that the decimal data included
   with the HP-IB command contains a valid suffix for that command or
   query.

-130, "Suffix error;(-130)"
   The suffix contains a syntax error.

-128, "Numeric data not allowed;(-128)"
   Correct the HP-IB controller program so that the data included with
   the HP-IB command is not numeric data.

-124, "Too many digits;(-124)"
   The mantissa of a decimal numeric data element contained more than
   255 digits excluding leading zeros.

-123, "Exponent too large;(-123)"
   The magnitude of the exponent was larger than 32000.

-121, "Invalid character in number;(-121)"
   Correct the HP-IB controller program so that the decimal data or
   non-decimal numeric included with the HP-IB command contains the
   correct numeric characters.

-120, "Numeric data error;(-120)"
   An invalid numeric or non-decimal numeric was parsed but it was
   syntactically invalid.

-114, "Header suffix out of range;(-114)"
   Indicates that a header suffix was too large.

-113, "Undefined header;(-113)"
   The header is syntactically correct, but it is undefined for the
   synthesizer.

-112, "Program mnemonic too long;(-112)"
   The header contains more than 12 characters.
-111 -111,"Header separator error;(-111)"
   An illegal header separator was encountered while parsing the header.

-110 -110,"Command header error;(-110)"
   An error was detected in the header.

   This error indicates that an HP-IB command or query has too few parameters. Correct the HP-IB controller program so that the HP-IB command or query contains the correct number of parameters.

-108 -108,"Parameter not allowed;(-108)"
   This error indicates that an HP-IB command or query has too many parameters. Correct the HP-IB controller program so that the HP-IB command or query contains the correct number of parameters.

-105 -105,"GET not allowed;(-105)"
   Correct the HP-IB controller program so that the group execute trigger does not occur within a line of HP-IB program code.

-104 -104,"Data type error;(-104)"
   The parser recognized a data element different than one allowed. For example, numeric or string data was expected but block data was encountered.

-103 -103,"Invalid separator;(-103)"
   A separator was expected but an illegal character was encountered. For example, the space is missing from the following: FREQ.01GHz.

-102 -102,"Syntax error;(-102)"
   An unrecognized command or data type was encountered.

-101 -101,"Invalid character;(-101)"
   A syntactic element contains a character which is invalid for that type. For example, a header containing an ampersand would give this error.

-100 -100,"Command error;(-100)"
   Some problem occurred while parsing an HP-IB command or query. Insure that your programming is correct and try the command again.
0, "No error"
The error queue contains no errors.

110, "EEPROM unprotected;(110)"
The PG switch is set to 0 which leaves the EEPROM unprotected.
Open up the synthesizer and switch the PG switch to 1. This error
message is only a warning.

511, "YTO cal data init error;(511)"
The YIG oscillator factory calibration data checksum was incorrect. A
new YIG calibration should be performed or else the instrument may
be unable to attain lock at some frequencies.

600, "ALC loop went unleveled;(600)"
Power is set to a level that is higher than the instrument can supply.
This is usually due to attenuator hold and the power is set to a
value that requires the vernier to be operating out of its specified
range. Change the power level or turn off attenuator hold. This is a
"permanent" error.

601, "Hardware driver Power limit;(601)"
Due to instrument specials such as attenuator hold, the circuits
cannot supply the specified power. Change the power level or turn off
attenuator hold. This is a "permanent" error.

602, "Vernier has been set to the limit;(602)"
Due to instrument options such as attenuator hold, the circuits cannot
supply the specified power. The vernier has been limited to a valid
value. Change the power level or turn off attenuator hold. This is a
"permanent" error.

603, "RF on/off command not valid;(603)"
An invalid request to turn off RF power was ignored by the
instrument.

604, "Atten driver error while setting level;(604)"
The attenuators could not be set to the range requested. Change
output power to a valid setting.
605 605, "Vernier driver error while setting level;(605)"
The vernier value requested was not possible. Change output power to a valid setting.

606 606, "Level is not in guaranteed range.;(606)"
The power level requested is beyond specifications and may be invalid. This could be due to a very low vernier setting required when attenuator hold is active. This is a "permanent" error.

608 608, "Attenuator not set before Ext Meter mode;(608)"
The attenuator range must match that of the meter range desired for external meter ALC mode. Turn off attenuator hold mode and make sure the power meter is in range hold before entering external power meter mode.

610 610, "Track and hold failed, level is invalid;(610)"
Power level was too high to do a power level setting in pulse or scan AM mode. Try setting power to a lower value.

611 611, "Track and hold failed, level is invalid;(611)"
Power level was too high to do a power level setting in pulse or scan AM mode. Try setting power to a lower value.

650 650, "PG switch not set to 0;(650)"
ALC calibration data was not saved in EEPROM because the PG switch was protecting the EEPROM from "writes." Open up the synthesizer and switch the PG switch to 0.

651 651, "Invalid vernier cal data for 1-20 GHz;(651)"
Valid vernier calibration data is not available for the 1-20 GHz band. If you need to use this frequency range, see the explanation for error number 4000.

652 652, "ALC term verification after EEPROM write;(652)"
ALC vernier calibration data was not written into EEPROM correctly. Try writing the data into the synthesizer again.
653  "Invalid vernier cal data for 0.01-1 GHz;(653)"
Valid vernier calibration data is not available for the 0.01-1 GHz band.
If you need to use this frequency range, see the explanation for error number 4000.

655  "PG switch not set to 0;(655)"
Factory frequency correction data was not saved in EEPROM because the PG switch was protecting the EEPROM from "writes." Open up the synthesizer and switch the PG switch to 0.

656  "Factory flatness cal data verification;(656)"
Factory frequency level calibration data was not written into EEPROM correctly. Try writing the data into the synthesizer again.

657  "Factory flatness cal data is invalid;(657)"
A valid factory frequency level calibration is not available for one or more of the frequency bands and/or attenuator settings. See the explanation for error number 4000.

670  "Meter power input is out of range;(670)"
The ALC input is not a valid level. The power meter range may be wrong. This is a "permanent" error.

700  "Hardware driver Frequency limit;(700)"
The frequency entered cannot be generated by the synthesizer with the set of options available.

701  "Lo synthesizer set error;(701)"
The LO synthesizer cannot be set to the level requested. Enter a new frequency.

702  "Offset synthesizer set error;(702)"
The offset synthesizer cannot be set to the level requested. Enter a new frequency.

704  "YTO driver set error;(704)"
The YIG oscillator cannot be set to the level requested. Enter a new frequency.
706  706, "Low-pass filter set error;(706)"
     The low-pass filter cannot be set to the requested setting. Enter a new
     frequency.

710  710, "LO synthesizer went out of lock;(710)"
     The LO synthesizer went out of lock. This may be due to hookup or
     disconnection of an external time base. Enter a different RF frequency
     and then set the frequency back to the desired value to re-lock. This is
     a "permanent" error.

711  711, "Offset synthesizer went out of lock;(711)"
     The offset synthesizer board was unable to attain lock. Enter a
different RF frequency and then set the frequency back to the desired
value to re-lock. This is a "permanent" error.

712  712, "Frequency loop went out of lock;(712)"
     Enter a different RF frequency and then set the frequency back to the
desired value to re-lock. This is a "permanent" error.

713  713, "Possible FM overmodulation;(713)"
     Reduce the level of the modulating signal into the FM IN connector.

714  714, "Possible PM overmodulation (714)"
     Reduce the level of the modulating signal into the FM/φ IN connector.

730  730, "Invalid data in level correct table;(730)"
     The active level correction table has no data in it. Select a level
     correction table with valid data, perform an automatic level correction
to get valid data into the active table, or use HP-IB to load the active
table. This is a "permanent" error.

731  -226, "Tables not same length; Level correct(731)"
     The active level correction table has a mismatch between the number
of frequencies stored and the number of losses stored. Select a level
     correction table with valid data, perform an automatic level correction
to get valid data into the active table, or use HP-IB to load tables with
the same length. This is a "permanent" error.
732, "Same frequencies with different losses;(732)"
The active level correction table has duplicate frequencies with
different losses. Select a level correction table with valid data, perform
an automatic level correction to get valid data into the active table,
or use HP-IB to load tables with non-duplicate frequencies. This is a
"permanent" error.

733, "Frequency table not in ascending order;(733)"
The MEM:TABLE:FREQ command did not contain frequencies in
ascending order. The whole MEM:TABLE:FREQ command was rejected,
leaving the old selected table unaltered.

734, "Frequency table not in ascending order;(734)"
The active level correction table does not contain frequencies in
ascending order. Select a level correction table with valid data,
perform an automatic level correction to get valid data into the active
table, or use HP-IB to load a table with ascending ordered frequencies.
This is a "permanent" error.

735, "Level correct points less than 2;(735)"
The number of points in a level correction table must be from 2 to 401.
Either too few points were entered or duplicate frequencies caused the
number of "real" points to shrink below 2.

736, "Factory level corr 1-20 GHz, 1-9 table;(736)"
Factory frequency level correction data for 1-20 GHz band, non-thru
paths are not valid. If you need to use this frequency range and you
are using a step attenuator, see the explanation for error number 4000.

737, "Factory level corr 0.01-1 GHz, 1-9 table;(737)"
Factory frequency level correction data for 0.01-1 GHz band, non-thru
paths are not valid. If you need to use this frequency range and you
are using a step attenuator, see the explanation for error number 4000.

738, "Factory level corr 0.01-1 GHz, 0dB table;(738)"
Factory frequency level correction data for 0.01-1 GHz band, thru
path is not valid. If you need to use this frequency range and you
work with output levels that don't use the step attenuator, see the
explanation for error number 4000.
739 "Invalid data in table, not recalled;(739)"
This error indicates that a level correction table recall failed. Try selecting the same level correction table again. If this error message persists you will have to recreate the saved table.

740 "Another controller is on the HP-IB bus;(740)"
An automatic level correction was attempted but failed because there is a controller on the HP-IB bus. Remove all controllers from the HP-IB bus and try again.

741 "No HP-IB devices found;(741)"
An automatic level correction was attempted but failed to find any other devices on the HP-IB bus. Connect the desired power meter to the HP-IB bus and try again. Check the HP-IB cable(s) for loose connections.

742 "Errors in cleanup of HP-IB;(742)"
When exiting the automatic level correction, the synthesizer failed to finish resetting the HP-IB bus and presetting the power meter. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

743 "No HP-IB devices found;(743)"
An automatic level correction was attempted but failed to find any other devices on the HP-IB bus. Connect the desired power meter to the HP-IB bus and try again. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

744 "Cannot find power meter on HP-IB bus;(744)"
An automatic level correction was attempted but failed to find a power meter on the HP-IB bus. Connect the desired power meter to the HP-IB bus and try again. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.
745, "Meter returns error msg +9.0000E+40;(745)"
While running the automatic level correction, the power meter returned +9.0000E+40 as the power reading. This number indicates an error within the power meter.

746, "Data measured is invalid or out of range;(746)"
While running the automatic level correction, the power meter returned an out of range power reading or the power meter returned a non-number as its power reading. Check that the power meter is reading an appropriate value by looking at it.

747, "Unable to receive msg from meter;(747)"
An automatic level correction was attempted but failed to power readings back from the power meter. Make sure the power meter address matches the power meter address setting on the synthesizer. Check the HP-IB cable(s) for loose connections.

748, "Erasing corrupted level correct table;(748)"
A level correction table was corrupt and was erased to fix it.

749, "Frequency not within level correct data;(749)"
This message is a warning that the current CW frequency is not contained within the frequencies in the active level correction table. Therefore, the correction applied to the output will be 0 dB. This is a "permanent" error.

751, "Parameters cause points to be too large;(751)"
The level correction parameters cannot define a new table because they create too many level correction points.

752, "Data out of range;Data set to minimum;(752)"
Loss data must be in the range of -40 to +40 dB.

753, "Data out of range;Data set to maximum;(753)"
Loss data must be in the range of -40 to +40 dB.

754, "Total points reduced from that requested;(754)"
The number of points requested for an automatic level correction has been reduced to avoid duplicate frequencies.
755  755,"Invalid data in active table, not saved;(755)"
    This error indicates that a level correction table save failed. Try
    selecting the same level correction table again. If this error message
    persists you will have to recreated the table.

756  756,"Factory level corr 1-20 GHz, 0dB table;(756)"
    Factory frequency level correction data for 1-20 GHz band, thru path is
    not valid. If you need to use this frequency range and you work with
    output levels that don’t use the step attenuator, see the explanation for
    error number 4000.

757  757,"Bad attenuator setting parameter;(757)"
    The attenuator range for looking up factory frequency level correction
    data, is 0 through 120 (resolution is 10).

758  -222,"Data out of range;Data set to minimum(758)"
    Loss data for factory frequency level correction was less than
    minimum.

759  -222,"Data out of range;Data set to maximum(759)"
    Loss data for factory frequency level correction was more than
    maximum.

760  760,"Bad index into data table;(760)"
    A data lookup from a calibration table found that the index data is out
    of range. Try setting the same synthesizer function again. If this error
    message persists, run the instrument self-test.

761  761,"Bad index into offset table;(761)"
    A data lookup from the factory level correction offset table found
    that the index data is out of range. Try setting the same synthesizer
    function again. If this error message persists, run the instrument
    self-test.

763  763,"Unable to write to EEPROM;(763)"
    A calibration table was not loaded into EEPROM because the EEPROM
    was protected or the EEPROM load did not verify. Open up the
    synthesizer and switch the PG switch to 0.
764 "Unable to write to RAM;(764)"
A write to RAM failed to verify. Run the self-test routine to check RAM for problems.

765 "Attempt to write to ROM;(765)"
There was an attempt to write calibration data to ROM. This should not occur, but if it does, try setting the same synthesizer function again. If this error message persists, run the instrument self-test.

766 "Number of writes to EEPROM exceeds max;(766)"
The number of EEPROM writes has exceeded the maximum allowed. However, the data was written to the EEPROM anyway. This is only a warning; but, you should check to make sure your data was correctly stored in EEPROM.

770 "YTO cal data invalid;(770)"
The YIG oscillator factory calibration data checksum was incorrect. Select the CAL YIG OSC feature to perform a YIG oscillator calibration. If you do not re-calibrate, the synthesizer may be unable to attain lock at some frequencies.

771 "Invalid YIG DAC value in cal table.;(771)"
The YIG oscillator factory calibration data checksum was incorrect. Select the CAL YIG OSC feature to perform a YIG oscillator calibration. If you do not re-calibrate, the synthesizer may be unable to attain lock at some frequencies.

772 "YTO cal values for Up/Down search vary;(772)"
The YIG oscillator factory calibration data checksum was incorrect. Select the CAL YIG OSC feature to perform a YIG oscillator calibration. If you do not re-calibrate, the synthesizer may be unable to attain lock at some frequencies.

774 "EEPROM protected, YTO cal aborted;(774)"
An automatic YIG oscillator calibration was not performed because the PG switch was protecting the EEPROM from "writes." Open up the synthesizer and switch the PG switch to 0.
775, "Low band yto cal failed;(775)"

The low band calibration failed and the data for the calibration was not saved. Re-try the YIG calibration and watch for the default cal points indicated when the DAC value shown for a given point says 'dfl = ' instead of 'DAC = '.

776, "High band yto cal failed;(776)"

The low band calibration failed and the data for the calibration was not saved. Re-try the YIG calibration and watch for the default cal points indicated when the DAC value shown for a given point says 'dfl = ' instead of 'DAC = '.

777, "Low band yto cal could not write EEPROM;(777)"

The data for the low band YIG calibration could not be written to EEPROM. Make sure the PG switch on the processor board was closed during the cal and re-try the YIG calibration.

778, "High band yto cal could not write EEPROM;(778)"

The data for the low band YIG calibration could not be written to EEPROM. Make sure the PG switch on the processor board was closed during the cal and re-try the calibration.

779, "Only 2 GHz or 10 GHz allowed for YTO Cal;(779)"

The start frequency specified for the CAL:YIG:FREQ:START command was not valid. Re-enter the start frequency and start the YIG calibration again.

785, "Cal Data not saved, PG switch is not 0;(785)"

The calibration data could not be saved because the PG switch on the microprocessor board was not closed. Close the PG switch and do the calibration again.

786, "Cal Data verification after EEPROM write;(786)"

The calibration data was not written correctly after the calibration. Close the PG switch and do the calibration again.

787, "FM cal and Pinchoff cal not initialized;(787)"

The YIG calibration has not been done for both YIG bands or else the pinch-off cal values have not been entered yet.
790 790,"Scan-mod 0.01-1 GHz gain tables bad;(790)"
Checksum was invalid for the AM gain tables. If you need to use this
frequency range and scan AM modulation, see the explanation for
error number 4000.

793 793,"Scan AM cal not valid, defaults used;(793)"
Scan AM level may be in error due to invalid calibration data. If you
need to use scan AM modulation, see the explanation for error number
4000.

794 794,"Scan-mod 1-20 GHz gain tables bad;(794)"
Checksum was invalid for the AM scan gain tables. If you need to use
this frequency range and scan AM modulation, see the explanation for
error number 4000.

795 795,"Scan-mod 1-20 GHz linear 1 tables bad;(795)"
Checksum was invalid for the AM scan linear 1 tables. If you need to
use this frequency range and scan AM modulation, see the explanation for
error number 4000.

796 796,"Scan-mod 1-20 GHz linear 2 tables bad;(796)"
Checksum was invalid for the AM scan linear 2 tables. If you need to use
this frequency range and scan AM modulation, see the explanation for
error number 4000.

800 800,"Options not saved, PG switch is not 0;(800)"
The instrument option bit-fields were not saved to EEPROM. Open up
the synthesizer, switch the PG switch to 0, and try setting the option
bit-fields again.

801 801,"Serial num not saved, PG switch is not 0;(801)"
The instrument serial number was not saved to EEPROM. Open up
the synthesizer, switch the PG switch to 0, and try setting the serial
number again.

802 802,"Assembly Revs not saved, PG switch is not 0 (802)"
The protection switch on the CPU board is in an incorrect position to
change EEPROM data.
803 803, "EEPROM not cleared, PG switch is not 0 (803)"
    The protection switch on the CPU board is in an incorrect position to clear EEPROM data.

900 900, "PRI increased to fit pulse width;(900)"
    The current pulse width is too large for the current PRI. The PRI is increased to allow for the pulse width. This is a "permanent" error.

901 901, "Delay and width decreased to fit max PRI;(901)"
    The current pulse width plus the current pulse delay is too large because they are greater than the maximum PRI. The delay and/or the width were reduced to fit. This is a "permanent" error.

940 940, "Oven is cold;(940)"
    The high stability time base oven is cold. The oven must be allowed to warm up before proper instrument operation will occur. This is a "permanent" error.

944 944, "Reference synthesizer went out of lock;(944)"
    The reference synthesizer went out of lock. The out of lock condition may have been due to an external time base being connected or disconnected. Enter a different RF frequency and then set the frequency back to the desired value to re-lock. This is a "permanent" error.

1101 1101, "Loop number is invalid.;(1101)"
    If you are using the direct hardware control service feature, you have entered an out of range value. If this error occurs while not using the direct hardware control service feature, low level hardware drivers could not set the requested synthesizer setting. Try setting the synthesizer again. If this error message persists, run the instrument self-test.

1102 1102, "Start bit is negative.;(1102)"
    See the explanation for error number 1101.

1103 1103, "Length less than 0 or more than 32;(1103)"
    See the explanation for error number 1101.
1104  1104, "Start bit is invalid for given loop.(1104)"
See the explanation for error number 1101.

1105  1105, "Length is invalid for given loop.(1105)"
See the explanation for error number 1101.

1106  1106, "Data is too large for given length.(1106)"
See the explanation for error number 1101.

1107  -222, "Data out of range; Bit field number(1107)"
See the explanation for error number 1101.

1108  -222, "Data out of range; Query port field(1108)"
If you are using the direct hardware control service feature, you have
entered an out of range query address. If this error occurs while not
using the direct hardware control service feature, low level hardware
drivers could not complete a query. Try setting the synthesizer again.
If this error message persists, run the instrument self-test.

1109  1109, "Query Port mode;(1109)"
See the explanation for error number 1108.

1462  1462, "Keybd processor reports status error;(1462)"
A key press was not successful. Try pressing the same key again. If
the error message persists, see the explanation for error number 4000.

1463  1463, "Keybd processor data lines incorrect;(1463)"
A key press was not successful. Try pressing the same key again. If
the error message persists, see the explanation for error number 4000.

1501  -302, "8673 command not recognized (1501)"
While in HP 8673 emulation mode, an incoming command string was
not recognized as being valid. Refer to the front-panel error que for
the command sequence.

1511  -301, "8673 command K0 not emulated (1511)"
The above command is recognized by the synthesizer in HP 8673
emulation mode, but it is not emulated. The command is thus
discarded and no action is taken. Refer to Chapter 4, "HP 8673
Compatibility Guide" for more information.
1512 -301,"8673 command K1 not emulated (1512)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1513 -301,"8673 command Mn not emulated (1513)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1514 -301,"8673 command Xn not emulated (1514)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1515 -301,"8673 command Wn not emulated (1515)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1516 -301,"8673 command BS not emulated (1516)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1517 -301,"8673 command L2 not emulated (1517)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.
1518 -301,"8673 command ... not emulated (1518)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1519 -301,"8673 command OC not emulated (1519)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1520 -301,"8673 command CT not emulated (1520)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1521 -301,"8673 command Nx not emulated (1521)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1522 -301,"8673 command SU not emulated (1522)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1523 -301,"8673 command SD not emulated (1523)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.
1524  -301,"8673 command Tx not emulated (1524)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1525  -301,"8673 command TR not emulated (1525)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1526  -301,"8673 command RS not emulated (1526)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1527  -301,"8673 command SM not emulated (1527)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1528  -301,"8673 command_2 not emulated (1528)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1529  -301,"8673 command_3 not emulated (1529)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1530  -301,"8673 command_A not emulated (1530)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus
discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1531 -301,"8673 command SV not emulated (1531)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1532 -301,"8673 command OL not emulated (1532)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1534 -301,"8673 command FA not emulated (1534)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1535 -301,"8673 command FB not emulated (1535)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1536 -301,"8673 command FS not emulated (1536)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1537 -301,"8673 command DF not emulated (1537)"
The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.
1538 -301,"8673 command DW not emulated (1538)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1539 -301,"8673 command SF not emulated (1539)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1540 -301,"8673 command SP not emulated (1540)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1541 -301,"8673 command IF not emulated (1541)"

The above command is recognized by the synthesizer in HP 8673 emulation mode, but it is not emulated. The command is thus discarded and no action is taken. Refer to Chapter 4, "HP 8673 Compatibility Guide" for more information.

1802 1802,"Low Battery Voltage;(1802)"

The synthesizer battery voltage is low. This could cause loss of RAM data if synthesizer power is turned off. Note: Calibration data will never be lost.

1803 1803,"RAM data lost at power on;(1803)"

All RAM data was lost. This includes all front panel settings, save/recall registers, level corrections, and other user settable values. This error message can occur when the battery voltage is low, or options change in the synthesizer. Note: Calibration data will never be lost.

1804 1804,"Self-test failure, run the self-test;(1804)"

The power-on self-test detected an error or warning. See the explanation for error number 4000.
1805  1805,"Processor Board or IBUS test Failure;(1805)"

The power-on self-test detected an error or warning for the microprocessor board circuits or power supply monitors. See the explanation for error number 4000.

1806  1806,"ROM checksum test failure;(1806)"

The synthesizer ROM check sum does not match the data in ROM. See the explanation for error number 4000.

1820  -221,"Settings conflict; PM DEV (1820)"

1. The PM internal deviation setting was reduced because either:
   a. FreqCw was changed into the low band region, or
   b. PM internal rate was set above 30 kHz and the PM deviation was above 4 rads.

1821  -221,"Settings conflict; INT PM FREQ (1821)"

The PM internal deviation setting was decreased because the PM deviation was increased above 4 rads while the PM internal rate was above 30 kHz.

1822  -221,"Settings conflict; INT FM DEV (1822)"

The FM internal deviation setting was reduced because the FreqCw was changed into a lower divided low band region.

2003  -222,"Data out of range; CW FREQ(2003)"

Select a CW frequency that is within range of the installed options. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

2006  -222,"Data out of range; POWER LEVEL(2006)"

Select a power level within the following ranges:
No attenuator options, -15 dBm to +30 dBm. Option 1E1, -100 dBm to +30 dBm.

2012  -224,"Illegal parameter value; ALC SOURCE(2012)"

The requested ALC source is not available in the synthesizer. Use *OPT? to check which options are installed.
Error Messages

Messages

2015  -222,"Data out of range;SPECIAL(2015)"
Select a special function number that is available in the synthesizer.

2018  -222,"Data out of range;FREQ MULTIPLIER INCR(2018)"
Select a frequency multiplier increment from 1 to 99.

2021  -224,"Illegal parameter value; PULSE PROT STAT (2021)"
This command requires a boolean argument.

2024  -222,"Data out of range;CW FREQ INCR(2024)"
Select a CW frequency increment from 1 kHz to 19.99 GHz. If other
modules or options are installed that extend the CW frequency range
of the synthesizer, this frequency range will be extended also. If the
Option 1E8 is installed the limits will also change to allow for 1 Hertz
resolution.

2030  -222,"Data out of range;DIRECT HW CONTROL(2030)"
Select synthesizer direct hardware control values within range. See the
service manual for more details on this feature.

2033  -222,"Data out of range;POWER LEVEL INCR(2033)"
Select a power level within the following ranges:
No attenuator options, 0.01 dBm to +45 dBm. Option 1E1, 0.01 dBm
to +130 dBm.

2036  -222,"Data out of range;EXT METER LEVEL(2036)"
Select an external power meter reading within the following ranges:
No attenuator options, -15 dBm to +30 dBm. Option 1E1, -100 dBm
to +30 dBm.

2042  -222,"Data out of range;DIAG:IBUS:DIR(2042)"
Correct the HP-IB command DIAG:IBUS:DIR or DIAG:IBUS:DIR? so that
its parameters are within their appropriate ranges. See the service
manual for more details on this HP-IB only feature.

2045  -224,"Illegal parameter value; *EMC (2045)"
This command requires a 1 or 0 as an argument.
2048  -222, "Data out of range; SYST:KEY(2048)"

Select a key code available on the synthesizer's front panel.

2051  -161, "Invalid block data; SYST:SET bad size(2051)"

The "learn string" sent to the synthesizer is corrupt (incorrect number of bytes). Check that the HP-IB controller is sending the string correctly. In addition, insure that the controller loaded the learn string correctly in the first place. Note: The *LRN? query always returns the same length string regardless of the state of the synthesizer; but, the *LRN? response can change if the firmware version changes.

2054  -222, "Data out of range; CAL: ALC: CURV(2054)"

Correct the HP-IB command CAL: ALC: CURV so that its parameters are within the following ranges:
1st parameter: 0.0 to 4.0
2nd parameter: -2.0 to 2.0
3rd-6th parameter: -1.0 to 1.0
7th parameter: 0.0 to 25.0

2057  -222, "Data out of range; HPIB ADDRESS(2057)"

Select an HP-IB address for the synthesizer from 0 to 30.

2060  -222, "Data out of range; SAVE(2060)"

Select a save state register number from 0 to 9.

2066  -222, "Data out of range; RECALL(2066)"

Select a recall state register number from 0 to 9.

2075  -222, "Data out of range; LO FREQ(2075)"

Select an LO frequency from 300 MHz to 359.5 MHz.

2078  -222, "Data out of range; OFFSET FREQ(2078)"

Select an offset frequency from 5 MHz to 40 MHz.

2081  -222, "Data out of range; DIAG:FREQ:CYCL(2081)"

Correct the HP-IB command DIAG:FREQ:CYCL so that its parameters are within range. See the service manual for more details on this feature.
2087 - 222, "Data out of range; YIG OSC CAL FREQ(2087)"
Correct the HP-IB command CAL:YIG:FREQ:STARt so that its parameter is 2 GHz or 10 GHz.

2090 - 222, "Data out of range; CAL:YIG(2090)"
Correct the HP-IB command CAL:YIG[:DATA] so that all of its parameters are from 0 to 65535.

2093 - 224, "Illegal parameter value; AM STATE (2093)"
This command requires a boolean argument.

2096 - 224, "Illegal parameter value; PULSE TRIG SOUR(2096)"
The requested pulse trigger source is not available in the synthesizer. Use *OPT? to check which options are installed.

2099 - 222, "Data out of range; FREQ MULTIPLIER(2099)"
Select a frequency multiplier from 1 to 100.

2102 - 222, "Data out of range; EXT METER INCR(2102)"
Select an external power meter reading increment within the following ranges:
No attenuator options, 0.01 dBm to +45 dBm. Option 1E1, 0.01 dBm to +130 dBm.

2105 - 222, "Data out of range; CAL: ALC: CURV: FREQ(2105)"
Correct the HP-IB command CAL: ALC: CURVe: FREQuency: STAr so that parameter is from 10 MHz to 40 GHz. See the service manual for more details on this feature.

2111 - 224, "Illegal parameter value; *PSC (2111)"
This command requires a 1 or 0 as an argument.

2114 - 224, "Illegal parameter value; ATTN LOCK(2114)"
The HP-IB command "POWer:ATTenuation:AUTo OFF" can only be used if the Option 1E1 is installed.

2123 - 222, "Data out of range; PULSE WIDTH(2123)"
Select a pulse width from 0 to 419 ms.
2126 -222,"Data out of range;PULSE PRI/PRF(2126)"
Select a pulse repetition interval from 419 ms to a minimum depending on the current carrier frequency or select a pulse repetition frequency from 2.5 Hz to a maximum depending on the current carrier frequency.

2132 -224,"Illegal parameter value; PULSE STATE (2132)"
This command requires a boolean argument.

2135 -224,"Illegal parameter value;EXT PULSE INV(2135)"
The requested external pulse polarity is not available in the synthesizer. Use *OPT? to check which options are installed.

2138 -224,"Illegal parameter value;PULSE SOURCE(2138)"
If the internal pulse source is not installed in the synthesizer, the HP-IB command PULM:SOURce only allows EXTernal as a parameter.

2144 -222,"Data out of range;PULSE DELAY(2144)"
Select a pulse delay from -419 ms to 419 ms. The minimum delay is 0 if external trigger pulse mode is being used.

2147 -224,"Illegal parameter value; FM STATE (2147)"
This command requires a boolean argument.

2159 -224,"Illegal parameter value;AM TYPE(2159)"
Expected argument is either EXponential or LInear.

2162 -222,"Data out of range;CAL:AM:GAIN:OFFS (2162)"
The value must remain between -128 and +127.

2165 -224,"Illegal parameter value;REMOTE LANGUAGE(2165)"
Select an HP-IB remote language which is available in the synthesizer. *SCPI* is the default but others are available as options.

2168 -222,"Data out of range;PULSE DELAY INCR(2168)"
Select a pulse delay increment from 25 ns to 838 ms.

2171 -222,"Data out of range;PULSE WIDTH INCR(2171)"
Select a pulse width increment from 25 ns to 419 ms.
2174  -222,"Data out of range; PULSE PRI/PRF INCR(2174)"
Select a pulse repetition interval increment from 25 ns to 419 ms or
select a pulse repetition frequency increment from 1 MHz to 3.3 MHz.

2177  -222,"Data out of range; CAL:FLAT(2177)"
Loss data for factory frequency level correction was out of range.

2180  -224,"Illegal parameter value; FM AC DC(2180)"
Allowable parameter values are AC or DC only.

2189  -224,"Illegal parameter value; DISPLAY STATE(2189)"
The display state could not be set to the state requested.

2192  -224,"Illegal parameter value; LEV CORR STATE(2192)"
This command requires a boolean argument.

2198  -224,"Illegal parameter value; EXT REF(2198)"
The reference oscillator could not be set to INTernal because an
internal oscillator does not exist or the reference oscillator could not be
set to EXTernal because an external oscillator does not exist.

2210  -222,"Data out of range; ASsembly REVision(2210)"
The value must remain between 0 and +254.

2216  -222,"Data out of range; NODE MEASURE(2216)"
Select a meter node number within range. See the service manual for
more details on this feature.

2219  -222,"Data out of range; OPTION WRITE(2219)"
Select an option bit-field number within range. See the service manual
for more details on this feature.

2225  -222,"Data out of range; FM SENSITIVITY(2225)"
Select an FM sensitivity within its range for the current CW frequency
and multiplier.

2231  -224,"Illegal parameter value; PULSE RISE TIME(2231)"
The requested pulse rise time is not available in the synthesizer. Use
*OPT? to check which options are installed.
2237 -222,"Data out of range;OFFSET FREQ INCR(2237)"
Select an offset frequency increment from 1 kHz to 35 MHz. If the Option 1E8 is installed the lower limit will change to 1 Hz to allow for 1 Hertz resolution.

2240 -222,"Data out of range;LO FREQ INCR(2240)"
Select an LO frequency increment from 1 kHz to 359.5 MHz.

2243 -222,"Data out of range;DIRECT HW CONTROL INC(2243)"
Select synthesizer direct hardware control increment values within range. See the service manual for more details on this feature.

2249 -222,"Data out of range;DIAG:ABUS?(2249)"
Correct the HP-IB query DIAG:ABUS? so that its parameter is within their appropriate range. See the service manual for more details on this HP-IB only feature.

2252 -222,"Data out of range;CAL:AM:LIN(2252)"
Correct the HP-IB command CAL:AM:LiN[er][:DATA] so that all of its parameters are from 0 to 255.

2255 -222,"Data out of range;CAL:AM:LIN:TABL(2255)"
Correct the HP-IB command CAL:AM:LiN[er]:TABLE so that its parameter is 1 or 2.

2264 -222,"Data out of range;CAL:YIG:FM:SENS(2264)"
Correct the HP-IB command CAL:YIG:FM:SENSitivity so that all of its parameters are from -80 to 80.

2276 -222,"Data out of range;CORR:FLAT(2276)"
Correct the HP-IB command CORRection:FLATness[:DATA] so that all of its frequency parameters are from 1 GHz to 20 GHz and all of its loss parameters are from -40 dB to +40 dB. If other modules or options are installed that extend the frequency range of the synthesizer, this frequency range will be extended also.

2277 2277,"CORR:FLAT cannot query empty table;(2277)"
The selected level correction table data cannot be queried because it is invalid or it does not exist. Check that MEMory:TABLE:SELect is set to a level correction table that has data.
2291 - 224, "Illegal parameter value; SERIAL NUM(2291)"
Correct the HP-IB command `SYSTem:SNUMber` so that its string parameter is 10 characters or less.

2292 - 151, "Invalid string data; SERIAL NUM bad char(2292)"
A serial number can only contain characters from ASCII 32 (space) through ASCII 126 (°). However, ASCII 44 (,) and ASCII 59 (;) cannot be used.

2294 - 222, "Data out of range; POW METER ADDRESS(2294)"
Select a power meter address for automatic level correction from 0 to 30. Secondary addresses may be allowed in future firmware revisions.

2300 - 222, "Data out of range; CAL:FLAT:_FREQ:START(2300)"
Correct the HP-IB command `CAL:FLATness:FREQuency:STARt` so that its parameter is from 10 MHz to 40 GHz. See the service manual for more details on this feature.

2303 - 222, "Data out of range; CAL:FLAT:ATT(2303)"
Correct the HP-IB command `CAL:FLATness:ATTenuation` so that its parameter is from 0 dB to 120 dB with a resolution of 10 dB. See the service manual for more details on this feature.

2306 - 222, "Data out of range; CAL:AM(2306)"
Correct the HP-IB command `CAL:AM[:DATA]` so that all of its parameters are from 0 to 255.

2309 - 222, "Data out of range; CAL:AM:FREQ:START(2309)"
Correct the HP-IB command `CAL:AM:FREQuency:STARt` so that its parameter is from 10 MHz to 40 GHz. See the service manual for more details on this feature.

2444 - 222, "Data out of range; LEVEL CORR START FREQ(2444)"
Select an automatic level correction start frequency from 1 GHz to 20 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.
2447  -222, "Data out of range; LEVEL CORR STOP FREQ(2447)"
Select an automatic level correction start frequency from 1 GHz to 20 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also.

2453  -222, "Data out of range; AM SENSitivity (2453)"
Sensitivity of 30%/Volt or 100%/Volt is allowed in linear mode; -10dB/volt is allowed in log mode.

2457  2457, "RF on before running level correct;(2457)"
The RF must be turned on before running an automatic level correction. Turn RF on and try running the automatic level correction again.

2462  -222, "Data out of range; LEVEL CORR START INC(2462)"
Select an automatic level correction start frequency increment from 1 kHz to 19.99 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also. If the Option 1E8 is installed the limits will also change to allow for 1 Hertz resolution.

2465  -222, "Data out of range; LEVEL CORR STOP INC(2465)"
Select an automatic level correction stop frequency increment from 1 kHz to 19.99 GHz. If other modules or options are installed that extend the CW frequency range of the synthesizer, this frequency range will be extended also. If the Option 1E8 is installed the limits will also change to allow for 1 Hertz resolution.

2471  -222, "Data out of range; HPIB ADDRESS INCR(2471)"
Select an HP-IB address increment from 1 to 29.

2474  -222, "Data out of range; YIG OSC CAL FREQ INC(2474)"
Correct the HP-IB command CAL:YIG:FREQuency:STARt:STEP so that its parameter is from 1 GHz to 10 GHz.

2477  -222, "Data out of range; CAL:PULSe:PINC(h(2477)"
Correct the HP-IB command CAL:PULSe:PINC[:DATA] so that all of its parameters are from 0 to 255.
Error Messages

Messages

2480  -222,"Data out of range;CAL:PULS:FREQ:START(2480)"
Correct the HP-IB command CAL:PULS:FREQuency:STARt so that its parameter is 10 MHz.

2522  -222,"Data out of range;POW METER ADDRESS INC(2522)"
Select a power meter address increment from 1 to 29.

2525  -222,"Data out of range;NODE MEASURE INC(2525)"
Select a meter node increment within range.

2531  -222,"Data out of range;LEVEL CORR POINTS(2531)"
Select automatic level correction number of points from 2 to 401.

2534  -222,"Data out of range;LEVEL CORR POINTS INC(2534)"
Select automatic level correction number of points increment from 1 to 401.

2537  -222,"Data out of range;LEVEL CORRECT SAVE(2537)"
Select an automatic level correction register from 1 to 4.

2540  -222,"Data out of range;LEVEL CORR SELECT(2540)"
Select an automatic level correction register from 1 to 4.

2564  -222,"Data out of range; PM:COUP (2564)"
This command requires a boolean argument.

2567  -224,"Illegal parameter value;PULSE RISE TIME(2567)"
The requested pulse rise time is not available in the synthesizer. Use *OPT? to check which options are installed.

2570  -224,"Illegal parameter value;POWERMETER TYPE(2570)"
The selected power type is not supported by the synthesizer.

2576  -224,"Illegal parameter value;PULSE STOP SOUR(2576)"
The requested pulse trigger stop source is not available in the synthesizer. Use *OPT? to check which options are installed.

2579  -224,"Illegal parameter value;TRIG:STOP:SLOP(2579)"
The requested pulse trigger stop slope is not available in the synthesizer. Use *OPT? to check which options are installed.
2582  222, "Data out of range; PM DEV (2582)"
      The internal modulation setting for phase modulation is beyond instrument capabilities. An absolute upper limit of 200 rads is maintained for frequencies above 2 GHz. At lower frequencies, the upper limit is reduced.

2588  224, "Illegal parameter value; MEM:TABLE:SEL(2588)"
      Select an automatic level correction register from 1 to 4.

2591  222, "Data out of range; MEM:TABLE:FREQ(2591)"
      Correct the HP-IB command MEMory:TABLE:FREQuency so that all of its parameters are from 1 GHz to 20 GHz. If other modules or options are installed that extend the frequency range of the synthesizer, this frequency range will be extended also.

2592  2592, "MEM:TABLE:FREQ cannot query empty table;(2592)"
      The selected level correction table data cannot be queried because it is invalid or it does not exist. Check that MEMory:TABLE:SELection is set to a level correction table that has data.

2597  222, "Data out of range; MEM:TABLE:LOSS(2597)"
      Correct the HP-IB command MEMory:TABLE:LOSS[:MAGnitude] so that all of its parameters are from −40 dB to +40 dB.

2598  2598, "MEM:TABLE:LOSS cannot query empty table;(2598)"
      The selected level correction table data cannot be queried because it is invalid or it does not exist. Check that MEMory:TABLE:SELection is set to a level correction table that has data.

2612  224, "Illegal parameter value; FM SOURCE(2612)"
      The allowable arguments are EXTernal, FEED, or INTernal. FEED and INTernal are only allowed when Option 1E2 (internal modulation) is installed.

2615  222, "Data out of range; INT FM FREQ(2615)"
      Select an internal FM frequency (rate) from 0.5 Hz to 1 MHz.

2618  222, "Data out of range; INT FM FREQ INC(2618)"
      Select an internal FM frequency (rate) increment from 0.5 Hz to 999.9995 kHz.
Error Messages

Messages

2621 - 222, "Data out of range; INT FM DEV(2621)"
Select an internal FM deviation from 0 Hz to 10 MHz.

2624 - 222, "Data out of range; INT FM DEV INC(2624)"
Select an internal FM deviation increment from 0.01 Hz to 10 MHz.

2627 - 224, "Illegal parameter value; FM:FEED(2657)"
Change the FM:FEED input parameter to a source that is available in the synthesizer.

2633 - 224, "Illegal parameter value; PM STATE (2633)"
This command requires a boolean argument, or phase modulation is not possible on this instrument, or the phase modulation option is not installed.

2636 - 224, "Illegal parameter value; PM SOURCE (2636)"
The allowable arguments are EXTernal, FEED, or INTernal. FEED and INTernal are only allowed when the Option 1E2 (internal modulation) is installed.

2639 - 222, "Data out of range; FM SENS (2639)"
The requested sensitivity exceeds the capabilities of the instrument at the current FREQencyCW. The limitation of FmSens are dependent upon FREQencyCW.

2642 - 224, "Illegal parameter value; AM SOURCE(2642)"
The allowable arguments are EXTernal, FEED, or INTernal. FEED and INTernal are only allowed when Option 1E2 (internal modulation) is installed.

2645 - 222, "Data out of range; INT AM FREQ(2645)"
Select an internal AM frequency (rate) from 0.5 Hz to 20 kHz.

2648 - 222, "Data out of range; INT AM FREQ INC(2648)"
Select an internal AM frequency (rate) increment from 0.5 Hz to 20 kHz.

2651 - 222, "Data out of range; INT AM DEPTH(2651)"
In log mode, the data value must be between 0 dB and 60 dB. In linear mode, the data value must be between 0% and 100%.
2654  
2654 - 222, "Data out of range; INT AM DEPTH INC (2654)"
In log mode, the data value must be between .01 dB and 60 dB. In linear mode, the data value must be between 0.1% and 100%.

2657  
2657 - 224, "Illegal parameter value; AM: FEED (2657)"
2657 Change the AM: FEED input parameter to a source that is available in the synthesizer.

2660  
2660 - 222, "Data out of range; INT PM DEV INC (2660)"
The value must remain between .01 rads and 10.0 rads.

2663  
2663 - 222, "Data out of range; INT PM FREQ (2663)"
The value must remain between 0.5 Hz and 1 MHz, except when PM: RANG: AUTO is set to HIGH. In this case, the value will be restricted to a value between 0.5 Hz and 30 kHz.

2666  
2666 - 222, "Data out of range; INT PM FREQ INC (2666)"
The value must remain between 0.5 Hz and 999.9995 kHz.

2672  
2672 - 222, "Data out of range; CAL: MODS: AM (2672)"
Correct the HP-IB command CAL: MODS: AM[:DATA] so that all of its parameters are from 0 to 255.

2678  
2678 - 222, "Data out of range; CAL: MODS: FM (2678)"
Correct the HP-IB command CAL: MODS: FM[:DATA] so that all of its parameters are from 0 to 255.

2702  
2702 - 222, "Data out of range; ADD OPTION (2702)"
Select an option bit number within range. See the service manual for more details on this feature.

2705  
2705 - 222, "Data out of range; DELETE OPTION (2705)"
Select an option bit number within range. See the service manual for more details on this feature.

3500  
3500 - 221, "Settings conflict; PULSE DELAY (3500)"
The current pulse delay value was changed because the pulse delay limits changed for the current pulse mode. For example, if pulse delay is −100 ms and the synthesizer is placed into external trigger mode, this error will be reported and the pulse delay will be set to 0 ms.
4000 -330,"Self-test failed;(4000)"
Run the instrument self-test a couple times, checking the error queue each time the self-test is run. If the error message persists, use the Erase Memory feature, press the preset key and cycle the power; try the self-test again. If the error message persists, an instrument failure may have occurred and servicing may be required. If the synthesizer is functioning to your satisfaction, you may wish to ignore the error message.

4001 -330,"Self-test failed;(4001)"
See the explanation for error number 4000.

4002 -330,"Self-test failed;(4002)"
See the explanation for error number 4000.

4003 -330,"Self-test failed;(4003)"
See the explanation for error number 4000.

4004 -330,"Self-test failed;(4004)"
See the explanation for error number 4000.

4005 -330,"Self-test failed;(4005)"
See the explanation for error number 4000.

4006 -330,"Self-test failed;(4006)"
See the explanation for error number 4000.

4007 -330,"Self-test failed;(4007)"
See the explanation for error number 4000.

4008 -330,"Self-test failed;(4008)"
See the explanation for error number 4000.

4009 -330,"Self-test failed;(4009)"
See the explanation for error number 4000.

4010 -330,"Self-test failed;(4010)"
See the explanation for error number 4000.
4011 -330,"Self-test failed;(4011)"
See the explanation for error number 4000.
4012 -330,"Self-test failed;(4012)"
See the explanation for error number 4000.
4013 -330,"Self-test failed;(4013)"
See the explanation for error number 4000.
4014 -330,"Self-test failed;(4014)"
See the explanation for error number 4000.
4015 -330,"Self-test failed;(4015)"
See the explanation for error number 4000.
4016 -330,"Self-test failed;(4016)"
See the explanation for error number 4000.
4017 -330,"Self-test failed;(4017)"
See the explanation for error number 4000.
4018 -330,"Self-test failed;(4018)"
See the explanation for error number 4000.
4019 -330,"Self-test failed;(4019)"
See the explanation for error number 4000.
4020 -330,"Self-test failed;(4020)"
See the explanation for error number 4000.
4021 -330,"Self-test failed;(4021)"
See the explanation for error number 4000.
4022 -330,"Self-test failed;(4022)"
See the explanation for error number 4000.
4023  -330,"Self-test failed;(4023)"
See the explanation for error number 4000.
4024  -330,"Self-test failed;(4024)"
See the explanation for error number 4000.
4025  -330,"Self-test failed;(4025)"
See the explanation for error number 4000.
4026  -330,"Self-test failed;(4026)"
See the explanation for error number 4000.
4027  -330,"Self-test failed;(4027)"
See the explanation for error number 4000.
4028  -330,"Self-test failed;(4028)"
See the explanation for error number 4000.
4029  -330,"Self-test failed;(4029)"
See the explanation for error number 4000.
4030  -330,"Self-test failed;(4030)"
See the explanation for error number 4000.
4031  -330,"Self-test failed;(4031)"
See the explanation for error number 4000.
4032  -330,"Self-test failed;(4032)"
See the explanation for error number 4000.
4033  -330,"Self-test failed;(4033)"
See the explanation for error number 4000.
4034  -330,"Self-test failed;(4034)"
See the explanation for error number 4000.
4036 -330,"Self-test failed;(4036)"
See the explanation for error number 4000.
4037 -330,"Self-test failed;(4037)"
See the explanation for error number 4000.
4038 -330,"Self-test failed;(4038)"
See the explanation for error number 4000.
4039 -330,"Self-test failed;(4039)"
See the explanation for error number 4000.
4040 -330,"Self-test failed;(4040)"
See the explanation for error number 4000.
4041 -330,"Self-test failed;(4041)"
See the explanation for error number 4000.
4042 -330,"Self-test failed;(4042)"
See the explanation for error number 4000.
4043 -330,"Self-test failed;(4043)"
See the explanation for error number 4000.
4044 -330,"Self-test failed;(4044)"
See the explanation for error number 4000.
4045 -330,"Self-test failed;(4045)"
See the explanation for error number 4000.
9000 -330,"Self-test failed;(9000)"
See the explanation for error number 4000.
HP 8673 Compatibility Guide

This chapter contains information pertaining to the 8673 language emulation of the HP synthesizer (with firmware revision 10.00 or later). Most aspects of the 8673 product are emulated well with the exception of step sweep operation. Compatibility to the 8673 language is close, but not exact. Great care has been exercised in this section to specify the differences. In general, most common applications should exhibit a drop in compatibility.
Command Mapping to SCPI

In Table 4-1, each HP 8673 command is listed along with its associated parameter and equivalent SCPI command (if one exists). Numbers referring to specific notes are also listed in the table. The corresponding notes follow the table.
Table 4-1. HP 8673 Command Mapping to SCPI Commands

<table>
<thead>
<tr>
<th>HP 8673 Command</th>
<th>Parameter</th>
<th>Equivalent SCPI Command</th>
<th>See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>Level</td>
<td>POW:JMM</td>
<td></td>
</tr>
<tr>
<td>A0, A0</td>
<td>AM OFF</td>
<td>AM:STAT OFF</td>
<td>14</td>
</tr>
<tr>
<td>A1</td>
<td>AM OFF</td>
<td>AM:STAT OFF</td>
<td>14</td>
</tr>
<tr>
<td>A2</td>
<td>AM 30%</td>
<td>AM:SOUR EXT; TYPE LIN; SENS 30; STAT ON</td>
<td>11,14</td>
</tr>
<tr>
<td>A3</td>
<td>AM 100%</td>
<td>AM:SOUR EXT; TYPE LIN; SENS 100; STAT ON</td>
<td>11,14</td>
</tr>
<tr>
<td>BS</td>
<td>Backspace</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>BY</td>
<td>ByPass mode</td>
<td>No action</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Center frequency</td>
<td>FREQ:CW</td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Clear status</td>
<td>*CLS</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>Configure trig</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>CW</td>
<td>CW frequency</td>
<td>FREQ:CW</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>ALC INTERNAL</td>
<td>POW:ALC INT</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>ALC DIODE</td>
<td>POW:ALC DIOOD</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>ALC PWR MTR</td>
<td>POW:ALC PMET</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>ALC SYS mode</td>
<td>POW:ALC PMET</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>dB</td>
<td>dB or dBm</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>Delta frequency</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>DM</td>
<td>dB</td>
<td>dB or dBm</td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td>FREQ INC (Down)</td>
<td>FREQ:CW DOWN</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>DWELL</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>D0, D0</td>
<td>FM DEVIATION OFF</td>
<td>FM:STAT OFF</td>
<td>14</td>
</tr>
<tr>
<td>D1</td>
<td>FM DEVIATION OFF</td>
<td>FM:STAT OFF</td>
<td>14</td>
</tr>
<tr>
<td>HP 8673 Command</td>
<td>Parameter</td>
<td>Equivalent SCPI Command</td>
<td>See Note</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>D2</td>
<td>FM DEVIATION .03 MHz</td>
<td>FM: SOUR EX; SENS 30 KHZ; STAT ON</td>
<td>2,14</td>
</tr>
<tr>
<td>D3</td>
<td>FM DEVIATION .1 MHz</td>
<td>FM: SOUR EX; SENS 100 KHZ; STAT ON</td>
<td>2,14</td>
</tr>
<tr>
<td>D4</td>
<td>FM DEVIATION .3 MHz</td>
<td>FM: SOUR EX; SENS 300 KHZ; STAT ON</td>
<td>2,14</td>
</tr>
<tr>
<td>D5</td>
<td>FM DEVIATION 1 MHz</td>
<td>FM: SOUR EX; SENS 1 MHZ; STAT ON</td>
<td>2,14</td>
</tr>
<tr>
<td>D6</td>
<td>FM DEVIATION 3 MHz</td>
<td>FM: SOUR EX; SENS 3 MHZ; STAT ON</td>
<td>2,14</td>
</tr>
<tr>
<td>D7</td>
<td>FM DEVIATION 10 MHz</td>
<td>FM: SOUR EX; SENS 10 MHZ; STAT ON</td>
<td>2,14</td>
</tr>
<tr>
<td>FA</td>
<td>START sweep frequency</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>FB</td>
<td>STOP sweep frequency</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>F1, F1</td>
<td>FREQ INCR</td>
<td>FREQ: STEP</td>
<td>1</td>
</tr>
<tr>
<td>FN</td>
<td>FREQ INCR</td>
<td>FREQ: STEP</td>
<td>1</td>
</tr>
<tr>
<td>FO</td>
<td>OFFSET</td>
<td>FREQ: OFFSET</td>
<td>2,14</td>
</tr>
<tr>
<td>FO--</td>
<td>OFFSET</td>
<td>FREQ: OFFSET</td>
<td>2,14</td>
</tr>
<tr>
<td>FR</td>
<td>FREQUENCY</td>
<td>FREQ: CW</td>
<td>2,14</td>
</tr>
<tr>
<td>FS</td>
<td>Delta frequency</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>FT</td>
<td>OFFSET</td>
<td>FREQ: OFFSET</td>
<td>2,14</td>
</tr>
<tr>
<td>FT--</td>
<td>OFFSET</td>
<td>FREQ: OFFSET</td>
<td>2,14</td>
</tr>
<tr>
<td>GZ</td>
<td>GHz</td>
<td>GHz</td>
<td>1</td>
</tr>
<tr>
<td>HZ</td>
<td>Hz</td>
<td>Hz</td>
<td>1</td>
</tr>
<tr>
<td>IF</td>
<td>Increment frequency</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>IP</td>
<td>Instrument preset</td>
<td>*RST</td>
<td>7</td>
</tr>
<tr>
<td>KZ</td>
<td>kHz</td>
<td>KHZ</td>
<td>1</td>
</tr>
<tr>
<td>K0</td>
<td>AUTO PEAK OFF</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>K1</td>
<td>AUTO PEAK ON</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>K2</td>
<td>AUTO PEAK</td>
<td>Not emulated</td>
<td>1</td>
</tr>
</tbody>
</table>
# Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

<table>
<thead>
<tr>
<th>HP 8673 Command</th>
<th>Parameter</th>
<th>Equivalent SCPI Command</th>
<th>See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>Power level</td>
<td>POW:IMM</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Front panel learn mode</td>
<td>*LRN</td>
<td>12</td>
</tr>
<tr>
<td>L2</td>
<td>Special Fcn learn mode</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>MG</td>
<td>MESSAGE</td>
<td>DIAG:MG</td>
<td>5</td>
</tr>
<tr>
<td>MS</td>
<td>Milliseconds</td>
<td>MS</td>
<td></td>
</tr>
<tr>
<td>MU</td>
<td>MULT</td>
<td>FREQ:MULT</td>
<td></td>
</tr>
<tr>
<td>MY</td>
<td>MULT</td>
<td>FREQ:MULT</td>
<td></td>
</tr>
<tr>
<td>MZ</td>
<td>MHz</td>
<td>MHZ</td>
<td></td>
</tr>
<tr>
<td>M0,MO</td>
<td>Marker(s) OFF</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>M1,NO</td>
<td>Marker 1</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>M2</td>
<td>Marker 2</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>M3</td>
<td>Marker 3</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>M4</td>
<td>Marker 4</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>M5</td>
<td>Marker 5</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>N0,NO</td>
<td>TUNE knob OFF</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>N1</td>
<td>TUNE knob ON</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>NM</td>
<td>Normal mode</td>
<td>No action</td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>Output active parameter</td>
<td>DIAG:OA?</td>
<td>6</td>
</tr>
<tr>
<td>OC</td>
<td>Output coupled</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>OK</td>
<td>Output lock freq</td>
<td>FREQ:CW?</td>
<td></td>
</tr>
<tr>
<td>OL</td>
<td>Front panel learn mode</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>Output request mask</td>
<td>*SRE?</td>
<td>9</td>
</tr>
<tr>
<td>OS</td>
<td>Output status</td>
<td>DIAG:OS</td>
<td>4</td>
</tr>
<tr>
<td>PL</td>
<td>Power level</td>
<td>POW:IMM</td>
<td></td>
</tr>
</tbody>
</table>
### Table 4-1. HP 8673 Command Mapping to SCPI Commands (continued)

<table>
<thead>
<tr>
<th>HP 8673 Command</th>
<th>Parameter</th>
<th>Equivalent SCPI Command</th>
<th>See Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0,P0</td>
<td>PULSE OFF</td>
<td>PULM:SOUR EXT; STAT OFF</td>
<td>14</td>
</tr>
<tr>
<td>P1</td>
<td>PULSE OFF</td>
<td>PULM:SOUR EXT; STAT OFF</td>
<td>14</td>
</tr>
<tr>
<td>P2</td>
<td>PULSE NORM</td>
<td>PULM:SOUR EXT; POL NORM; STAT ON</td>
<td>14</td>
</tr>
<tr>
<td>P3</td>
<td>PULSE COMP</td>
<td>PULM:SOUR EXT; POL INV; STAT ON</td>
<td>14</td>
</tr>
<tr>
<td>RA</td>
<td>RANGE</td>
<td>Mapped to PL</td>
<td>10</td>
</tr>
<tr>
<td>RC</td>
<td>Recall</td>
<td>*RCL</td>
<td>3</td>
</tr>
<tr>
<td>RCBS</td>
<td>Alternate IP</td>
<td>*RST; CW 14GHZ</td>
<td>8</td>
</tr>
<tr>
<td>RD</td>
<td>RANGE</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>RF0</td>
<td>RF OFF</td>
<td>POW:STAT OFF</td>
<td></td>
</tr>
<tr>
<td>RF1</td>
<td>RF ON</td>
<td>POW:STAT ON</td>
<td></td>
</tr>
<tr>
<td>RL</td>
<td>Recall</td>
<td>*RCL</td>
<td>3</td>
</tr>
<tr>
<td>RM</td>
<td>RMS mask</td>
<td>**SRE</td>
<td>9</td>
</tr>
<tr>
<td>RS</td>
<td>Reset sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>RU</td>
<td>RANGE UP 10 dB</td>
<td>POW:IMM:STEP 100db; :POW:IMM UP</td>
<td></td>
</tr>
<tr>
<td>RO</td>
<td>RF OFF</td>
<td>POW:STAT OFF</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>RF ON</td>
<td>POW:STAT ON</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Slave down</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>SF</td>
<td>STEP</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>SH</td>
<td>Shift</td>
<td>No action</td>
<td></td>
</tr>
<tr>
<td>SH/C2</td>
<td>ALC SYS mode</td>
<td>POW:ALC PMET</td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>MANUAL sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>SP</td>
<td>STEP</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>SS</td>
<td>Steps (suffix)</td>
<td>No action</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Store</td>
<td>*SAV</td>
<td></td>
</tr>
<tr>
<td>HP 6673 Command</td>
<td>Parameter</td>
<td>Equivalent SCPI Command</td>
<td>See Note</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>SU</td>
<td>Slave UP</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>SV</td>
<td>Service function</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>TI</td>
<td>Test interface</td>
<td>&quot;TST?&quot;</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Execute trigger</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>T1</td>
<td>Meter LVL</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>Meter AM</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>T3</td>
<td>Meter FM</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>UP</td>
<td>FREQ INCR (up)</td>
<td>FREQ:CW UP</td>
<td></td>
</tr>
<tr>
<td>VE</td>
<td>VERNIER</td>
<td>Mapped to PL</td>
<td>10</td>
</tr>
<tr>
<td>W0, W1</td>
<td>SWEEP MODE OFF</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W2</td>
<td>AUTO sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W3</td>
<td>MANUAL sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W4</td>
<td>SINGLE sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W5</td>
<td>SINGLE sweep: arm only</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W6</td>
<td>SINGLE sweep: arm and</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W7</td>
<td>Master sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>W8</td>
<td>Slave sweep</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>XF</td>
<td>XFREQ</td>
<td>No action</td>
<td></td>
</tr>
<tr>
<td>HP 8673 Command</td>
<td>Parameter</td>
<td>Equivalent SCPI Command</td>
<td>See Note</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>X0,X0</td>
<td>Marker(s) OFF</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>X1</td>
<td>Marker 1</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>X2</td>
<td>Marker 2</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>X3</td>
<td>Marker 3</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>X4</td>
<td>Marker 4</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>X5</td>
<td>Marker 5</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>Y0</td>
<td>FREQ display off</td>
<td>DISP:STAT OFF</td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>FREQ display on</td>
<td>DISP:STAT ON</td>
<td></td>
</tr>
<tr>
<td>@A</td>
<td>Start of FP learn mode</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>@1</td>
<td>Prefix for request mask</td>
<td>&quot;SRE&quot;</td>
<td>9</td>
</tr>
<tr>
<td>@2</td>
<td>Deferred execution mode</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>@3</td>
<td>Immediate execution mode</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>@5</td>
<td>Start of special function learn mode</td>
<td>Not emulated</td>
<td>1</td>
</tr>
<tr>
<td>SCPI</td>
<td>Change to SCPI</td>
<td>SYST:LANG SCPI</td>
<td>13</td>
</tr>
<tr>
<td>SE</td>
<td>Output error string</td>
<td>SYST:ERR?</td>
<td>13</td>
</tr>
<tr>
<td>SYSTEM:SET</td>
<td>Learn string</td>
<td>SYSTEM:SET</td>
<td>12</td>
</tr>
</tbody>
</table>
Notes:

Note 1  The command is accepted, but front panel and remote error messages are given specifying that this command is not emulated.

Note 2  For CW frequencies above 1 GHz, available sensitivities are as shown. When the CW frequency is below 1 GHz, sensitivity is reduced by factors of four at logarithmic intervals (see the command FM:DEV in earlier section). For HP 83731A/32A model synthesizers, only 5 MHz/Volt is available at 1 GHz and above. In addition, HP 83731A/32A model synthesizers have reduced sensitivities for CW frequencies below 1 GHz.

Note 3  Recall register 0 is equivalent to an instrument preset (IP).

Note 4  Although the HP 8673 specifies that two binary bytes will be returned on the bus, in some cases only one byte is returned. The HP 837XX synthesizers always return two binary bytes (status + extended) plus a line-feed character.

Note 5  The MG command typically returns a +<digit>, or a +<digit><digit> instead of the HP 8673 fixed format of <digit><digit>. The error message numbers are similar to those of an HP 8673. For any significant development and debugging work, it is recommended that the string query command “SE” (SYStem:ERRor) be used for a more accurate, detailed error message.

Note 6  This command is not accessible through normal SCPI. When either freqMult != 1 or freqOffset != 0, the output of the frequency parameter becomes a variable format instead of a fixed precision format of 11 digits.

Note 7  Except for power level and sweep parameters that are not emulated, all parameters as specified in the HP 8673B User’s Guide are the same. The power level after an instrument preset (IP) will be the lowest available depending upon model and options.

Note 8  The RCBS command is mapped to an instrument preset (IP), except with the addition of setting the frequency to 14 GHz. The frequency multiply and ALC modes are not preserved.
Note 9  This command has the same functionality as the SCPI feature
*SRE; however, set and query forms are a single byte of binary
data as in the HP 8673B.

Note 10  The RA (Range) and "VE" (Venier) commands emulate, in most
cases, the personality of the 8673. Some differences are:

- RA does NOT map directly into the attenuator state. The
  synthesizer has different attenuator band cross points than the
  8673. In addition, these band cross points are instrument
  state dependent. See Linear AM mode of the main manual.
  However, the desired power level will be delivered.

- The preferred range of "VE" is from -10 to 0. Values outside
  this range will be accepted. "VE" and "RA" may change
  values at a warm power up, register recall, and learn string
  except; however, their sum will remain the same in such
  transitions.

- Some error conditions, like sending RA-50 dB on an 83731/32
  unit without attenuator may have unspecified side effects.
  Similar for sending RA-100 dB on 83731A/32A units.

Note 11  Commands A2 and A3 are mapped to :AM:SOUR EXT; TYPE
LOG; STAT ON for HP 83731A/32A synthesizers. Linear
modulation is not available on HP 83731A/32A synthesizers.

Note 12  The SCPI version of learn strings is operated through this
command. However, an approximately 4200 byte string is
required instead of a 96 byte string. Imbedded in the string, the
initial sequence will be ".:SYSTEM:SET . . . " instead of ".@A":
this should make no difference to the user. The following RMB
program is an example of usage:

```
10   DIM A$ [5000]
20   OUTPUT 719;"L1"
30   ENTER 719 USING "-K";A$
40   PRINT "String Read"
50   PAUSE
60   !
70   PRINT "Sending String"
80   OUTPUT 719;A$
90   END
```
Note 13  Supplemental commands to 8673 that allow some key needed functionality.

Note 14  The HP 83711A/12A and HP 83711B/12B synthesizers do not support modulation. Therefore, the following HP 8673 commands will produce an "Undefined Header" error message if sent:

- **Amplitude Modulation**: A0, A0, A1, A2, A3
- **Frequency Modulation**: D0, D0, D1, D2, D3, D4, D5, D6, D7
- **Pulse Modulation**: P0, P0, P1, P2, P3

---

**Out of Range Personality Difference**

The HP synthesizers limit a command argument to the closest allowable value; the HP 8673 rejects an out of range command and will not change the current state value.

---

**Rounding Personality Difference**

The HP synthesizers generally round numbers according to IEEE rules; the HP 8673 rounds numbers down to a more negative value.

---

**Power Suffixes**

Power suffixes dB or dBm are generally accepted for all power level commands.
Output Active Parameter

The active parameter is not coordinated with the front panel.

System ALC Mode

The C4 (system ALC mode) is mapped to the ALC:SOUR PMETER command.

**NOTE**

In this mode, POW:LEV is set to the value of POW:ALC:PMETER:LEV. Also, leveling is expected at the ALC IN connector of 0 V = 0 dBm.

Query Return Format

The query return format, from a synthesizer product in 8673 emulation mode, can have significant differences. In particular, the synthesizer products will ALWAYS follow every query return string with a "line feed" (i.e., 0x0A). This can cause problems, especially when RMB code has been specifically tuned to the two byte binary format return of the 8673 "OS" command. It will be a common problem for existing programs to leave this third byte (i.e., line feed) in the output queue. This will eventually produce a "-410 query interrupted" error when the next command is sent. If a current RMB program has the following commands:
OUTPUT 719 USING "2A"; "0S"
ENTER 719 USING "%B, B"; Stat1, Stat2

It is recommended to add an extra query byte variable to handle this carriage return.

OUTPUT 719 USING "2A"; "0S"
ENTER 719 USING "%B, B, B"; Stat1, Stat2, Extra
HP 8673 Status Bits

This section describes the HP 8673 status and extended bytes.
# HP 8673 Status Bits

## Images

### Table 4-2. HP 8673 Status and Extended Bytes

<table>
<thead>
<tr>
<th>Byte</th>
<th>Weight</th>
<th>Description</th>
<th>HP 8673</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Status Byte</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 1</td>
<td>1</td>
<td>Front panel key pressed</td>
<td>Front panel key pressed</td>
</tr>
<tr>
<td>Bit 2</td>
<td>2</td>
<td>Operation complete</td>
<td>Front panel entry complete</td>
</tr>
<tr>
<td>Bit 3</td>
<td>4</td>
<td>Change in ESB</td>
<td>Change in ESB</td>
</tr>
<tr>
<td>Bit 4</td>
<td>8</td>
<td>Source settled</td>
<td>Source settled</td>
</tr>
<tr>
<td>Bit 5</td>
<td>16</td>
<td>0</td>
<td>End of sweep</td>
</tr>
<tr>
<td>Bit 6</td>
<td>32</td>
<td>Command error</td>
<td>Entry error</td>
</tr>
<tr>
<td>Bit 7</td>
<td>64</td>
<td>ROS bit request service</td>
<td>ROS bit request service</td>
</tr>
<tr>
<td>Bit 8</td>
<td>128</td>
<td>0</td>
<td>Change in sweep parameter</td>
</tr>
<tr>
<td><strong>Extended Byte</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit 1</td>
<td>1</td>
<td>0</td>
<td>Self test failed</td>
</tr>
<tr>
<td>Bit 2</td>
<td>2</td>
<td>Modulation error</td>
<td>FM over modulation</td>
</tr>
<tr>
<td>Bit 3</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 4</td>
<td>8</td>
<td>0</td>
<td>External reference</td>
</tr>
<tr>
<td>Bit 5</td>
<td>16</td>
<td>Frequency error</td>
<td>Not phased locked</td>
</tr>
<tr>
<td>Bit 6</td>
<td>32</td>
<td>0</td>
<td>Power failure / on</td>
</tr>
<tr>
<td>Bit 7</td>
<td>64</td>
<td>ALC unlevelled</td>
<td>ALC unlevelled</td>
</tr>
<tr>
<td>Bit 8</td>
<td>128</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Event Register Bits

The status byte is an event register. Bits are set when the event occurs, and cleared only when read with the OS command.

Condition Register Bits

The extended status byte is a condition register. Bits are set and cleared with the condition.

Source Settled Bit Personality Difference

The HP synthesizers set the source settled bit (bit 4 of the primary status byte) anytime a parameter is changed that effects conditions at the RF output. The HP 8673 source settled bit applies primarily to changes in power level.

ALC Unleveled and Frequency Error Bits

When the RF is turned off on the HP 8673, the ALC unleveled and frequency error extended status bits are set. This condition does not occur on the HP synthesizers.
Change in ESB Bit

The change in ESB bit for the HP synthesizers will only be turned on when any bit of the extended byte becomes true; not when any bit becomes false as in the HP 8673.

Front Panel Entry Complete Bit

The HP 8673 front panel entry complete bit, in remote programming mode, applies only to changes in frequency increment, offset, multiply, and in some command argument out of limit conditions. For HP synthesizer compatibility, the status “Operation Complete” is mapped to this bit.
Legal and Regulatory Information

This chapter contains information pertaining to SCPI conformance and the warranty.
The Synthesizer uses the Standard Commands for Programmable Instruments (SCPI) language for HP-IB communication.

The SCPI commands and queries that the Synthesizer understands are listed and described individually in Chapter 2, "Programming Commands."

Table 5-1 lists all of the commands and queries that the Synthesizer understands and whether they are SCPI approved, SCPI confirmed, or non-SCPI. The commands and queries that are labeled "IEEE 488.2 Required" and "IEEE 488.2 Optional" are also non-SCPI.

**NOTE**

In the table, if a command is terminated with a question mark enclosed in parentheses ([?]), that particular syntax is both a command and a query.

The SCPI version number that the Synthesizer supports at the writing of this manual is 1991.0

If you need more information about SCPI, refer to the *Beginner's Guide to SCPI* (HP part number H2325-90001).
<table>
<thead>
<tr>
<th>Programming Command</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABORe</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*CLS</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>DISPlay[:WINdow][:STATE] ?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*DMC</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*EMC (?)</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*ESE (?)</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>*ESR ?</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>*GMC ?</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*IDN ?</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>INITiate:CONTinuous ?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*LMC ?</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*LIRN ?</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>MEMory:CATalog[:ALL]</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>MEMory:CATalog:TABLe</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>MEMory:CATalog:MACRo</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>MEMory:RAM:INITialize</td>
<td>Non-SCPI</td>
</tr>
<tr>
<td>MEMory:TABLe:SElect (?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Programming Command</td>
<td>Status</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>*OPT?</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>OUTPUT:IMPedance?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>OUTPUT:PROtection:STATE(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>OUTPUT:STATE(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*PMC</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*PSCI(?)</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*RCL</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*RMC</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>*RST</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>*SAV</td>
<td>IEEE 488.2 Optional</td>
</tr>
<tr>
<td>[SOURce(1):]AM[:DEPTH]</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM[:DEPTH]:STEP[:INCRement]</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:FEED</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:INTERN:FRQency</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:INTERN:FRqency:STEP[:INCRement]</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:INTERN:FUNC</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:SENSivity</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:SOURce</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:STATE(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):]AM:TYPE(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):CORRaction:FLATness[:DATA]</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>[SOURce(1):CORRaction:FLATness:POINts</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Programming Command</td>
<td>Status</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td><code>[SOURce][1]:CORRrection:STATE(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:CORRrection:CSET[1]:SELECT(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:CORRrection:CSET:STATE(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:COUPling(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:DEViation</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:DEViation]:STEP[1:INCRement]</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:FEED</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:INternal:FREQuency</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:INternal:FREQuency:STEP[1:INCRement]</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:INternal:FUNC</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:SENSitivity</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:SOURce</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FM:STATE(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FREQuency:CW[:FIXed](?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FREQuency:CW[:FIXed]:STEP(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FREQuency:MULTiplier(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:FREQuency:MULTiplier:STEP(?)</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:MODulation:AOFF</code></td>
<td>Non-SCPI</td>
</tr>
<tr>
<td><code>[SOURce][1]:MODulation:STATE(?)</code></td>
<td>Non-SCPI</td>
</tr>
<tr>
<td><code>[SOURce][1]:PM:COUPling</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:PM:DEViation</code></td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td><code>[SOURce][1]:PM:DEViation]:STEP[1:INCRement]</code></td>
<td>SCPI Confirmed</td>
</tr>
</tbody>
</table>
### Table 5-1. SCPI Conformance (continued)

<table>
<thead>
<tr>
<th>Programming Command</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SOURce:PM:FEED)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:IN:FRQ)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:IN:FRQ:STEP:INC)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:FUNC)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:RANGe)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:SENS)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:SOURce)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:PM:STATe)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:ALC:PMETeri?)</td>
<td>Non-SCPI</td>
</tr>
<tr>
<td>(SOURce:POWer:ALC:PMETeri:STEPeri?)</td>
<td>Non-SCPI</td>
</tr>
<tr>
<td>(SOURce:POWer:ALC:SOURce?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:ATTenuation:AUTOeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:LEVELeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:LEVELeri:STEPeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:PROtection:STATeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:PO:POLarityeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:SOURceeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:STATeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:DELiayeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:DELiay:STEPeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:DOUBLEt:STATeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce:POWer:FRQencyeri?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Programming Command</td>
<td>Status</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:FRQ:STEP?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:PERiod?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:PERiod:STEP?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:TRANsition:LEAtag?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:TRANsition:STAte?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:WIDTh?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:PULSe:WIDTh:STEP?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>(SOURce[1]:ROSCillator:SOURce?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*SRE?</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>STATus:OPERation:CONDition?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>STATus:OPERation:ENABle?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>STATus:OPERation:EVENT?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Programming Command</td>
<td>Status</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Status:OPERation:NTRansition(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:OPERation:PTRansition(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:PRESet</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:QUESTionable:CONDition?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:QUESTionable:ENABLEd?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:QUESTionable:[EVENT1]?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:QUESTionable:NTRansition(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Status:QUESTionable:PTRansition(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*STB?</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>SYSTEM:COMMunicate:GPIB:ADDRESS(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>SYSTEM:COMMunicate:PMERe:ADDRESS(?)</td>
<td>Non-SCPI</td>
</tr>
<tr>
<td>SYSTEM:ERROR?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>SYSTEM:KEY1?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>SYSTEM:LANGUAGE(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>SYSTEM:PRESet</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>SYSTEM:VERSION?</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>Programming Command</td>
<td>Status</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>TRIGGER[:SEQUence(1)];:STARt:SOURce(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>TRIGGER[:SEQUence2];:STDp:SOURce(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>TRIGGER[:SEQUence2]:SLDPe</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*TST?</td>
<td>IEEE 488.2 Required</td>
</tr>
<tr>
<td>UNIT:FREQuency(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>UNIT:POWer[:VOLT]agel (?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>UNIT:TIME(?)</td>
<td>SCPI Confirmed</td>
</tr>
<tr>
<td>*WAI</td>
<td>IEEE 488.2 Required</td>
</tr>
</tbody>
</table>
Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, (NIST), to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Regulatory Information

The declaration of conformity can be found in the user's guide and the calibration guide for this instrument.
Warranty

This Hewlett-Packard instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by HP. Buyer shall prepay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with an instrument will execute its programming instructions when properly installed on that instrument. HP does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.
Product maintenance agreements and other customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.
# Legal and Regulatory Information

## Hewlett-Packard Sales and Service Offices

### US FIELD OPERATIONS

<table>
<thead>
<tr>
<th>Headquarters</th>
<th>California, Northern</th>
<th>California, Southern</th>
<th>Colorado</th>
</tr>
</thead>
<tbody>
<tr>
<td>19320 Pruneridge Ave. Cupertino, CA 95014</td>
<td>301 E. Evelyn Mountain View, CA 94041</td>
<td>1421 South Manhattan Ave. Fullerton, CA 92831</td>
<td>24 Inverness Place, East Englewood, CO 80112</td>
</tr>
<tr>
<td>(800) 752-0900</td>
<td>(415) 954-2000</td>
<td>(714) 999-6700</td>
<td>(303) 645-5512</td>
</tr>
<tr>
<td>Atlanta Annex</td>
<td>Illinois</td>
<td>New Jersey</td>
<td>Texas</td>
</tr>
<tr>
<td>2124 Barrett Park Drive</td>
<td>5201 Tollview Drive</td>
<td>150 Green Pond Rd.</td>
<td>930 E. Campbell Rd.</td>
</tr>
<tr>
<td>Kannseaw, GA 30144</td>
<td>Rolling Meadows, IL 60008</td>
<td>Rockaway, NJ 07866</td>
<td>Richardson, TX 75081</td>
</tr>
<tr>
<td>(404) 648-0000</td>
<td>(708) 255-9800</td>
<td>(201) 586-5400</td>
<td>(214) 231-6101</td>
</tr>
</tbody>
</table>

### EUROPEAN FIELD OPERATIONS

<table>
<thead>
<tr>
<th>Headquarters</th>
<th>France</th>
<th>Germany</th>
<th>Great Britain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett-Packard S.A.</td>
<td>Hewlett-Packard France</td>
<td>Hewlett-Packard GmbH</td>
<td>Hewlett-Packard Ltd.</td>
</tr>
<tr>
<td>150, Route du Nant-d'Avril 1217 Meyrin 2/Geneva</td>
<td>1 Avenue Du Canada</td>
<td>Hewlett-Packard Strasse 61352 Bad Homburg v.d.H</td>
<td>Eskdale Road, Winnersh Triangle</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Zone D'Activite De Courtebouse</td>
<td>Germany</td>
<td>Wokingham, Berkshire RG41 5OZ</td>
</tr>
<tr>
<td>(41 22) 780.8111</td>
<td>F-91947 Les Ulis Cedex</td>
<td>(49 6172) 16-0</td>
<td>England</td>
</tr>
<tr>
<td></td>
<td>France</td>
<td></td>
<td>(44 734) 666622</td>
</tr>
<tr>
<td></td>
<td>(33 1) 69 82 60 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### INTERCON FIELD OPERATIONS

<table>
<thead>
<tr>
<th>Headquarters</th>
<th>Australia</th>
<th>Canada</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hewlett-Packard Company</td>
<td>Hewlett-Packard Australia Ltd.</td>
<td>Hewlett-Packard (Canada) Ltd.</td>
<td>China Hewlett-Packard Company</td>
</tr>
<tr>
<td>3405 Deer Creek Road</td>
<td>31-41 Joseph Street Blackburn, Victoria 3130</td>
<td>17500 South Service Road Trans-Canada Highway</td>
<td>38 Bei San Huen X1 Road</td>
</tr>
<tr>
<td>Palo Alto, California, USA 94304-1316</td>
<td>(61 3) 895-2995</td>
<td>Kirkland, Quebec H9J 2K9</td>
<td>Shuang Yu Shu</td>
</tr>
<tr>
<td>(415) 857-5027</td>
<td></td>
<td>Canada</td>
<td>Hai Dian District</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(514) 697-4232</td>
<td>Beijing, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(86 1) 256-6888</td>
</tr>
<tr>
<td>Japan</td>
<td>Singapore</td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard Japan, Ltd.</td>
<td>Hewlett-Packard Singapore Pte. Ltd.</td>
<td>Hewlett-Packard Taiwan</td>
<td></td>
</tr>
<tr>
<td>1-27-15 Yabe, Sagamihara Kanagawa 229, Japan</td>
<td>150 Beech Road #29-00 Gateway West Singapore 0718</td>
<td>Bth Floor, H-P Building 337 Fu Hsing North Road</td>
<td></td>
</tr>
<tr>
<td>(81 427) 59-1311</td>
<td>(65) 281-8088</td>
<td>Taipei, Taiwan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(886 2) 712-0404</td>
<td></td>
</tr>
</tbody>
</table>
Legal and Regulatory Information
Index

A
abort statement, 1-8
AC FM, 2h-21
AC PM, 2h-43
address
HP-IB, 2j-5
advantages
DC FM, 2h-21
ALC source, 2a-7
ALC unlevled bits, 8673, 4-17
AM. See log AM
AM[:DEPT]:, 2h-3
AM[:DEPT]:STEP, 2h-6
AM:INT:FREQ, 2h-8
AM:INT:FREQ:STEP, 2h-10
AM:INT:FUNC, 2h-12
AM:SENSitivity, 2h-14
AM:SOURce, 2h-16
AM:STATE:, 2h-18
AM:TYPE, 2h-20
angle brackets, 1-17
attenuator hold function, 2k-7
advantages, 2k-7
disadvantages, 2k-8
average power inhibit function, 2k-10

B
bits
ALC unlevled, 4-17
change in ESB, 4-18
condition register, 4-17
event register, 4-17
F.P. entry complete, 4-18
frequency error, 4-17
source settled, 4-17
book introduction, iv
Boolean parameters
discussed in detail, 1-37
brackets, angle, 1-17
C  calibration data
    factory, 2d-5
  carrier deviation, 2h-34
change in ESB bits, 8673, 4-18
clear statement, 1-11
  *CLS, 21-9
colon
  examples using, 1-24
  proper use of, 1-23, 1-24, 1-37
  types of command where used, 1-21
command examples, 1-17
commands, 1-29
  common, 1-20
  defined, 1-16
  event, 1-25
  implied, 1-25
  query, 1-25
  subsystem, 1-20, 1-21
  syntax overview, 1-31, 1-32
command statements, fundamentals, 1-7
command trees
  defined, 1-22
  how to change paths, 1-22
  how to read, 1-22
  using efficiently, 1-24
commas
  proper use of, 1-23, 1-33
common commands, 1-20, 1-23
  defined, 1-20
compatibility, 8673 to SCI, 4-3
condition register bits, 8673, 4-17
controller
  defined, 1-16
controller, definition of, 1-5
CORRection:CSET[:SELection], 2e-15
CORRection:CSET:STATe, 2e-17
CORRection:FLATness[:DATA], 2e-19
CORRection:FLATness:POINTs, 2e-21
CORRection[:STATe], 2e-23
current path
  defined, 1-22
  rules for setting, 1-22
D  data
  factory calibration, 2d-5
  DC FM, 2h-21
  advantages, 2h-21
  disadvantages, 2h-21
  DC PM, 2h-43
  default suffix
  frequency, 2j-9
  power, 2j-12
  time, 2j-14
  definitions of terms, 1-16
  deviation
    carrier, 2h-34
    frequency, 2h-34
  device enter statement, 1-13
  device output statement, 1-12
  disadvantages
    DC FM, 2h-21
  discrete parameters
    discussed in detail, 1-37
  discrete response data
    discussed in detail, 1-30
  DISPLAY[:WINDow[:STATe], 2g-3
  *DMC, 2f-3
  doublet pulse, example program, 1-55

E  *EMC, 2f-4
  END, 1-17
  END[end], 1-30
  enter statement, 1-13
  EOI, 1-17, 1-30
  EOI, suppression of, 1-13
  error message
    action required, 3-3
    detailed description, 3-3
    hardware failures, 3-4
    manual error number, 3-3
    SCPI error message, 3-3
    SCPI error number, 3-3
    error message format, 3-3
    error messages list, 3-5-47
  error queue
    front panel, 2c-7
    HP-IB, 2c-7
  errors
    permanent, 3-2
  *ESE, 2l-11
  *ESR?, 2l-13

Index-4
event commands, 1-25
event register bits, 8673, 4-17
events
  event commands, 1-25
example program
doublet pulse, 1-55
external triggered pulse mod, 1-51
gated pulse mod, 1-57
HP-IB check, 1-41
internal log AM, 1-59
internally leveled AC coupled FM, 1-45
internally leveled CW sig., 1-44
internal pulse mod, 1-49
int leveled AC-coupled int FM, 1-46
level correction, 1-62
local lockout, 1-42
log AM/pulse mod, 1-61
power sweep, 1-48
repetitive ext pulse mod, 1-53
use of save/recall, 1-67
example programs, 1-40-48
examples, simple program messages, 1-26
exponential AM. See log AM
extended bits, 8673, 4-16
extended numeric parameters
discussed in detail, 1-36
external timebase reference, 2c-6
external triggered pulse mod, example program, 1-51

F factory calibration data, 2d-5
firmware revision number, 2c-3
FM
  AC, 2h-21
  DC, 2h-21
FM:COUPling, 2h-21
FM[:DEVIation], 2h-23
FM[:DEVIation]:STEP, 2h-26
FM:INT:FREQ, 2h-28
FM:INT:FREQ:STEP, 2h-30
FM:INT:FUNC, 2h-32
FM:SENSitivity, 2h-34
FM sensitivity. See sensitivity
FM:SOURce, 2h-37
FM:STATe, 2h-39
forgiving listening, 1-20, 1-34
F.P. entry complete bit, 8673, 4-18
FREQuency[:CW]:FIXed, 2b-3
FREQuency[:CW]:FIXed]:STEP, 2b-5

Index-5
frequency deviation, 2h-34
frequency error bits, 8673, 4-17
FREQuency:MULTIplier, 2b-7
FREQuency:MULTIplier:STEP, 2b-10
frequency multiplier value, 2b-7
functional verification. See self test

G  gated pulse mod, example program, 1-57
  *GMC?, 2f-6
  GPIB check, example program, 1-41

H  HP-IB
  technical standard, 1-69
  HP-IB address, 2J-5
  HP-IB check, example program, 1-41
  HP-IB connecting cables, 1-3
  HP-IB, definition of, 1-2

I  *IDN?, 2c-3
  IEEE
    mailing address, 1-69
    IEEE 488.1
    how to get a copy, 1-69
    IEEE 488.2
    how to get a copy, 1-69
    implied commands, 1-25
    initial power meter reading, 2a-3
    instruments
      defined, 1-16
      instrument state recall, 2d-6
      instrument state save, 2d-10
    integer response data
      discussed in detail, 1-38
    integers
      rounding, 1-35
    internal leveled AC-coupled FM, example program, 1-45
    internal leveled CW, example program, 1-44
    internal log AM, example program, 1-59
    internal pulse mod, example program, 1-49
  In This Book, iv
  int leveled AC-coupled int FM, example program, 1-46
  introduction
    book, iv

Index-6
K  key codes, 2g-5

L  level correction. See level correct
  level correction, example program, 1-82
  linear AM, 2h-20
  listener, definition of, 1-5
  *LMC?, 2f-7
  local lockout, example program, 1-42
  local lockout statement, 1-10
  local statement, 1-10
  log AM/pulse mod, example program, 1-61
  logarithmic AM. See log AM
  *LRN?, 2d-3

M  manual pulse fall time selection, 2h-95
  manual pulse rise time selection, 2h-89
  MEMory:CATalog[:ALL]?, 2e-3
  MEMory:CATalog:TABLE?, 2e-4
  MEMory:FREE:MACRs?, 2f-8
  MEMory:RAM:INItialize, 2d-5
  MEMory:TABLE:FREQuency, 2e-5
  MEMory:TABLE:FREQuency:POINts?, 2e-8
  MEMory:TABLE:LOSS:[MAGNitude], 2e-9
  MEMory:TABLE:LOSS:[MAGNitude]:POINts?, 2e-12
  MEMory:TABLE:SELection, 2e-13
  messages
    details of program and response, 1-20
    simple examples, 1-26
  message terminators
    response message terminator defined, 1-33
  mnemonics, 1-16, 1-17
    conventions for query commands, 1-16
    long form, 1-17
    short form, 1-17
  MODulation:AOFF, 2h-41
  modulation index, 2h-21
  MODulation:OVDR, 2h-42
  multiplier value, 2b-7

Index-7
new line
affect on current path, 1-23
in response message terminator, 1-33
symbol used for, 1-17
use as a program message terminator, 1-18
use as a response message terminator, 1-18
with HP BASIC OUTPUT statements, 1-30
new line
use as a program message terminator, 1-30
number of points, 2e-8, 2e-12
numeric parameters
discussed in detail, 1-35

*OPC, 2l-3
Operation Condition register, 2l-19
Operation Condition register bit definitions, 2l-19
Operation Event Enable register, 2l-21
Operation Event Enable register bit definitions, 2l-21
Operation Event register, 2l-24
Operation Event register bit definitions, 2l-24
Operation Negative Transition register, 2l-27
Operation Negative Transition register bit definitions, 2l-27
Operation Positive Transition register, 2l-30
Operation Positive Transition register bit definitions, 2l-30
OPT?, 2c-4
optional parameters, 1-25
option numbers, 2c-4
out of range, 8673, 4-12
output active parameter, 8673, 4-13
OUTP:IMPedance?, 2c-5
OUTP:PROTection[:STATe], 2k-3
OUTP[:STATe], 2k-5
output statement, 1-12

parameters
Boolean, 1-37
discrete, 1-37
extended numeric, 1-36
numeric, 1-35
optional, 1-25
parser
explained briefly, 1-22
permanent errors, 3-2
PM
AC, 2h-43
DC, 2h-43
*PMC, 2f-9

Index-8
PM:COUPling, 2h-43
PM[:DEVIation], 2h-45
PM[:DEVIation]:STEP, 2h-48
PM:INT:FREQ, 2h-50
PM:INT:FREQ:STEP, 2h-53
PM:INT:FUNC, 2h-55
PM:RANGE, 2h-57
PM:SENSitivity, 2h-59
PM:SOUrce, 2h-62
PM:STAte, 2h-64
POWER:ALC:PMETer, 2a-3
POWER:ALC:PMETer:STEP, 2a-5
POWER:ALC:SOURce, 2a-7
POWER:ATTenuation:AUTO, 2k-7
POWER[:LEVEL], 2i-3
POWER[:LEVEL]:STEP, 2i-6
POWER:PROTection:STATe, 2k-10
power suffixes, 8673, 4-12
power sweep, example program, 1-48
precise talking, 1-20, 1-34
preset conditions
instrument, 2d-7, 2d-11
status register, 2i-33
preset state, 2d-7, 2d-11
program and response messages, 1-20
program example
doublet pulse, 1-55
external triggered pulse mod, 1-51
gated pulse mod, 1-57
HP:IB check, 1-41
internal log AM, 1-59
internally leveled AC coupled FM, 1-45
internally leveled CW sig., 1-44
internal pulse mod, 1-49
int leveled AC-coupled int FM, 1-46
local lockout, 1-42
log AM/pulse mod, 1-61
power sweep, 1-48
repetitive ext pulse mod, 1-53
save/recall, 1-67
program examples, 1-40-68
program message examples, 1-26
program messages
defined, 1-16
program message terminators
affect on current path, 1-23
defined, 1-30
syntax diagram, 1-30
use in examples, 1-18

Index-9
programming commands
  syntax conventions, 2-2
*PSC, 2-15
PULM:EXTeRnal:POLarity, 2h-66
PULM:SOURce, 2h-68
PULM:STATE, 2h-70
PULS:DELay, 2h-72
PULS:DELay:STEP, 2h-75
PULS:DOUBLE[:STATE], 2h-77
pulsed power pre-calibration program, 2k-11
pulse full time selection, 2h-95
PULS:FREQuency, 2h-79
PULS:FREQuency:STEP, 2h-82
pulse modulation
  inverted, 2h-66
  non-inverted, 2h-66
pulse modulation source, 2h-68
PULS:PERiod, 2h-84
PULS:PERiod:STEP, 2h-87
pulse rise time selection, 2h-89
PULS:TRANSition
  TRAiling, 2h-95
PULS:TRANSition[:LEADING], 2h-89
PULS:TRANSition:STATE, 2h-92
pulse trigger slope, 2h-105
pulse trigger source, 2h-103
pulse trigger stop source, 2h-106
PULS:WIDTH, 2h-98
PULS:WIDTH:STEP, 2h-101

queries
  defined, 1-16
  discussed, 1-20
query commands, 1-25
  query only, 1-25
query only, 1-25
Questionable Condition register, 2l-35
Questionable Condition register bit definitions, 2l-35
Questionable Event Enable register, 2l-37
Questionable Event Enable register bit definitions, 2l-37
Questionable Event register, 2l-40
Questionable Event register bit definitions, 2l-40
Questionable Negative Transition register, 2l-43
Questionable Negative Transition register bit definitions, 2l-43
Questionable Positive Transition register, 2l-46
Questionable Positive Transition register bit definitions, 2l-46

Index-10
R  *RCL, 2d-6
   recall instrument state, 2d-6
   recall/save, example program, 1-67
   Recorder Output (power meter), 2a-3
   related documents, 1-15
   remote statement, 1-9
   repetitive ext pulse mod, example program, 1-53
   response data
      discrete, 1-39
      integer, 1-38
   response examples, 1-18
   response messages
      defined, 1-16
      discussed in detail, 1-29
      syntax, 1-33
   response message terminators, 1-18
      defined, 1-33
   revision number
      firmware, 2c-3
   RF protection circuit, 2k-3
   *RMC, 2f-10
   root
      defined, 1-22
   root commands
      defined, 1-22
   ROSSIDor:SOURce?, 2c-6
   rounding, 1-35
   *RST, 2d-7

S  *SAV, 2d-10
   save instrument state, 2d-10
   save/recall, example program, 1-67
   SCPI compatibility, 8673, 4-3
   SCPI conformance information, 5-3
   SCPI conformance table, 5-3-10
   SCPI version number, 2c-9
   semicolon
      examples using, 1-24
      problems with input statements, 1-18
      proper use of, 1-23, 1-34
   sensitivity, 2h-34
   sensitivity, PM, 2h-59
   serial number, 2c-3
   Service Request Enable register, 2i-17
   Service Request Enable register bit definitions, 2i-17
   source
      ALC, 2a-7
      pulse modulation, 2h-68

Index-11
[SOURce[1]:] PULSE:DELay, 2h.72
[SOURce[1]:] PULSE:DELay:STEP, 2h.75
[SOURce[1]:] PULSE:DOUBLE[STATE], 2h.77
[SOURce[1]:] PULSE:FREQuency, 2h.79
[SOURce[1]:] PULSE:FREQuency:STEP, 2h.82
[SOURce[1]:] PULSE:PERiod, 2h.84
[SOURce[1]:] PULSE:PERiod:STEP, 2h.87
[SOURce[1]:] PULSE:TRANSition
  TRAiling, 2h.95
[SOURce[1]:] PULSE:TRANSition[:LEADIng], 2h.89
[SOURce[1]:] PULSE:TRANSition:STATE, 2h.92
[SOURce[1]:] PULSE:WIDTH, 2h.98
[SOURce[1]:] PULSE:WIDTH:STEP, 2h.101
[SOURce[1]:] OSCillator:SOURce?, 2c.6
source settled bit, 8673, 4.17
space
  proper use of, 1.23
*SRE, 21.17
Standard Commands for Programmable Instruments. See SCPI
Standard Event Status Enable register, 21.11
Standard Event Status Enable register bit definitions, 21.11
Standard Event Status register, 21.13
Standard Event Status register bit definitions, 21.13
standard notation, 1.17
status bits, 8673, 4.16
status byte, 21.49
Status Byte bit definitions, 21.49
STAtus:OPERation:CONDition, 21.19
STAtus:OPERation:ENABLE, 21.21
STAtus:OPERation[:EVENT]?, 21.24
STAtus:OPERation:NTTransition, 21.27
STAtus:OPERation:PRTransition, 21.30
STAtus:PRESet, 21.33
STAtus:QUEStionable:CONDition?, 21.35
STAtus:QUEStionable:ENABLE, 21.37
STAtus:QUEStionable[:EVENT]?, 21.40
STAtus:QUEStionable:NTTransition, 21.43
STAtus:QUEStionable:PRTransition, 21.46
status register preset conditions, 21.33
status reporting, 21.13
*STB?, 21.49
string response data
discussed in detail, 1.39
subsystem commands, 1.20
defined, 1.21
graphical tree format, 1.22
suppression of EOI, 1.13
syntax
command, 2.2
syntax conventions, 2-2
syntax diagrams
  commands, 1-31, 1-32
  message terminators, 1-30
  program message, 1-30
  response message, 1-33
syntax drawings, 1-7
system ALC mode, 8673, 4-13
SYSTEM:COMMunicate:GPIB:ADDResS, 2j-4
SYSTEM:COMMunicate:PMETer:ADDResS, 2e-25
SYSTEM:ERRor?, 2c-7
SYSTEM:KEY, 2g-5
SYSTEM:LANGUage, 2j-7
SYSTEM:PRESet, 2d-11
SYSTEM:VERSion?, 2c-9

T
  tab
    proper use of, 1-23
  talker, definition of, 1-5
  terminators
    program message, 1-18, 1-30
    program message: use in examples, 1-18
    response message, 1-18
timebase reference, 2c-6
TRIGger:SEQUence[1]:STArT:SOURce, 2h-103
TRIGger:SEQUence2
  SLOPe, 2h-105
TRIGger:SEQUence2:STOP:SOURce, 2h-106
  *TST?, 2c-10

U
  UNIT:FREQuency, 2j-9
  UNIT:POWer:VOLTage, 2j-12
  UNIT:TIME, 2j-14

V
  version number
  SCPI, 2c-9

W
  *WAI, 2j-16
  whitespace
    proper use of, 1-23

Index-14