Notices

© Keysight Technologies, Inc. 2004–2017

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgments

Manual Part Number
E8251-90356

Edition
Edition 3, January 2017
Supersedes: October 2015
Printed in USA/Malaysia

Published by:
Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS

COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights
The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula
The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:

http://www.keysight.com/find/psg

To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:

http://www.keysight.com/find/MyKeysight

Information on preventing instrument damage can be found at:

www.keysight.com/find/PreventingInstrumentRepair

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:

http://www.keysight.com/find/techsupport
Table of Contents

1. Using this Guide
 How the SCPI Information is Organized .. 2
 SCPI Listings ... 2
 Subsystem Groupings by Chapter ... 2
 Front Panel Operation Cross Reference ... 2
 Supported Models and Options per Command .. 2

2. System Commands
 SCPI Basics ... 3
 Common Terms .. 3
 Command Syntax ... 4
 Command Types ... 5
 Command Tree .. 6
 Command Parameters and Responses ... 7
 Program Messages .. 10
 File Name Variables ... 11
 ARB Waveform File Directories ... 12
 MSUS (Mass Storage Unit Specifier) Variable 13
 Quote Usage with SCPI Commands .. 14
 Binary, Decimal, Hexadecimal, and Octal Formats 14

 Calibration Subsystem (:CALibration) .. 18
 :DCFM .. 18
 :IQ .. 18
 :IQ:DC .. 18
 :IQ:DEFault .. 19
 :IQ:FULL .. 19
 :IQ:STARt ... 20
 :IQ:STOP ... 20
 :WBIQ .. 20
 :WBIQ:DC ... 21
 :WBIQ:DEFault ... 22
 :WBIQ:FULL ... 22
 :WBIQ:START ... 22
 :WBIQ:STOP .. 23

 Communication Subsystem (:SYStem:COMMunicate) 24
 :GPIB:ADDRes ... 24
 :GTLocal .. 24
 :LAN:CONFig ... 25
 :LAN:GATEway .. 25
 :LAN:HOSTname .. 25
 :LAN:IP ... 26
 :LAN:SUBNet .. 26
 :PMETer:ADDRes ... 27
 :PMETer:CHANnel ... 27
 :PMETer:IDN .. 28
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low–Band Filter Subsystem.</td>
<td>44</td>
</tr>
<tr>
<td>Display Subsystem (:DISPlay).</td>
<td>34</td>
</tr>
<tr>
<td>[:SOURce]:LBFilter</td>
<td>44</td>
</tr>
<tr>
<td>*WAI.</td>
<td>43</td>
</tr>
<tr>
<td>*TST?</td>
<td>43</td>
</tr>
<tr>
<td>*STB?</td>
<td>43</td>
</tr>
<tr>
<td>*TRG.</td>
<td>43</td>
</tr>
<tr>
<td>*TST?</td>
<td>43</td>
</tr>
<tr>
<td>*WAI.</td>
<td>43</td>
</tr>
<tr>
<td>Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)</td>
<td>31</td>
</tr>
<tr>
<td>:BOArds</td>
<td>31</td>
</tr>
<tr>
<td>:CCOunt:ATTenuator</td>
<td>31</td>
</tr>
<tr>
<td>:CCOunt:PON</td>
<td>31</td>
</tr>
<tr>
<td>:DISPlay:OTIMe</td>
<td>31</td>
</tr>
<tr>
<td>:LICEnse:AUxiliary</td>
<td>32</td>
</tr>
<tr>
<td>:OPTions</td>
<td>32</td>
</tr>
<tr>
<td>:OPTions:DETail</td>
<td>32</td>
</tr>
<tr>
<td>:OTIMe</td>
<td>32</td>
</tr>
<tr>
<td>:REVision</td>
<td>32</td>
</tr>
<tr>
<td>:SDAte</td>
<td>32</td>
</tr>
<tr>
<td>Display Subsystem (:DISPlay).</td>
<td>34</td>
</tr>
<tr>
<td>:ANNotation:AMPitude:UNIT,</td>
<td>34</td>
</tr>
<tr>
<td>:ANNotation:CLOCK:DATE:FORMat</td>
<td>34</td>
</tr>
<tr>
<td>:ANNotation:CLOCK[:STATE]</td>
<td>35</td>
</tr>
<tr>
<td>:BRIghtness</td>
<td>35</td>
</tr>
<tr>
<td>:CAPTure</td>
<td>36</td>
</tr>
<tr>
<td>:CONTrast</td>
<td>36</td>
</tr>
<tr>
<td>:INVerse</td>
<td>36</td>
</tr>
<tr>
<td>:REMote</td>
<td>37</td>
</tr>
<tr>
<td>:SWEep</td>
<td>37</td>
</tr>
<tr>
<td>[:WINDow][:STATE]</td>
<td>38</td>
</tr>
<tr>
<td>IEEE 488.2 Common Commands</td>
<td>39</td>
</tr>
<tr>
<td>*CLS.</td>
<td>39</td>
</tr>
<tr>
<td>*ESE.</td>
<td>39</td>
</tr>
<tr>
<td>*ESE?</td>
<td>39</td>
</tr>
<tr>
<td>*ESR?</td>
<td>40</td>
</tr>
<tr>
<td>*IDN?</td>
<td>40</td>
</tr>
<tr>
<td>*OPC</td>
<td>40</td>
</tr>
<tr>
<td>*OPC?</td>
<td>40</td>
</tr>
<tr>
<td>*PSC.</td>
<td>41</td>
</tr>
<tr>
<td>*PSC?</td>
<td>41</td>
</tr>
<tr>
<td>*RCL.</td>
<td>41</td>
</tr>
<tr>
<td>*RST.</td>
<td>41</td>
</tr>
<tr>
<td>*SAV.</td>
<td>42</td>
</tr>
<tr>
<td>*SRE.</td>
<td>42</td>
</tr>
<tr>
<td>*SRE?</td>
<td>42</td>
</tr>
<tr>
<td>*STB?</td>
<td>43</td>
</tr>
<tr>
<td>*TRG.</td>
<td>43</td>
</tr>
<tr>
<td>*TST?</td>
<td>43</td>
</tr>
<tr>
<td>*WAI.</td>
<td>43</td>
</tr>
<tr>
<td>Low–Band Filter Subsystem.</td>
<td>44</td>
</tr>
<tr>
<td>[:SOURce]:LBFilter</td>
<td>44</td>
</tr>
</tbody>
</table>
Memory Subsystem (:MEMory) ... 45

:CATalog:BINary ... 45
:CATalog:BIT ... 45
:CATalog:DMOD ... 45
:CATalog:FIR ... 46
:CATalog:FSK ... 46
:CATalog:IQ ... 47
:CATalog:LIST ... 47
:CATalog:UFLT ... 47
:CATalog[:ALL] ... 49
:CATalog[:NAME] ... 50
:DATA ... 50
:DATA:APPend .. 52
:DATA:BIT ... 52
:DATA:FIR ... 53
:DATA:FSK ... 54
:DATA:BIT:HEX .. 56
:DATA:IQ ... 56
:DATA:PRAM:FILE:BLOCK ... 58
:DATA:PRAM:FILE:LIST ... 59
:DATA:PRAM? ... 60
:DATA:PRAM:BLOCK ... 60
:DATA:PRAM:LIST ... 60
:DATA:SHAPe ... 60
:DATA:UNPRotected ... 61
:DELete:ALL ... 63
:DELete:BINary ... 63
:DELete:BIT ... 63
:DELete:DMOD ... 63
:DELete:FIR ... 63
:DELete:FSK ... 64
:DELete:IQ ... 64
:DELete:LIST ... 64
:DELete:MDMod .. 65
:DELete:MTONE .. 65
:DELete:SEQ ... 65
:DELete:SHAPe .. 65
:DELete:STATE ... 65
:DELete:UFLT ... 66
:DELete[:NAME] ... 66
:FREE[:ALL] ... 66
:LOAD:LIST ... 66
:MOVE ... 67
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATE:COMMENT</td>
<td>67</td>
</tr>
<tr>
<td>:STORE:LIST</td>
<td>67</td>
</tr>
<tr>
<td>Mass Memory Subsystem (:MEMory)</td>
<td>68</td>
</tr>
<tr>
<td>:CATalog</td>
<td>68</td>
</tr>
<tr>
<td>:COPY</td>
<td>69</td>
</tr>
<tr>
<td>:DATA</td>
<td>69</td>
</tr>
<tr>
<td>:DELe:NVWFm</td>
<td>70</td>
</tr>
<tr>
<td>:DELe:WFM</td>
<td>71</td>
</tr>
<tr>
<td>:DELe[:NAME]</td>
<td>71</td>
</tr>
<tr>
<td>:HEADer:CLEAR</td>
<td>71</td>
</tr>
<tr>
<td>:HEADer:DESCRIPTION</td>
<td>72</td>
</tr>
<tr>
<td>:HEADer:ID?</td>
<td>72</td>
</tr>
<tr>
<td>:LOAD:LIST</td>
<td>72</td>
</tr>
<tr>
<td>:MOVE</td>
<td>73</td>
</tr>
<tr>
<td>:STORE:LIST</td>
<td>73</td>
</tr>
<tr>
<td>Output Subsystem (:OUTPut)</td>
<td>74</td>
</tr>
<tr>
<td>:BLANking:AUTO</td>
<td>74</td>
</tr>
<tr>
<td>:BLANking[:STATE]</td>
<td>74</td>
</tr>
<tr>
<td>:MODulation[:STATE]</td>
<td>75</td>
</tr>
<tr>
<td>:SETTled?</td>
<td>75</td>
</tr>
<tr>
<td>:SETTled:POLarity</td>
<td>75</td>
</tr>
<tr>
<td>:SETTled:RETrace</td>
<td>76</td>
</tr>
<tr>
<td>:SETTled:RFOff</td>
<td>77</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>77</td>
</tr>
<tr>
<td>Route Subsystem (:ROUTE:HWAD :GENerator)</td>
<td>78</td>
</tr>
<tr>
<td>:INPut:POLarity</td>
<td>78</td>
</tr>
<tr>
<td>:INPut:CPOLarity</td>
<td>78</td>
</tr>
<tr>
<td>:INPut:DPOLarity</td>
<td>78</td>
</tr>
<tr>
<td>:INPut:SPOLarity</td>
<td>79</td>
</tr>
<tr>
<td>:IPOLarity:BGATe</td>
<td>79</td>
</tr>
<tr>
<td>:IPOLarity:CLOCK</td>
<td>80</td>
</tr>
<tr>
<td>:IPOLarity:DATA</td>
<td>80</td>
</tr>
<tr>
<td>:IPOLarity:SSYNc</td>
<td>80</td>
</tr>
<tr>
<td>:OPOLarity:CLOCK</td>
<td>81</td>
</tr>
<tr>
<td>:OPOLarity:DATA</td>
<td>81</td>
</tr>
<tr>
<td>:OPOLarity:EVEN[1][2][3][4]</td>
<td>82</td>
</tr>
<tr>
<td>:OPOLarity:SSYNc</td>
<td>82</td>
</tr>
<tr>
<td>:OUTPut:CPOLarity</td>
<td>82</td>
</tr>
<tr>
<td>:OUTPut:DCS[:STATE]</td>
<td>83</td>
</tr>
<tr>
<td>:OUTPut:DPOLarity</td>
<td>84</td>
</tr>
<tr>
<td>:OUTPut:EPOL[1][2][3][4]</td>
<td>84</td>
</tr>
<tr>
<td>:OUTPut:SPOLarity</td>
<td>84</td>
</tr>
<tr>
<td>Status Subsystem (:STATus)</td>
<td>86</td>
</tr>
<tr>
<td>:OPERation:BASEband:CONDITION</td>
<td>86</td>
</tr>
<tr>
<td>:OPERation:BASEband:ENABLE</td>
<td>86</td>
</tr>
<tr>
<td>:OPERation:BASEband:NTRanision</td>
<td>86</td>
</tr>
<tr>
<td>:OPERation:BASEband:PTRanision</td>
<td>87</td>
</tr>
<tr>
<td>:OPERation:BASEband[:EVENT]</td>
<td>87</td>
</tr>
</tbody>
</table>
3. Basic Function Commands

Correction Subsystem (::SOURce::CORRection) 128

- FLATness:LOAD ... 128
- FLATness:PAIR 128
- FLATness:POINts 129
- FLATness:PRESet 129
- FLATness:STORE 129
- [::STATE] ... 130

Frequency Subsystem (::SOURce) ... 131

- FREQuency:CENTer 131
4. Analog Commands

Amplitude Subsystem ([:SOURce]) 188
 :AM[1]|2:.. 188
 :AM:INTernal:FREQuency:STEP[:INCRement] 188
 :AM:MODE .. 189
 :AM:POLarity .. 189
 :AM:WIDeband:SENSitivity ... 190
 :AM:WIDeband:STATE .. 190
 :AM[1]|2:SOURce .. 196
 :AM[1]|2:STATE .. 196
 :AM[1]|2:TYPE .. 197
 :AM[1]|2:DEPTH[:LINear]:TRACk .. 198
 :AM:DEPTH[:STEP[:INCRement]] .. 199

Frequency Modulation Subsystem ([:SOURce]) 200
 :FM[1]|2:.. 200
 :FM[1]|2:SOURce .. 206
 :FM[1]|2:STATE .. 206
 :FM[1]|2:DEViation .. 207
 :FM[1]|2:DEViation:TRACk ... 208

Low Frequency Output Subsystem ([:SOURce]:LFOutput) 209
5. Digital Modulation Commands

All Subsystem–Option 601 and 602 ([SOURce]) 234

:RADio:ALL:OFF .. 234
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MODulation:ATTenn:EXtErnal:LEVell:MEASurement</td>
<td>286</td>
</tr>
<tr>
<td>:MODulation:ATTen:OPTimize:ABANDwidth</td>
<td>286</td>
</tr>
<tr>
<td>:MODulation:FIltEr</td>
<td>287</td>
</tr>
<tr>
<td>:MODulation:FIltEr:AUTo</td>
<td>287</td>
</tr>
<tr>
<td>:POLarity:(ALL)</td>
<td>288</td>
</tr>
<tr>
<td>:SKEW:PATH</td>
<td>288</td>
</tr>
<tr>
<td>:SKEW:(STAtel)</td>
<td>289</td>
</tr>
<tr>
<td>:SOURCe</td>
<td>289</td>
</tr>
<tr>
<td>:SRATio</td>
<td>290</td>
</tr>
<tr>
<td>:STAtE</td>
<td>291</td>
</tr>
<tr>
<td>Dual ARB Subsystem—Option 601 or 602 (:SOURce):RADio:ARB</td>
<td>292</td>
</tr>
<tr>
<td>:BASEband:FREquency:OFFSet</td>
<td>292</td>
</tr>
<tr>
<td>:CLIping</td>
<td>292</td>
</tr>
<tr>
<td>:DACS:ALIGN</td>
<td>293</td>
</tr>
<tr>
<td>:FIltEr:ALPHA</td>
<td>293</td>
</tr>
<tr>
<td>:FIltEr:BBT</td>
<td>294</td>
</tr>
<tr>
<td>:FIltEr:CHANnel</td>
<td>294</td>
</tr>
<tr>
<td>:FIltEr:TYPE</td>
<td>295</td>
</tr>
<tr>
<td>:FIltEr:(STAtel)</td>
<td>296</td>
</tr>
<tr>
<td>:GENerate:SINE</td>
<td>297</td>
</tr>
<tr>
<td>:HEAder:CLEar</td>
<td>297</td>
</tr>
<tr>
<td>:HEAder:NOIsE:RMS[:OVERride]</td>
<td>298</td>
</tr>
<tr>
<td>:HEAder:RMS</td>
<td>299</td>
</tr>
<tr>
<td>:HEAder:SAVE</td>
<td>300</td>
</tr>
<tr>
<td>:IQ:EXternal:FIltEr</td>
<td>300</td>
</tr>
<tr>
<td>:IQ:EXternal:FIltEr:AUTo</td>
<td>300</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTen</td>
<td>301</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTen:AUTo</td>
<td>301</td>
</tr>
<tr>
<td>:IQ:MODulation:FIltEr</td>
<td>302</td>
</tr>
<tr>
<td>:IQ:MODulation:FIltEr:AUTo</td>
<td>302</td>
</tr>
<tr>
<td>:MARKer:CLEar</td>
<td>303</td>
</tr>
<tr>
<td>:MARKer:CLEar:ALL</td>
<td>304</td>
</tr>
<tr>
<td>:MARKer:ROTate</td>
<td>305</td>
</tr>
<tr>
<td>:MARKer:[SET]</td>
<td>306</td>
</tr>
<tr>
<td>:MDEStination:AMPplitude</td>
<td>308</td>
</tr>
<tr>
<td>:MDEStination:ALCHold</td>
<td>308</td>
</tr>
<tr>
<td>:MDEStination:PULSe</td>
<td>310</td>
</tr>
<tr>
<td>:MPOlarity:MARKer1</td>
<td>2</td>
</tr>
<tr>
<td>:NOIsE</td>
<td>312</td>
</tr>
<tr>
<td>:NOIsE:BFActor</td>
<td>312</td>
</tr>
<tr>
<td>:NOIsE:CBWidth</td>
<td>313</td>
</tr>
<tr>
<td>:NOIsE:CN</td>
<td>313</td>
</tr>
<tr>
<td>:NOIsE:MUX</td>
<td>313</td>
</tr>
<tr>
<td>:REference:EXtErnal:FREquency</td>
<td>314</td>
</tr>
<tr>
<td>:REference[:SOURCe]</td>
<td>314</td>
</tr>
<tr>
<td>:RETTrigger</td>
<td>315</td>
</tr>
<tr>
<td>:RSCAling</td>
<td>316</td>
</tr>
<tr>
<td>:SCAling</td>
<td>316</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SCLock:RATE</td>
<td>317</td>
</tr>
<tr>
<td>:SEQUence</td>
<td>317</td>
</tr>
<tr>
<td>:TRIGger:TYPE</td>
<td>319</td>
</tr>
<tr>
<td>:TRIGger:TYPE:CONTinuous[:TYPE]</td>
<td>322</td>
</tr>
<tr>
<td>:TRIGger:TYPE:GATE:ACTive</td>
<td>322</td>
</tr>
<tr>
<td>:TRIGger:TYPE:SADVance[:TYPE]</td>
<td>323</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]</td>
<td>324</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTERNAL[:SOURce]</td>
<td>326</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTERNAL:DELAY</td>
<td>326</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTERNAL:DELAY:STATE</td>
<td>327</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTERNAL:SLOPe</td>
<td>328</td>
</tr>
<tr>
<td>:VCO: CLOCK</td>
<td>328</td>
</tr>
<tr>
<td>:VCO: CLOCK:RATE?</td>
<td>329</td>
</tr>
<tr>
<td>:VCO: CLOCK[:SOURce]</td>
<td>329</td>
</tr>
<tr>
<td>:WAVEform</td>
<td>329</td>
</tr>
<tr>
<td>:Waveform: NHEADers</td>
<td>330</td>
</tr>
<tr>
<td>[:STATE]</td>
<td>331</td>
</tr>
<tr>
<td>D modulation subsystem—Option 601 or 602 (:SOURce):RADio:DModulation:ARB</td>
<td>332</td>
</tr>
<tr>
<td>:IQ: EXTERNAL: FILTER</td>
<td>332</td>
</tr>
<tr>
<td>:IQ: EXTERNAL: FILTER:AUTO</td>
<td>332</td>
</tr>
<tr>
<td>:FILTER</td>
<td>333</td>
</tr>
<tr>
<td>:FILTER:ALPHA</td>
<td>334</td>
</tr>
<tr>
<td>:FILTER:BBT</td>
<td>334</td>
</tr>
<tr>
<td>:FILTER:CHANNEL</td>
<td>334</td>
</tr>
<tr>
<td>:HEADER: CLEAR</td>
<td>335</td>
</tr>
<tr>
<td>:HEADER: SAVE</td>
<td>335</td>
</tr>
<tr>
<td>:IQ: MODULATION: Attenu</td>
<td>336</td>
</tr>
<tr>
<td>:IQ: MODULATION: Attenu: AUTO</td>
<td>336</td>
</tr>
<tr>
<td>:IQ: MODULATION: FILTER</td>
<td>337</td>
</tr>
<tr>
<td>:IQ: MODULATION: FILTER: AUTO</td>
<td>337</td>
</tr>
<tr>
<td>:MODEStation: ALC Hold</td>
<td>338</td>
</tr>
<tr>
<td>:MODEStation: PULSE s</td>
<td>339</td>
</tr>
<tr>
<td>:MODULATION: FSK[:DEViation]</td>
<td>341</td>
</tr>
<tr>
<td>:MODULATION[:TYPE]</td>
<td>341</td>
</tr>
<tr>
<td>:MODULATION:ASK[:DEPTHh]</td>
<td>342</td>
</tr>
<tr>
<td>:MPOLarity: MARKer1</td>
<td>2</td>
</tr>
<tr>
<td>:REFERENCE: EXTERNAL: FREQUENCY</td>
<td>343</td>
</tr>
<tr>
<td>:REFERENCE[:SOURce]</td>
<td>343</td>
</tr>
<tr>
<td>:RETRigger</td>
<td>344</td>
</tr>
<tr>
<td>:SCLock:RATE</td>
<td>345</td>
</tr>
<tr>
<td>:SETup</td>
<td>345</td>
</tr>
<tr>
<td>:SETup:MCARRIER</td>
<td>346</td>
</tr>
<tr>
<td>:SETup:MCARRIER: PHASE</td>
<td>347</td>
</tr>
<tr>
<td>:SETup:MCARRIER: STORE</td>
<td>348</td>
</tr>
<tr>
<td>:SETup:MCARRIER: TABLE</td>
<td>349</td>
</tr>
<tr>
<td>:SETup:MCARRIER: TABLE: NCAARRiers</td>
<td>350</td>
</tr>
<tr>
<td>:SETup:STORE</td>
<td>350</td>
</tr>
<tr>
<td>:SRATE</td>
<td>351</td>
</tr>
</tbody>
</table>
6. Digital Signal Interface Module Commands

Digital Subsystem ([SOURce])

-DIGital:CLOCk:CPS .. 402
-DIGital:CLOCk:PHASE ... 402
-DIGital:CLOCk:POLarity .. 403
-DIGital:CLOCk:RATE .. 403
-DIGital:CLOCk:REFerence:FREQuency 404
-DIGital:CLOCk:SOURCe .. 404
-DIGital:CLOCk:SKEW ... 404

Real Time MSGPS Subsystem—Option 409

-IPHase ... 383
-PLAYmode ... 383
-REFClk .. 383
-REFFreq ... 383
-RESTart .. 384
-SCENario ... 384
-SCENario:SATellites .. 384
-SCENario:STATus .. 385
-STATE .. 385

Two Tone Subsystem ([SOURce]:RADIO:TTONE:ARB)

-ALIGnment .. 386
-APPLY ... 386
-FSPacing .. 386
-HEADer:CLEar .. 387
-HEADer:SAVE .. 387
-IQ:EXTernal:FILTER .. 387
-IQ:EXTernal:FILTER:AUTO 388
-IQ:MODulation:ATTen ... 388
-IQ:MODulation:ATTen:AUTO 388
-IQ:MODulation:FILTER .. 389
-IQ:MODulation:FILTER:AUTO 390
-MDEStination:ALCHold ... 390
-MDEStination:PULSe .. 392
-MPOLarity:MARKer1234 393
-REFerence:EXTernal:FREQuency 394
-REFerence:[SOURce] .. 395
-SCLock:RATE ... 395
-STATE .. 396

Wideband Digital Modulation Subsystem ([SOURce]:WDM)

-IQADjustment:OFFset .. 397
-IQADjustment:QOFFset .. 397
-IQADjustment:QSKew .. 398
-IQADjustment:STATE .. 398
-STATE .. 399
7. SCPI Command Compatibility

:E8257D/67D Compatible Commands .. 419
 :DATA:PRAM? ... 419
 :DATA:PRAM:BLOCk .. 419
 :DATA:PRAM:LIST .. 419
 :DELete:WFM1 ... 420

8340B/41B and 8757D Compatible Commands ... 422
836xB/L Compatible SCPI Commands .. 435
837xB and 8371xB Compatible SCPI Commands 450
8375xB Compatible SCPI Commands .. 459
8662A/63A Compatible Commands ... 470
Documentation Overview

Installation Guide
- Safety Information
- Getting Started
- Operation Verification
- Regulatory Information

User's Guide
- Signal Generator Overview
- Basic Operation
- Basic Digital Operation
- Optimizing Performance
- Analog Modulation
- Custom Arb Waveform Generator
- Custom Real Time I/Q Baseband
- Multitone Waveform Generator
- Two-Tone Waveform Generator
- AWGN Waveform Generator
- Peripheral Devices
- Troubleshooting

Programming Guide
- Getting Started with Remote Operation
- Using IO Interfaces
- Programming Examples
- Programming the Status Register System
- Creating and Downloading Waveform Files
- Creating and Downloading User-Data Files
1 Using this Guide

In the following sections, this chapter describes how SCPI information is organized and presented in this guide. An overview of the SCPI language is also provided:

- “How the SCPI Information is Organized” on page 2
- “SCPI Basics” on page 3
How the SCPI Information is Organized

SCPI Listings

The table of contents lists the Standard Commands for Programmable Instruments (SCPI) without the parameters. The SCPI subsystem name will generally have the first part of the command in parenthesis that is repeated in all commands within the subsystem. The title(s) beneath the subsystem name is the remaining command syntax. The following example demonstrates this listing:

Communication Subsystem (:SYSTem:COMMunicate)
 :PMETer:CHANnel
 :SERial:ECHO

The following examples show the complete commands from the above Table of Contents listing:

 :SYSTem:COMMunicate:PMETer:CHANnel
 :SYSTem:COMMunicate:SERial:ECHO

Subsystem Groupings by Chapter

A subsystem is a group of commands used to configure and operate a certain function or feature. Like individual commands, subsystems that share a similar scope or role can also be categorized and grouped together. This guide uses chapters to divide subsystems into the following groups:

- System Commands
- Basic Function Commands
- Analog Modulation Commands
- Digital Modulation Commands

Front Panel Operation Cross Reference

The last section in this book provides an index of hardkeys, softkeys, and data fields used in front panel operation, cross-referenced to their corresponding SCPI command. Key and data field names are sorted in two ways:

- individual softkey, hardkey, or data field name
- SCPI subsystem name with associated key and data field names nested underneath

Supported Models and Options per Command

Within each command section, the Supported heading describes the signal generator configurations supported by the SCPI command. “All” means that all models and options are supported. When “All with Option xxx” is shown next to this heading, only the stated option(s) is supported.
Using this Guide
SCPI Basics

SCPI Basics

This section describes the general use of the SCPI language for the PSG. It is not intended to teach you everything about the SCPI language; the SCPI Consortium or IEEE can provide that level of detailed information. For a list of the specific commands available for the signal generator, refer to the table of contents.

For additional information, refer to the following publications:

Common Terms

The following terms are used throughout the remainder of this section:

Command A command is an instruction in SCPI consisting of mnemonics (keywords), parameters (arguments), and punctuation. You combine commands to form messages that control instruments.

Controller A controller is any device used to control the signal generator, for example a computer or another instrument.

Event Command Some commands are events and cannot be queried. An event has no corresponding setting; it initiates an action at a particular time.

Program Message A program message is a combination of one or more properly formatted commands. Program messages are sent by the controller to the signal generator.

Query A query is a special type of command used to instruct the signal generator to make response data available to the controller. A query ends with a question mark. Generally you can query any command value that you set.

Response Message A response message is a collection of data in specific SCPI formats sent from the signal generator to the controller. Response messages tell the controller about the internal state of the signal generator.
Command Syntax

A typical command is made up of keywords prefixed with colons (:). The keywords are followed by parameters. The following is an example syntax statement:

[:SOURce]:POWer[:LEVel] MAXimum|MINimum

In the example above, the [:LEVel] portion of the command immediately follows the :POWer portion with no separating space. The portion following the [:LEVel], MINimum|MAXimum, are the parameters (argument for the command statement). There is a separating space (white space) between the command and its parameter.

Additional conventions in syntax statements are shown in Table 1-1 and Table 1-2.

Table 1-1 Special Characters in Command Syntax

<table>
<thead>
<tr>
<th>Characters</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A vertical stroke between keywords or parameters indicates alternative choices. For parameters, the effect of the command varies depending on the choice.</td>
<td>[:SOURce]:AM:MOD DEEP</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets indicate that the enclosed keywords or parameters are optional when composing the command. These implied keywords or parameters will be executed even if they are omitted.</td>
<td>[:SOURce]:FREQuency[:CW]? SOURce and CW are optional items.</td>
</tr>
<tr>
<td><></td>
<td>Angle brackets around a word (or words) indicate they are not to be used literally in the command. They represent the needed item.</td>
<td>[:SOURce]:FREQuency:STARt <val><unit> In this command, the words <val> and <unit> should be replaced by the actual frequency and unit. :FREQuency:STARt 2.5GHZ</td>
</tr>
<tr>
<td>{ }</td>
<td>Braces indicate that parameters can optionally be used in the command once, several times, or not at all.</td>
<td>[:SOURce]:LIST:POWer <val>{,<val>} a single power listing: LIST:POWer 5 a series of power listings: LIST:POWer 5,10,15,20</td>
</tr>
</tbody>
</table>

Table 1-2 Command Syntax

<table>
<thead>
<tr>
<th>Characters, Keywords, and Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper-case lettering indicates the minimum set of characters required to execute the command.</td>
<td>[:SOURce]:FREQuency[:CW]?, FREQ is the minimum requirement.</td>
</tr>
<tr>
<td>Lower-case lettering indicates the portion of the command that is optional; it can either be included with the upper-case portion of the command or omitted. This is the flexible format principle called forgiving listening. Refer to “Command Parameters and Responses” on page 7 for more information.</td>
<td>:FREQuency Either :FREQ, :FREQuency, or :FREQUENCY is correct.</td>
</tr>
</tbody>
</table>
Using this Guide
SCPI Basics

Table 1-2 Command Syntax

<table>
<thead>
<tr>
<th>Characters, Keywords, and Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>When a colon is placed between two command mnemonics, it moves the current path down one level in the command tree. Refer to “Command Tree” on page 6 more information on command paths.</td>
<td>:TRIGger:OUTPut:POLarity? TRIGger is the root level keyword for this command.</td>
</tr>
<tr>
<td>If a command requires more than one parameter, you must separate adjacent parameters using a comma. Parameters are not part of the command path, so commas do not affect the path level.</td>
<td>[:SOURce]:LIST: DWEll <val>{,<val>}</td>
</tr>
<tr>
<td>A semicolon separates two commands in the same program message without changing the current path.</td>
<td>:FREQ 2.5GHZ;:POW 10DBM</td>
</tr>
<tr>
<td>White space characters, such as <tab> and <space>, are generally ignored as long as they do not occur within or between keywords. However, you must use white space to separate the command from the parameter, but this does not affect the current path.</td>
<td>:FREQ uency or :POWer :LEVe1 are not allowed. A <space> between :LEVe1 and 6.2 is mandatory. :POWer:LEVe1 6.2</td>
</tr>
</tbody>
</table>

Command Types

Commands can be separated into two groups: common commands and subsystem commands. Figure 1-1, shows the separation of the two command groups. Common commands are used to manage macros, status registers, synchronization, and data storage and are defined by IEEE 488.2. They are easy to recognize because they all begin with an asterisk. For example *IDN?, *OPC, and *RST are common commands. Common commands are not part of any subsystem and the signal generator interprets them in the same way, regardless of the current path setting.

Subsystem commands are distinguished by the colon (:). The colon is used at the beginning of a command statement and between keywords, as in :FREQuency [:CW?]. Each command subsystem is a set of commands that roughly correspond to a functional block inside the signal generator. For example, the power subsystem (:POWer) contains commands for power generation, while the Status subsystem (:STATus) contains commands for controlling status registers.
Most programming tasks involve subsystem commands. SCPI uses a structure for subsystem commands similar to the file systems on most computers. In SCPI, this command structure is called a command tree and is shown in Figure 1-2.

The command closest to the top is the root command, or simply “the root.” Notice that you must follow a particular path to reach lower level commands. In the following example, :POWer represents AA, :ALC represents BB, :SOURce represents GG. The complete command path is :POWer:ALC:SOURce? (AA:BB:GG).

Paths Through the Command Tree

To access commands from different paths in the command tree, you must understand how the signal generator interprets commands. The parser, a part of the signal generator firmware, decodes each message sent to the signal generator. The parser breaks up the message into component commands using a set of rules to determine the command tree path used. The parser keeps track of the current path (the level in the command tree) and where it
Using this Guide

SCPI Basics

expects to find the next command statement. This is important because the same keyword may appear in different paths. The particular path is determined by the keyword(s) in the command statement.

A message terminator, such as a <new line> character, sets the current path to the root. Many programming languages have output statements that automatically send message terminators.

NOTE

The current path is set to the root after the line–power is cycled or when *RST is sent.

Command Parameters and Responses

SCPI defines different data formats for use in program and response messages. It does this to accommodate the principle of forgiving listening and precise talking. For more information on program data types refer to IEEE 488.2. Forgiving listening means the command and parameter formats are flexible.

For example, with the :FREQuency:REFerence:STATe ON|OFF|1|0 command, the signal generator accepts :FREQuency:REFerence:STATe ON, :FREQuency:REFerence:STATe 1, :FREQ:REF:STAT ON, :FREQ:REF:STAT 1 to turn on the frequency reference mode.

Each parameter type has one or more corresponding response data types. A setting that you program using a numeric parameter returns either real or integer response data when queried. Response data (data returned to the controller) is more concise and restricted and is called precise talking.

Precise talking means that the response format for a particular query is always the same.

For example, if you query the power state (:POWer:ALC:STATe?) when it is on, the response is always 1, regardless of whether you previously sent :POWer:ALC:STATe 1 or :POWer:ALC:STATe ON.

<table>
<thead>
<tr>
<th>Table 1-3 Parameter and Response Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter Types</td>
</tr>
<tr>
<td>Numeric</td>
</tr>
<tr>
<td>Extended Numeric</td>
</tr>
<tr>
<td>Discrete</td>
</tr>
<tr>
<td>Boolean</td>
</tr>
<tr>
<td>String</td>
</tr>
</tbody>
</table>

Numeric Parameters

Numeric parameters are used in both common and subsystem commands. They accept all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation.
If a signal generator setting is programmed with a numeric parameter which can only assume a finite value, it automatically rounds any entered parameter which is greater or less than the finite value. For example, if a signal generator has a programmable output impedance of 50 or 75 ohms, and you specified 76.1 for the output impedance, the value is rounded to 75. The following are examples of numeric parameters:

- 100 no decimal point required
- 100. fractional digits optional
- −1.23 leading signs allowed
- 4.56E<space>3 space allowed after the E in exponential
- −7.89E−001 use either E or e in exponential
- +256 leading + allowed
- .5 digits left of decimal point optional

Extended Numeric Parameters

Most subsystems use extended numeric parameters to specify physical quantities. Extended numeric parameters accept all numeric parameter values and other special values as well.

The following are examples of extended numeric parameters:

<table>
<thead>
<tr>
<th>Extended Numerics</th>
<th>Special Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 any simple numeric value</td>
<td>DEFaul sets parameter to its default value</td>
</tr>
<tr>
<td>1.2GHZ GHZ can be used for exponential (E009)</td>
<td>UP increments the parameter</td>
</tr>
<tr>
<td>200MHZ MHZ can be used for exponential (E006)</td>
<td>DOWN decrements the parameter</td>
</tr>
<tr>
<td>−100mV negative 100 millivolts</td>
<td>MINimum sets parameter to smallest possible value</td>
</tr>
<tr>
<td>10DEG 10 degrees</td>
<td>MAXimum sets parameter to largest possible value</td>
</tr>
</tbody>
</table>

Discrete Parameters

Discrete parameters use mnemonics to represent each valid setting. They have a long and a short form, just like command mnemonics. You can mix upper and lower case letters for discrete parameters.

The following examples of discrete parameters are used with the command

:TRIGger[:SEQUence] :SOURce BUS | IMMEDIATE | EXTERNAL.

- BUS GPIB, LAN, or RS-232 triggering
- IMMEDIATE immediate trigger (free run)
- EXTERNAL external triggering
Using this Guide
SCPI Basics

Although discrete parameters look like command keywords, do not confuse the two. In particular, be sure to use colons and spaces correctly. Use a colon to separate command mnemonics from each other and a space to separate parameters from command mnemonics.

The following are examples of discrete parameters in commands:

```
TRIGger:SOURce BUS
TRIGger:SOURce IMMEDIATE
TRIGger:SOURce EXTernal
```

Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. The two–state boolean parameter has four arguments. The following list shows the arguments for the two–state boolean parameter:

- ON boolean true, upper/lower case allowed
- OFF boolean false, upper/lower case allowed
- 1 boolean true
- 0 boolean false

String Parameters

String parameters allow ASCII strings to be sent as parameters. Single or double quotes are used as delimiters.

The following are examples of string parameters:

```
'This is valid'       "This is also valid"       'SO IS THIS'
```

Real Response Data

Real response data represent decimal numbers in either fixed decimal or scientific notation. Most high–level programming languages that support signal generator input/output (I/O) handle either decimal or scientific notation transparently.

The following are examples of real response data:

```
+4.000000E+010, -9.990000E+002
-9.990000E+002
+4.0000000000000E+010
+1
0
```
Using this Guide
SCPI Basics

Integer Response Data
Integer response data are decimal representations of integer values including optional signs. Most status register related queries return integer response data. The following are examples of integer response data:

```
0  signs are optional
+100  leading + allowed
256  never any decimal point
```

Discrete Response Data
Discrete response data are similar to discrete parameters. The main difference is that discrete response data only returns the short form of a particular mnemonic, in all upper case letters. The following are examples of discrete response data:

```
IMM  EXT  INT  NEG
```

Numeric Boolean Response Data
Boolean response data returns a binary numeric value of one or zero.

String Response Data
String response data are similar to string parameters. The main difference is that string response data returns double quotes, rather than single quotes. Embedded double quotes may be present in string response data. Embedded quotes appear as two adjacent double quotes with no characters between them. The following are examples of string response data:

```
"This is a string"
"one double quote inside brackets: [""]"
"Hello!"
```

Program Messages
The following commands will be used to demonstrate the creation of program messages:

```
[:SOURce]:FREQuency:STARt  [:SOURce]:FREQuency:STOP
[:SOURce]:FREQuency[:CW]  [:SOURce]:POWer[:LEVel]:OFFSet
```

Example 1
```
:FREQuency:STARt 500MHZ;STOP 1000MHZ
```
This program message is correct and will not cause errors; START and STOP are at the same path level. It is equivalent to sending the following message:

```
FREQuency:STARt 500MHZ;FREQuency:STOP 1000MHZ
```
Example 2

:`POWer 10DBM;:OFFSet 5DB`

This program message will result in an error. The message makes use of the default `POWer[:LEVel]` node (root command). When using a default node, there is no change to the current path position. Since there is no command `OFFSet` at the root level, an error results.

The following example shows the correct syntax for this program message:

:`POWer 10DBM;:POWer:OFFSet 5DB`

Example 3

:`POWer:OFFSet 5DB;POWer 10DBM`

This program message results in a command error. The path is dropped one level at each colon. The first half of the message drops the command path to the lower level command `OFFSet`; `POWer` does not exist at this level.

The `POWer 10DBM` command is missing the leading colon and when sent, it causes confusion because the signal generator cannot find `POWer` at the `POWer:OFFSet` level. By adding the leading colon, the current path is reset to the root. The following shows the correct program message:

:`POWer:OFFSet 5DB;:POWer 10DBM`

Example 4

`FREQ 500MHZ;POW 4DBM`

In this example, the keyword short form is used. The program message is correct because it utilizes the default nodes of `:FREQ[:CW]` and `:POW[:LEVel]`. Since default nodes do not affect the current path, it is not necessary to use a leading colon before `FREQ` or `POW`.

File Name Variables

File name variables, such as `"<file name>"`, represent three formats, `"<file name>"`, `"<file name@file type>"`, and `"/user/file type/file name>"`. The following shows the file name syntax for the three formats, but uses "FLATCAL" as the file name in place of the variable "<file name>":

Format 1 "FLATCAL"
Format 2 "FLATCAL@USERFLAT"
Format 3 "/USER/USERFLAT/FLATCAL"

Format 2 uses the file type extension (@USERFLAT) as part of the file name syntax. Format 3 uses the directory path which includes the file name and file type. Use Formats 2 and 3 when the command does not specify the file type.
This generally occurs in the Memory (:MEMORY) or Mass Memory (:MMEMory) subsystems. The following examples demonstrate a command where Format 1 applies:

Command Syntax with the file name variable

:MEMORY:STORe:LIST "<file name>"

Command Syntax with the file name

:MEMORY:STORe:LIST "SWEEP_1"

This command has :LIST in the command syntax. This denotes that "SWEEP_1" will be saved in the :List file type location as a list type file.

The following examples demonstrate a command where Format 2 applies:

Command Syntax with the file name variable

:MMEMory:COPY "<filename>"","<filename>"

Command Syntax with the file name

:MMEMory:COPY "FLATCAL@USERFLAT","FLAT_2CAL@USERFLAT"

This command cannot distinguish which file type "FLATCAL" belongs to without the file type extension (@USERFLAT). If this command were executed without the extension, the command would assume the file type was Binary.

The following examples demonstrate a command where format 3 applies:

Command Syntax with the file name variable

:MMEMory:DATA "/USER/BBG1/WAVEFORM/<file name>",#ABC

Command Syntax with the file name

:MMEMory:DATA "/USER/BBG1/WAVEFORM/FLATCAL",#ABC

This command gives the directory path name where the file "FLATCAL" is stored.

- A: the number of decimal digits to follow in B.
- B: a decimal number specifying the number of data bytes in C.
- C: the binary waveform data.

Refer to Table 2-11 for a listing of the file systems and types. The entries under file type are used in the directory path.

ARB Waveform File Directories

ARB waveform files can be saved to the following directories:

- WFM1: volatile ARB waveform storage. Files located here can be played by the signal generator’s arb player, but are volatile and will be lost on a power cycle. The directory can also be specified as /USER/BBG1/WAVEFORM.
Using this Guide

SCPI Basics

- NVWFM: non-volatile ARB waveform storage. Files must be moved to the WFM1: directory before they can be played by the signal generator's Dual ARB player. The directory can also be specified as /USER/WAVEFORM.
- SEQ: sequence files are stored here and are non-volatile. The directory can also be specified as /USER/SEQ.

MSUS (Mass Storage Unit Specifier) Variable

The variable "<msus>" enables a command to be file type specific when working with user files. Some commands use it as the only command parameter, while others can use it in conjunction with a file name when a command is not file type specific. When used with a file name, it is similar to Format 2 in the File Name Variables section on page 11. The difference is the file type specifier (msus) occupies its own variable and is not part of the file name syntax.

The following examples illustrate the usage of the variable "<msus>" when it is the only command parameter:

Command Syntax with the msus variable

```
:MMEMory:CATalog? "<msus>
```

Command Syntax with the file system

```
:MMEMory:CATalog? "LIST:
```

The variable "<msus>" is replaced with "LIST:". When the command is executed, the output displays only the files from the List file system.

The following examples illustrate the usage of the variable "<file name>" with the variable "<msus>":

Command Syntax with the file name and msus variables

```
:MMEMory:DELeete[:NAME] "<file name>","<msus>
```

Command Syntax with the file name and file system

```
:MMEMory:DELeete:NAME "LIST_1","LIST:
```

The command from the above example cannot discern which file system LIST_1 belongs to without a file system specifier and will not work without it. When the command is properly executed, LIST_1 is deleted from the List file system.

The following example shows the same command, but using Format 2 from the File Name Variables section on page 11:

```
:MMEMory:DELeete:NAME "LIST_1@LIST"
```

When a file name is a parameter for a command that is not file system specific, either format (<file name>"","<msus>" or "<file name@file system;">) will work.
Refer to Table on page 4 for a listing of special syntax characters.

Quote Usage with SCPI Commands

As a general rule, programming languages require that SCPI commands be enclosed in double quotes as shown in the following example:

":FM:EXTernal:IMPedance 600"

However, when a string is the parameter for a SCPI command, additional quotes or other delimiters may be required to identify the string. Your programming language may use two sets of double quotes, one set of single quotes, or backslashes with quotes to signify the string parameter. The following examples illustrate these different formats:

"MEMory:LOAD:LIST "myfile"" used in BASIC programming languages

"MEMory:LOAD:LIST \"myfile\"" used in C, C++, Java, and PERL

"MEMory:LOAD:LIST 'myfile'" accepted by most programming languages

Consult your programming language reference manual to determine the correct format.

Binary, Decimal, Hexadecimal, and Octal Formats

Command values may be entered using a binary, decimal, hexadecimal, or octal format. When the binary, hexadecimal, or octal format is used, their values must be preceded with the proper identifier. The decimal format (default format) requires no identifier and the signal generator assumes this format when a numeric value is entered without one. The following list shows the identifiers for the formats that require them:

- #B identifies the number as a binary numeric value (base–2).
- #H identifies the number as a hexadecimal alphanumeric value (base–16).
- #Q identifies the number as an octal alphanumeric value (base–8).

The following are examples of SCPI command values and identifiers for the decimal value 45:

#B101101 binary equivalent

#H2D hexadecimal equivalent

#Q55 octal equivalent

The following example sets the RF output power to 10 dBm (or the equivalent value for the currently selected power unit, such as DBUV or DBUVEMF) using the hexadecimal value 000A:

:POW #H000A
Using this Guide
SCPI Basics

A unit of measure, such as dBm or mV, will not work with the values when using a format other than decimal.

The following example sets the bluetooth board address to FFBF7 (hexadecimal):

```
:RADio:BLUetooh:ARB:BDADdr #FFBF7
```
2 System Commands

In the following sections, this chapter provides SCPI descriptions for subsystems dedicated to peripheral signal generator operations common to all PSG models:

- “Calibration Subsystem (:CALibration)” on page 18
- “Communication Subsystem (:SYSTem:COMMunicate)” on page 24
- “Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)” on page 31
- “Display Subsystem (:DISPlay)” on page 34
- “IEEE 488.2 Common Commands” on page 39
- “Low-Band Filter Subsystem” on page 44
- “Memory Subsystem (:MEMory)” on page 45
- “Mass Memory Subsystem (:MMEMory)” on page 68
- “Output Subsystem (:OUTPut)” on page 74
- “Route Subsystem (:ROUTE:HARDware:DGENerator)” on page 78
- “Status Subsystem (:STATus)” on page 86
- “System Subsystem (:SYSTem)” on page 102
- “Trigger Subsystem” on page 123
- “Unit Subsystem (:UNIT)” on page 126
Calibration Subsystem (:CALibration)

:DCFM

Supported All with Option UNT

:CALibration:DCFM

This command initiates a DCFM or DCΦM calibration depending on the currently active modulation. This calibration eliminates any dc or modulation offset of the carrier signal.

Use this calibration for externally applied signals. While the calibration can also be performed for internally generated signals, dc offset is not a normal characteristic for them.

NOTE

If the calibration is performed with a dc signal applied, any deviation provided by the dc signal will be removed and the new zero reference point will be at the applied dc level. The calibration will have to be performed again when the dc signal is removed in order to reset the carrier signal to the correct zero reference.

Key Entry DCFM/DCΦM Cal

:IQ

Supported E8267D

:IQ

This command initiates an I/Q calibration for a range of frequencies and is equivalent to selecting User from the front panel Calibration Type DC User Full softkey in the I/Q Calibration menu. For setting range frequencies, refer to :IQ:START, and :IQ:STOP commands.

Key Entry Execute Cal Calibration Type DC User Full

:IQ:DC

Supported E8267D

:IQ:DC

This command starts and performs a one to two second adjustment that is not traceable to a standard. However, it will minimize errors associated with signal generator internal voltage offsets. This adjustment minimizes errors for the current signal generator setting and at a single frequency. The DC adjustment is volatile and must be repeated with each signal generator setting change. This command can be sent while the RF On/Off is set to Off and the adjustment will still be valid when the RF is enabled.
System Commands
Calibration Subsystem (:CALibration)

The I/Q DC adjustment is dependent upon a number of instrument settings. If any of the instrument settings change, the adjustment will become invalid. The dependent instrument settings are:

- RF frequency
- I/Q attenuation level
- Baseband generator settings
- I/Q polarity settings
- Baseband filter settings
- Path settings (Internal I/Q Mux Path 1 or Path 2)
- I/Q calibration (the I/Q DC calibration will be invalidated if any other I/Q calibration is execute)
- Temperature (±5 degrees)

The following instrument states will not invalidate the I/Q DC calibration:

- Power level changes
- I/Q Impairments

Key Entry Execute Cal Calibration Type DC User Full

:IQ:DEFault

Supported E8267D

:CALibration:IQ:DEFault

This command will restore the original factory calibration data for the internal I/Q modulator.

Key Entry Revert to Default Cal Settings

:IQ:FULL

Supported E8267D

:CALibration:IQ:FULL

This command sets and performs a full frequency range (regardless of the start and stop frequency settings) I/Q calibration and stores the results in the signal generator’s memory.

Start and stop frequencies default to the full frequency range of the signal generator.

Range Depends on the signal generator’s frequency option.

See also: “:FREQuency:CENTer” on page 131.

Key Entry Execute Cal (Calibration Type DC User Full set to Full)
System Commands
Calibration Subsystem (:CALibration)

:IQ:STARt

Supported E8267D

:CALibration:IQ:STARt <val><units>
:CALibration:IQ:STARt?

This command sets the start frequency and automatically sets the calibration type to User for an I/Q calibration.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:CAL:IQ:STAR 1GHZ

The preceding example sets the signal generator’s start frequency for an IQ calibration to 1 GHz.

Range Depends on the signal generator’s frequency option.

See also: “:FREQuency:CENTer” on page 131.

Key Entry Start Frequency

:IQ:STOP

Supported E8267D

:CALibration:IQ:STOP <val><units>
:CALibration:IQ:STOP?

This command sets the stop frequency and automatically sets the calibration type to User for an I/Q calibration. The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:CAL:IQ:STOP 2GHZ

The preceding example sets the signal generator’s stop frequency for an IQ calibration to 2 GHz.

Range Depends on the signal generator’s frequency option.

See also: “:FREQuency:CENTer” on page 131.

Key Entry Stop Frequency

:WBIQ

Supported E8267D with Option 015

:CALibration:WBIQ
System Commands
Calibration Subsystem (:CALibration)

This command initiates a wideband I/Q calibration for a range of frequencies and is equivalent to selecting User from the front panel Calibration Type DC User Full softkey. For setting range frequencies, refer to :WBIQ:STARt, and :WBIQ:STOP commands.

Key Entry Execute Cal

:WBIQ:DC

Supported E8267D with Option 015

:CALibration:WBIQ:DC

This command performs a one to two second adjustment that is not traceable to a standard. However, it will minimize errors associated with offset voltages. This adjustment minimizes errors for the current signal generator setting and at a single frequency. The DC adjustment is volatile and must be repeated with each signal generator setting change. This command can be sent while the RF On/Off is set to Off and the adjustment will be valid when RF is enabled.

The wideband I/Q DC adjustment is dependent upon a number of instrument settings. If any of the PSG settings change, the adjustment will become invalid. The dependent instrument settings are:

- RF frequency
- I/Q attenuation level
- Baseband generator settings
- I/Q polarity settings
- Baseband filter settings
- Path settings (Internal I/Q Mux Path 1 or Path 2)
- I/Q calibration (the I/Q DC calibration will be invalidated if any other I/Q calibration is executed)
- Temperature (±5 degrees)

The following instrument states will not invalidate the I/Q DC calibration:

- Power level changes
- I/Q Impairments

Key Entry Execute Cal Calibration Type DC User Full
System Commands
Calibration Subsystem (:CALibration)

:WBIQ:DEFault

Supported E8267D with Option 015

This command will restore the original factory calibration data for the internal I/Q modulator.

Key Entry Revert to Default Cal Settings

:WBIQ:FULL

Supported E8267D with Option 015

This command sets and performs a full-frequence range (regardless of the start and stop frequency settings) wideband I/Q calibration and stores the results in the signal generator's firmware.

Start and stop frequencies will default to the full frequency range of the signal generator.

Range Depends on the signal generator’s frequency option.

See also: “:FREQuency:CENTer” on page 131.

Key Entry Execute Cal Calibration Type DC User Full

:WBIQ:STARt

Supported E8267D with Option 015

:CALibration:WBIQ:STARt <val><units>

This command sets the start frequency and automatically sets the calibration type to User for a wideband I/Q calibration. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:CAL:WBIQ:STAR 1GHz

The preceding example sets the signal generator's start frequency to 1 GHz for a wideband I/Q calibration.

Range Depends on the signal generator’s frequency option.

See also: “:FREQuency:CENTer” on page 131.

Key Entry Start Frequency
System Commands
Calibration Subsystem (:CALibration)

:WBIQ:STOP

Supported E8267D with Option 015

:CALibration:WBIQ:STOP <val><units>
:CALibration:WBIQ:STOP?

This command sets the stop frequency and automatically sets the calibration type to User for a wideband I/Q calibration.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:CAL:WBIQ:STOP 2GHZ

The preceding example sets the signal generator's stop frequency to 2 GHz for a wideband I/Q calibration.

Range Depends on the signal generator's frequency option.

See also: “:FREQuency:CENTer” on page 131.

Key Entry Stop Frequency

Depends on the signal generator’s frequency option.
Communication Subsystem (:SYSTem:COMMunicate)

:GPIB:ADDRess

Supported All Models

:SYSTem:COMMunicate:GPIB:ADDRess <number>
:SYSTem:COMMunicate:GPIB:ADDRess?

This command sets the signal generator’s general purpose instrument bus (GPIB) address.

The variable <number> is a numeric value between 0 and 30. The signal generator typically uses 19 as the instrument address. The address must be different from other GPIB devices in your system.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:SYST:COMM:GPIB:ADDR 19

The preceding example sets the signal generator’s GPIB address to 19.

Range 0–30
Key Entry GPIB Address

:GTLocal

Supported All Models

:SYSTem:COMMunicate:GTLocal

This command sets the signal generator to local mode, enabling front panel operation.

Range N/A
Key Entry Local
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

:LAN:CONFig

 Supported All Models

 :SYSTem:COMMunicate:LAN:CONfig DHCP|MANual
 :SYSTem:COMMunicate:LAN:CONfig?

This command selects the signal generator’s internet protocol (IP) address. The dynamic host communication protocol (DHCP) selection allows the network to assign an IP address. The manual selection allows the user to enter an IP address.

Example

 :SYST:COMM:LAN:CONF DHCP

The preceding example sets up the signal generator LAN configuration to use a DHCP IP address.

Key Entry LAN Config

:LAN:GATEway

 Supported All Models

 :SYSTem:COMMunicate:LAN:GATEway "<ipstring>"
 :SYSTem:COMMunicate:LAN:GATEway?

This command sets the gateway for local area network (LAN) access to the signal generator from outside the current sub-network.

The "<ipstring>" string variable is the LAN gateway address, formatted as xxx.xxx.xxx.xxx. Refer to Quote Usage with SCPI Commands for information on using quotes for different programming languages.

Using an empty string restricts access to the signal generator to local hosts on the LAN.

Example

 :SYST:COMM:LAN:GATE "203.149.781.101"

The preceding example sets the signal generator’s LAN gateway address.

Key Entry Default Gateway

:LAN:HOSTname

 Supported All Models

 :SYSTem:COMMunicate:LAN:HOSTname "<string>"
 :SYSTem:COMMunicate:LAN:HOSTname?

This command sets the signal generator’s local area network (LAN) connection hostname.
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

The "<string>" variable is the hostname for the signal generator. Refer to Quote Usage with SCPI Commands for information on using quotes for different programming languages.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example
:SYST:COMM:LAN:HOSTname "siginst3"

The preceding example sets “siginst3” as the signal generator's LAN hostname.

Key Entry

<table>
<thead>
<tr>
<th>Hostname</th>
</tr>
</thead>
</table>

LAN:IP

Supported

[:SYSTem:COMMunicate:LAN:IP "<ipstring>"
[:SYSTem:COMMunicate:LAN:IP?]

This command sets the signal generator's local area network (LAN) internet protocol (IP) address for your IP network connection.

The "<ipstring>" variable is the signal generator's IP address, formatted as xxx.xxx.xxx.xxx. Refer to Quote Usage with SCPI Commands for information on using quotes for different programming languages.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

The preceding example sets the signal generator's LAN IP address.

Key Entry

<table>
<thead>
<tr>
<th>IP Address</th>
</tr>
</thead>
</table>

LAN:SUBNet

Supported

[:SYSTem:COMMunicate:LAN:SUBNet "<ipstring>"
[:SYSTem:COMMunicate:LAN:SUBNet?]

This command sets the signal generator's local area network (LAN) subnet mask address for your internet protocol (IP) network connection.

The "<ipstring>" variable is the subnet mask for the IP address, formatted as xxx.xxx.xxx.xxx. Refer to Quote Usage with SCPI Commands for information on using quotes for different programming languages.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

Example
:SYST:COMM:LAN:SUBN "203.194.101.111"
The preceding example sets the signal generator’s LAN subnet mask.

Key Entry Subnet Mask

:PMETer:ADDRess

Supported All Models
:SYSTem:COMMunicate:PMETer:ADDRess <val>
:SYSTem:COMMunicate:PMETer:ADDRess?
This command sets the instrument address for a power meter that is controlled by the signal generator. The power meter is controlled only through a general purpose instrument bus (GPIB) cable.

The variable <number> is an integer numeric value between 0 and 30. The power meter address must be different from the GPIB address of the signal generator and any other GPIB instrument addresses in your system.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example
:SYST:COMM:PMET:ADDR 14
The preceding example sets the address to 14 for the power meter that is connected to and controlled by the signal generator.

Range 0–30
Key Entry Meter Address

:PMETer:CHANnel

Supported All Models
:SYSTem:COMMunicate:PMETer:CHANnel A|B
:SYSTem:COMMunicate:PMETer:CHANnel?
This command sets the measurement channel on a dual channel power meter that is controlled by the signal generator. A single–channel power meter uses channel A and selecting channel B will have no effect.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command. The power meter is controlled only through a general purpose instrument bus (GPIB) cable.

Example
:SYST:COMM:PMET:CHAN B
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

The preceding example sets the B measurement channel for the power meter that is connected to and controlled by the signal generator.

Key Entry Meter Channel A B

:PMETer:IDN

Supported All Models

:SYSTem:COMMunicate:PMETer:IDN E4418B|E4419B|E4416A|E4417A

This command sets the model number of the power meter that is controlled by the signal generator. The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command. The power meter is controlled only through a general purpose instrument bus (GPIB) cable.

Example

:SYST:COMM:PMET:IDN E4417A

The preceding example sets the model number for the power meter that is connected to and controlled by the signal generator.

Key Entry Power Meter

:PMETer:TIMEout

Supported All Models

:SYSTem:COMMUnicate:PMETer:TIMEout <num>[<time_suffix>]

This command sets the period of time that the signal generator will wait for a valid reading from the power meter. The variable <num> has a resolution of 0.001.

The variable <num> is the time expressed as a number. The variable <time_suffix> are the units of time, for example mS (milliseconds) or S (seconds).

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command. The power meter is controlled only through a general purpose instrument bus (GPIB) cable. If a timeout occurs, the signal generator reports an error message.

Example

:SYST:COMM:PMET:TIME .1SEC

The preceding example sets the timeout to 100 milliseconds for the power meter that is connected to and controlled by the signal generator.

Range 1 mS–100 seconds

Key Entry Meter Timeout
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

:SERial:BAUD

Supported All Models

:SYSTem:COMMunicate:SERial:BAUD <number>
:SYSTem:COMMunicate:SERial:BAUD?

This command sets the baud rate for the rear panel RS–232 interface labeled RS–232. The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

The variable <number> is an integer value corresponding to baud rates: 300, 2400, 4800, 9600, 19200, 38400, and 57600.

Example

:SYST:COMM:SER:BAUD 9600

The preceding example sets the baud rate for serial communication to 9600.

Key Entry RS–232 Baud Rate

:SERial:ECHO

Supported All Models

:SYSTem:COMMunicate:SERial:ECHO ON|OFF
:SYSTem:COMMunicate:SERial:ECHO?

This command enables or disables the RS–232 echo, and is not affected by a power–on, preset, or *RST command. Characters sent to the signal generator are displayed or echoed to the controller display.

Example

:SYST:COMM:SER:ECHO ON

The preceding example enables RS–232 echoing.

Key Entry RS–232 ECHO Off On

:SERial:RESet

Supported All Models

:SYSTem:COMMunicate:SERial:RESet

This event command resets the RS–232 buffer and discards unprocessed SCPI input received at the RS–232 port.

Key Entry Reset RS–232
:SERial:TOUT

Supported All Models

`:SYSTem::COMMunicate:SERial:TOUT <val>`

`:SYSTem::COMMunicate:SERial:TOUT?`

This command sets the RS–232 serial port timeout value. If further input is not received within the timeout period specified while a SCPI command is processed, the command aborts and clears the input buffer. The variable `<val>` is entered in seconds. The setting is not affected by a signal generator power–on, preset, or `*RST` command.

Example

`:SYST:COMM:SER:TOUT 2SEC`

The preceding example sets the RS–232 timeout for 2 seconds.

Range 1–25

Key Entry RS– 232 Timeout
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFORmation)

:BOARds

Supported All Models

:DIAGnostic[:CPU]:INFORmation:BOARds?

This query returns a list of the boards installed in the signal generator. The information is returned in the following format:

"<board_name,part_number,serial_number,version_number,status >"

This information format will repeat for each of the signal generator’s detected boards.

Key Entry Installed Board Info

:CCOunt:ATTenuator

Supported E8257D/E8663D with Option 1E1 and E8267D

:DIAGnostic[:CPU]:INFORmation:CCOunt:ATTenuator?

This query returns the cumulative number of times that the attenuator has switched levels.

Key Entry Diagnostic Info

:CCOunt:PON

Supported All Models

:DIAGnostic[:CPU]:INFORmation:CCOunt:PON?

This query returns the cumulative number of times the signal generator has been powered–on.

Key Entry Diagnostic Info

:DISPlay:OTIMe

Supported All Models

:DIAGnostic[:CPU]:INFORmation:DISPlay:OTIMe?

This query returns the cumulative number of hours the display has been on.

Key Entry Diagnostic Info
System Commands
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)

:LICENse:AUXiliary

Supported All Models

::DIAGnostic[:CPU]:INFormation:LICense:AUXiliary?
This query returns a listing of current external software application license numbers for an auxiliary instrument.

Key Entry Auxiliary Software Options

:OPTions

Supported All Models

::DIAGnostic[:CPU]:INFormation:OPTions?
This query returns a list of options installed in the signal generator.

Key Entry Options Info

:OPTions:DETail

Supported All Models

::DIAGnostic[:CPU]:INFormation:OPTions:DETail?
This query returns the options installed, option revision, and digital signal processing (DSP) version if applicable.

Key Entry Options Info

:OTIMe

Supported All Models

::DIAGnostic[:CPU]:INFormation:OTIMe?
This query returns the cumulative number of hours that the signal generator has been on.

Key Entry Diagnostic Info

:REVision

Supported All Models

::DIAGnostic[:CPU]:INFormation:REVision?
This query returns the CPU bootstrap read only memory (boot ROM) revision date. In addition, the query returns the revision, creation date, and creation time for the firmware.

Key Entry Diagnostic Info
System Commands
Diagnostic Subsystem (DIAGnostic[:CPU]:INFORMATION)

:SDATe

Supported All Models

:DIAGnostic[:CPU]:INFORMATION:SDATe?

This query returns the date and time stamp for the signal generator's firmware.

Key Entry Diagnostic Info
Display Subsystem (:DISPlay)

:ANNotation:AMPLitude:UNIT

Supported All Models

:DISPlay:ANNotation:AMPLitude:UNIT

DBM|DBUV|DBUVEMF|V|VEMF|DB

:DISPlay:ANNotation:AMPLitude:UNIT?

This command sets the displayed front panel amplitude units. If the amplitude reference state is set to on, the query returns units expressed in dB. Setting any other unit will cause a setting conflict error stating that the amplitude reference state must be set to off. Refer to :REFerence:STATE command for more information.

Example

:DISP:ANN:AMPL:UNIT DB

The preceding example sets DB as the amplitude units shown on the signal generator’s front panel display.

*RST dBm

:ANNotation:CLOCk:DATE:FORMat

Supported All Models

:DISPlay:ANNotation:CLOCk:DATE:FORMat MDY|DMY

:DISPlay:ANNotation:CLOCk:DATE:FORMat?

This command selects the date format. The choices are month–day–year (MDY) or day–month–year (DMY) format. The date is shown on the signal generator’s front panel display.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:DISP:ANN:CLOC:DATA:FORM DMY

The preceding example sets the date format shown on the signal generator’s front panel display to DMY.
System Commands
Display Subsystem (:DISPlay)

:ANNotation:CLOCk[:STATe]

Supported All Models

:DISPlay:ANNotation:CLOCk[:STATe] ON|OFF|1|0
:DISPlay:ANNotation:CLOCk[:STATe]?

This command enables or disables the digital clock shown at the lower right side of the front panel display.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:DISP:ANN:CLOC OFF

The preceding example disables the digital clock on the signal generator’s front panel display.

:BRIGHTness

Supported All Models

:DISPlay:BRIGHTness <val>
:DISPlay:BRIGHTness?

This command sets the display brightness (intensity). The brightness can be set to the minimum level (0.02), maximum level (1), or in between by using fractional numeric values (0.03–0.99).

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:DISP:BRIG .45

The preceding example sets display intensity to .45.

Range 0.02–1

Key Entry Brightness
System Commands
Display Subsystem (:DISPlay)

:CAPTure

Supported All Models

:`DISPlay:CAPTure`

This command allows the user to capture the current display and store it in the signal generator's memory. The display capture is stored as DISPLAY.BMP in the Binary file system. This file is overwritten with each subsequent display capture. The file can be downloaded in the following manner:

1. Log on to the signal generator using file transfer protocol (FTP).
2. Change to the BIN directory using the FTP cd command.
3. Retrieve the file by using the FTP get command.

:CONTrast

Supported All Models

:`DISPlay:CONTrast <val>`
:`DISPlay:CONTrast?`

This command sets the contrast for the signal generator's display. The variable `<val>` is expressed as a fractional number between 0 and 1. The contrast can be set to the maximum level (1), minimum level (0), or in between by using fractional numeric values (0.001–0.999).

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:`DISP:CONT .45`

The preceding example sets the display contrast to .45.

Range 0–1

Key Entry Display contrast hardkeys are located below the display.

:INVerse

Supported All Models

:`DISPlay:INVerse ON|OFF|1|0`
:`DISPlay:INVerse?`

This command sets the display of the source to inverse video mode. The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example
The preceding example sets the display video to normal (not inverse).

Key Entry	Inverse Video Off On

:REMote

Supported | All Models

:DISPLAY:REMote ON|OFF|1|0
:DISPLAY:REMote?

This command enables or disables display updating when the signal generator is remotely controlled.

ON (1) This choice updates the signal generator display so that you can see the settings change as the commands are executed, however, this will decrease the signal generator’s response time.

OFF (0) This choice turns off display updating which will optimizing the signal generator’s response time.

The setting enabled by this command is not affected by signal generator preset or *RST command. However, cycling the signal generator power will reset it to zero.

Example

:DISP:REM 0

The preceding example turns off display updating.

Key Entry	Update in Remote Off On

:SWEep

Supported | All Models

:DISPLAY:SWEep ON|OFF|1|0
:DISPLAY:SWEep?

This command disables display updating when the signal generator is in sweep off mode.

Example

:DISP:SWE

The preceding example turns off display updating.

*RST | On (1)

Key Entry | Utility->Display->Update->Update in Sweep Off On
System Commands
Display Subsystem (:DISPlay)

[:WINDow][:STATe]

Supported All Models

:DISPlay[:WINDow][:STATe] ON|OFF|1|0
:DISPlay[:WINDow][:STATe]?

This command is used to either blank out (OFF or 0) the display screen or turn it on (ON or 1).

A signal generator preset, *RST command, or cycling the power will turn the display on.

Example

:DISP OFF

The preceding example blanks out the signal generator’s display.
IEEE 488.2 Common Commands

*CLS

Supported All Models

*CLS

The Clear Status (CLS) command clears the Status Byte register, the Data Questionable Event register, the Standard Event Status register, and the Standard Operation Status register.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

*ESE

Supported All Models

*ESE <val>

This command enables bits in the Standard Event Enable register. Bits enabled and set in this register will set the Standard Event Status Summary bit (bit 5) in the Status Byte register. When bit 5 (decimal 32) in the Status Byte register is set, you can read the Standard Event register using the *ESR command and determine the cause.

The Standard Event Enable register state (bits enabled with this command) is not affected by signal generator preset or *RST. The register will be cleared when the signal generator is turned off unless the command *PSC is used before turning it off.

Refer to the **Keysight Signal Generators Programming Guide** for more information on programming the status registers.

Example

*ESE 129

This command enables bit 0 (decimal 1, Operation Complete) and bit 7 (decimal 128, Power On) in the Standard Event Status Enable register.

Range 0–255

*ESE?

Supported All Models

*ESE?

This query returns the decimal sum of the enabled bits in the Standard Event Enable register.

Refer to the **Keysight Signal Generators Programming Guide** for more information on programming the status registers.
System Commands
IEEE 488.2 Common Commands

*ESR?

Supported All Models
This query returns the decimal sum of the bits set in the Standard Event register.

NOTE
This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared. Refer to the Keysight Signal Generators Programming Guide for more information.

*IDN?

Supported All Models
This query requests an identification string from the signal generator. The IDN string consists of the following information:
<company_name>, <model_number>, <serial_number>, <firmware_revision>
The identification information can be modified. Refer to :IDN command for more information.

*OPC

Supported All Models
The Operation Complete (OPC) command sets bit 0 in the Standard Event register.
Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

*OPC?

Supported All Models
The Operation Complete (OPC) query returns the ASCII character 1 in the Standard Event register indicating completion of all pending operations.
Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.
System Commands
IEEE 488.2 Common Commands

*PSC

Supported All Models

*PSC ON|OFF|1|0

The power–on Status Clear (PSC) command controls the automatic power–on clearing of the Service Request Enable register, the Standard Event Status Enable register, and the device–specific event enable registers.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

ON (1) This choice enables the power–on clearing of the listed registers.

OFF (0) This choice disables the clearing of the listed registers and they retain their status when a power–on condition occurs.

Example

*PSC ON

This command clears all listed registers at power–on.

*PSC?

Supported All Models

*PSC?

The power–on Status Clear (PSC) query returns the flag (1 or 0) setting as enabled by the *PSC command.

*RCL

Supported All Models

*RCL <reg>,<seq>

The Recall (RCL) command recalls the state from the specified memory register <reg> in the specified sequence <seq>.

Range registers: 0–99 Sequences: 0–9

Key Entry RECALL Reg Select Seq:

*RST

Supported All Models

*RST
System Commands
IEEE 488.2 Common Commands

The Reset (RST) command resets most signal generator functions to a factory-defined state.

Each command description in this reference shows the *RST value if the signal generator’s setting is affected.

*SAV

Supported All Models
*SAV <reg>,<seq>

The Save (SAV) command saves the state of the signal generator to the specified memory register <reg> of the specified sequence <seq>. Settings such as frequency, attenuation, power, and settings that do not survive a power cycle or an instrument reset can be saved. Data formats, arb setups, list sweep values, table entries, and so forth are not stored. Only a reference to the data file name is saved. Refer to the E8257D/67D, E8663D PSG Signal Generators User's Guide and Keysight Signal Generators Programming Guide for more information on saving and recalling instrument states.

Range registers: 0–99 Sequences: 0–9
Key Entry Save Reg Save Seq[n] Reg[nn]

*SRE

Supported All Models
*SRE <val>

The Service Request Enable (SRE) command enables bits in the Service Request Enable register. Bits enabled and set in this register will set bits in the Status Byte register.

The variable <val> is the decimal sum of the bits that are enabled. Bit 6 (value 64) is not available in this register and therefore cannot be enabled by this command. Because bit 6 is not available, entering values from 64 to 127 is equivalent to entering values from 0 to 63.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

The setting enabled by this command is persistent, in that it is not affected by cycling the signal generator power, preset or the *RST command.

Range 0 to 63, 128 to 191

*SRE?

Supported All Models
*SRE?
IEEE 488.2 Common Commands

The Service Request Enable (SRE) query returns the decimal sum of bits enabled in the Service Request Enable register. Bit 6 (decimal 64) is not available in this register.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

\[
\text{Range} \quad 0 \text{ to } 63, \ 128 \text{ to } 191
\]

*STB?

Supported \quad \text{All Models}

*STB?

This command reads the decimal sum of the bits set in the Status Byte register. Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

\[
\text{Range} \quad 0 \text{ to } 255
\]

*TRG

Supported \quad \text{All Models}

*TRG

The Trigger (TRG) command triggers the device if BUS is the selected trigger source, otherwise, *TRG is ignored. For more information on triggers; refer to “*:TRIGger[:SEQuence]:SOURce” on page 125.

*TST?

Supported \quad \text{All Models}

*TST?

The Self–Test (TST) query initiates the internal self–test and returns one of the following results:

0 \quad \text{This shows that all tests passed.}
1 \quad \text{This shows that one or more tests failed.}

Key Entry \quad \text{Run Complete Self Test}

*WAI

Supported \quad \text{All Models}

*WAI

The Wait–to–Continue (WAI) command causes the signal generator to wait until all pending commands are completed, before executing any other commands.
Low–Band Filter Subsystem

[:SOURce]:LBFilter

Supported All Models with Option 1EH or 521

[:SOURce]:LBFilter ON|OFF|1|0
[:SOURce]:LBFilter?

This command enables or disables the low–band filter located in the RF path. Use this filter to reduce harmonics below 2 GHz.

*RST 0

Key Entry Low Pass Filter below 2 GHz Off On
System Commands
Memory Subsystem (:MEMory)

Memory Subsystem (:MEMory)

:CATalog:BINary

Supported All Models

:MEMory:CATalog:BINary?

This command outputs a list of binary files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to File Name Variables for information on the file name syntax.

Key Entry Binary

:CATalog:BIT

Supported E8267D with Option 601 or 602

:MEMory:CATalog:BIT?

This command outputs a list of bit files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to File Name Variables for information on the file name syntax.

Key Entry Bit

:CATalog:DMOD

Supported E8267D with Option 601 or 602

:MEMory:CATalog:DMOD?

This command outputs a list of arbitrary waveform digital modulation files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}.
System Commands
Memory Subsystem (:MEMory)

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"
Refer to File Name Variables for information on the file name syntax.

Key Entry DMOD

:CATalog:FIR

Supported E8267D with Option 601 or 602

:MEMory:CATalog:FIR?

This command outputs a list of finite impulse response (FIR) filter files. The return data will be in the following form:
<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"
Refer to File Name Variables for information on the file name syntax.

Key Entry FSK

:CATalog:FSK

Supported E8267D with Option 601 or 602

:MEMory:CATalog:FSK?

This command outputs a list of frequency shift keying (FSK) files. The return data will be in the following form:
<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"
Refer to File Name Variables for information on the file name syntax.

Key Entry FSK
System Commands
Memory Subsystem (:MEMory)

:CATalog:IQ

Supported E8267D with Option 601 or 602

:MEMory:CATalog:IQ?

This command outputs a list of IQ files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to File Name Variables for information on the file name syntax.

Key Entry I/Q

:CATalog:LIST

Supported All Models

:MEMory:CATalog:LIST?

This command outputs a list of List Sweep files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to File Name Variables for information on the file name syntax.

Key Entry List

:CATalog:MDMod

Supported E8267D with Option 601 or 602

:MEMory:CATalog:MDMod?

This command outputs a list of arbitrary waveform multicarrier digital modulation (MDMod) files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"
System Commands
Memory Subsystem (:MEMory)

Refer to File Name Variables for information on the file name syntax.

Key Entry MDMOD

:CATalog:MTONe

Supported E8267D with Option 601 or 602

:MEMory:CATalog:MTONe?

This command outputs a list of arbitrary waveform multitone files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to File Name Variables for information on the file name syntax.

Key Entry MTONE

:CATalog:SEQ

Supported E8267D with Option 601 or 602

:MEMory:CATalog:SEQ?

This command outputs a list of arbitrary waveform sequence files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:

"<file_name,file_type,file_size>"

Refer to File Name Variables for information on the file name syntax.

Key Entry Seq

:CATalog:SHAPe

Supported E8267D with Option 601 or 602

:MEMory:CATalog:SHAPe?

This command outputs a list of burst shape files. The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}
System Commands
Memory Subsystem (:MEMory)

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"
Refer to File Name Variables for information on the file name syntax.

Key Entry **Shape**

:CATalog:STATe

Supported All Models

:MEMory:CATalog:STATe?
This command outputs a list of state files. The return data will be in the following form:
<mem_used>,<mem_free>{","<file_listing>"}
The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"
Refer to File Name Variables for information on the file name syntax.

Key Entry **State**

:CATalog:UFLT

Supported All Models

:MEMory:CATalog:UFLT?
This command outputs a list of user-flatness correction files. The return data will be in the following form:
<mem_used>,<mem_free>{","<file_listing>"}
The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory. Each file listing parameter will be in the following form:
"<file_name,file_type,file_size>"
Refer to File Name Variables for information on the file name syntax.

Key Entry **User Flatness**

:CATalog[:ALL]

Supported All Models

:MEMory:CATalog[:ALL]?
System Commands
Memory Subsystem (:MEMory)

This command outputs a list of all files in the memory subsystem, but does not include files stored in the Option 601 or 602 baseband generator memory. The return data is in the following form:

```
<mem_used>,<mem_free>{,"<file_listing>"}
```

The signal generator returns the two memory usage parameters and as many file listings as there are files in the memory subsystem. Each file listing parameter is in the following form:

```
"<file_name,file_type,file_size>"
```

Refer to Table 2-11 for file types, and to File Name Variables for file name syntax.

Key Entry

All

:COPY[:NAME]

Supported

All Models

```
:MEmory:COPY [:NAME] "<src_name>","<dest_name>"
```

This command copies the data from one file into another file. The file can use the same name if the specified directory is different. For example, if the file resides in non–volatile waveform memory (NVWFM) it can be copied, using the same name, to the signal generator’s volatile memory (WFM1).

When copying a waveform or marker file from volatile to non-volatile memory, the associated marker or waveform file is also copied.

```
"<src_name>"  This variable names a file residing in memory that will be copied. For information on the file name syntax, refer to “File Name Variables” on page 11.
"<dest_name>"  This variable names the file that is a copy of the "<src_name>" file.
```

Example

```
:MEm:COPY  "/USER/IQ/4QAM","/USER/IQ/test_QAM"
```

The preceding example copies the 4QAM file in the signal generator’s /USER/IQ directory to a file named test_QAM and saves it in the same directory.

Key Entry

Copy File

:DATA

Supported

All Models

```
:MEmory:DATA "<file_name>",<data_block>
```

```
:MEmory:DATA? "<file_name>"
```
System Commands
Memory Subsystem (:MEMory)

This command loads waveform data into signal generator memory using the <data_block> parameter and saves the data to a file designated by the "<file_name>" variable. The query returns the file contents of the file as a datablock.

The waveform file must be located in volatile waveform memory (WFM1) before it can be played by the signal generator's Dual ARB player. For downloads directly into volatile waveform memory use the path "WFM1:<file_name>". For downloads to non-volatile waveform memory, use the path "NVWFM:<file_name>".

Refer to File Name Variables for information on the file name syntax.

"<file_name>" This variable names the destination file, including the directory path. Refer to ARB Waveform File Directories for information on directory paths and the file name syntax.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

NOTE

ARB waveform files created using the :DATA command cannot be retrieved or uploaded. Attempting to do so will cause the signal generator to display the message: ERROR:221, Access denied. To download ARB data to files for later retrieval, use the :DATA:UNProtected command on page 61.

Example

:MEM:DATA "NVWFM:IQ_Data",#210Qaz37pY9oL

The preceding example downloads 10 bytes of data to a file, IQ_Data, in the signal generator's non-volatile memory. The table shown below describes the command parameters.

Table 2-1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:IQ_Data"</td>
<td>IQ_Data is the data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>#210Qaz37pY9oL</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>2</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>10</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qaz37pY9oL</td>
<td>10 bytes of data</td>
</tr>
</tbody>
</table>
:DATA:APPend

Supported All Models

:MEM:DATA:APPend "<file_name>"[,<data_block>]

This command appends data to an existing file stored in signal generator memory.

"<file_name>" This variable names the destination file and directory path. Refer to File Name Variables for information on the file name syntax.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:APPend "NVWFM:IQ_Data",#14Y9oL

The preceding example downloads and appends the data, Y9oL, to an existing file named IQ_Data stored in the signal generator's non-volatile memory (NVWFM).

Table 2-2

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:IQ_Data"</td>
<td>IQ_Data is the filename to append data to. The directory path is specified along with the filename.</td>
</tr>
<tr>
<td>#14Y9oL</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>4</td>
<td>Byte count</td>
</tr>
<tr>
<td>Y9oL</td>
<td>4 bytes of data</td>
</tr>
</tbody>
</table>

:DATA:BIT

Supported E8267D with Option 601 or 602

:MEM:DATA:BIT "<file_name>"[,<bit_count>],<data_block>

:MEM:DATA:BIT? "<file_name>

This command loads bit data into signal generator memory using the <bit_count> and <data_block> parameters and saves the data to a file designated by the "<file_name>" variable. The query returns the bit count, file length information, and the data.
System Commands
Memory Subsystem (:MEMory)

"<file_name>" This variable names the destination file and the directory path. Refer to File Name Variables for information on the file name syntax.

<bit_count> This number represents the number of bits in the data block.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:BIT "/USER/BIT/Test_Data",16,#12Qz

The preceding example downloads bit data to the file, Test_Data. The table below describes the command parameters.

Table 2-3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><file_name></td>
<td>Test_Data is the bit data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>16</td>
<td>Number of bits in the data block</td>
</tr>
<tr>
<td>#12Qz</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>2</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qz</td>
<td>16 bits of data (ascii representation of bit data)</td>
</tr>
</tbody>
</table>

:DATA:FIR

Supported E8267D with Option 601 or 602

:MEMory:DATA:FIR "<file_name>“,osr,coefficient{,coefficient}
:MEMory:DATA:FIR? "<file_name>"

This command loads oversample ratio (OSR) and user-defined finite impulse response (FIR) coefficient data into a file in the signal generator’s non-volatile memory (NVWFM). The query returns the oversample ratio and coefficient data.

"<file_name>" This variable is the directory path and file name of the destination file. Refer to File Name Variables for information on the file name syntax.

osr The OSR is the number of filter taps per symbol.

coefficient This variable is the FIR coefficient. The maximum number of coefficients is 1024.
System Commands
Memory Subsystem (:MEMory)

{,coefficient} This optional variable is used when you enter additional coefficients.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:FIR
"/USER/FIR/FIR_1",4,0,0,0,0,0.000001,0.000012,0.000132,0.001101,0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,0.265790,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,0,0,0,0

The preceding example downloads FIR coefficient and oversampling ratio data to the signal generator’s non–volatile memory in a file named FIR_1.

Range

osr: 1–32

coefficient: −1000 to 1000

Key Entry Oversample Ratio

:DATA:FSK

Supported E8267D with Option 601 or 602

:MEM:memory:DATA:FSK
"<file_name>,<num_states>,<f0>,<f1>,...<f(n)>
[,[<diff_state>,<num_diff_states>,<diff1>,...<diff(n)]

This command loads custom frequency shift keying (FSK) data into a file in the signal generator’s non–volatile memory (NVWFM).

The query returns data in the following form:

<num_states>,<f0>,<f1>,...<f(n)>,<diff_state>,<num_diff_states>,<diff1>,...<diff(n)>

"<file_name>" This variable string identifies the name of the FSK file. The filename must be enclosed with quotation marks. Refer to File Name Variables for information on the file name syntax.

<num_states> This variable identifies the number of frequency states.

<f0> This variable identifies the value of the first frequency state.

<f1>,...<f(n)> This variable identifies the value of the second and subsequent frequency states with a frequency resolution of 0.1Hz.
System Commands
Memory Subsystem (:MEMory)

<diff_state> This variable enables or disables differential encoding.
<num_diff_states> This variable identifies the number of differential states.
<diff0> This variable identifies the value of the first differential state.
<diff1>,...<diff(n)> This variable identifies the value of the second and subsequent differential states.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:FSK
"/USER/FSK/4FSK", 4,−2kHz,−1kHz,2kHz,1kHz,ON,2,1,0

The preceding example downloads a four–level FSK data to a file named 4FSK that has four states (frequencies): −2kHz, −1kHz, 2kHz, 1kHz; differential encoding is toggled ON, and there are two differential states 1 and 0. The table shown below describes the command parameters.

Table 2-4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4FSK</td>
<td>FSK data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>4</td>
<td>Number of states</td>
</tr>
<tr>
<td>−2kHz</td>
<td>First frequency state</td>
</tr>
<tr>
<td>−1kHz</td>
<td>Second frequency state</td>
</tr>
<tr>
<td>2kHz</td>
<td>Third frequency state</td>
</tr>
<tr>
<td>1kHz</td>
<td>Fourth frequency state</td>
</tr>
<tr>
<td>ON</td>
<td>Differential encoding is on</td>
</tr>
<tr>
<td>2</td>
<td>Number of differential states</td>
</tr>
<tr>
<td>1</td>
<td>Value of the first differential state.</td>
</tr>
<tr>
<td>0</td>
<td>Value of the second differential state.</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>num_diff_states</td>
<td>0–256</td>
</tr>
<tr>
<td>num_states</td>
<td>2–16</td>
</tr>
<tr>
<td>f0–f(n)</td>
<td>−20MHz to 20MHz</td>
</tr>
<tr>
<td>diff0–diff(n)</td>
<td>−128 to 127</td>
</tr>
</tbody>
</table>
System Commands
Memory Subsystem (:MEMory)

:DATA:BIT:HEX

Supported E8267D with Option 601 or 602

:MEM:DATA:BIT:HEX '"filename">,<bit_count>,<data_block>
:MEM:DATA:BIT:HEX? '"filename">

This command loads bit data into signal generator memory using the <bit_count> and <data_block> parameters and saves the data to a file designated by the "<filename>" variable. The query returns the bit count, file length information, and the data.

"<filename>" This variable names the destination file and the directory path. Refer to File Name Variables for information on the file name syntax.

<bit_count> This number represents the number of bits in the data block.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:BIT:HEX "USER/BIT/Test_Data",16,#140fa5

The preceding example downloads bit data to the file, Test_Data. The table below describes the command parameters.

Table 2-5

<table>
<thead>
<tr>
<th>Test_Data is the bit data filename. The directory path is specified along with the filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test_Data is the bit data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>Springer "USER/BIT/Test_Data"</td>
</tr>
<tr>
<td>Number of bits in the data block</td>
</tr>
<tr>
<td>Data block</td>
</tr>
<tr>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>Byte count</td>
</tr>
<tr>
<td>16 bits of data (hex representation of bit data)</td>
</tr>
<tr>
<td>#</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>0fa5</td>
</tr>
</tbody>
</table>

:DATA:IQ

Supported E8267D with Option 601 or 602
:MEMory:DATA:IQ
"<file_name>",<offsetQ>,<num_states>,<i0>,<q0>,<i1>,
<q1>,...<i(n)>,<q(n)>[,<diff_state>,<num_diff_states>,<diff0>
>,<diff1>,...<diff(n)>]

This command loads custom I/Q data into a file in the signal generator’s non-volatile waveform memory (NVWFM).

The query returns data in the following form:

[offsetQ],<num_states>,<i0>,<q0>,<i1>,<q1>,...<i(n)>,<q(n)>,
<diff_state>,<num_diff_states>,<diff0>,<diff1>,...<diff(n)>

"<file_name>" This variable string identifies the name of the I/Q file. The filename must be enclosed with quotation marks. Refer to File Name Variables for information on the file name syntax.

[offsetQ] This variable enables (1) or disables (0) the Q output delay by 1/2 symbol from the I output.

[num_states] This is the number of symbols.

[i0]...[i(n)] This is the I value of the first and subsequent I symbols.

[q0]...[q(n)] This is the Q value of the first and subsequent Q symbols.

[diff_state] This variable enables and disables differential encoding.

[num_diff_states] This variable identifies the number of differential states.

[diff0] This variable identifies the value of the first differential state.

[diff1]...[diff(n)] This variable identifies the value of the second and subsequent differential states.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:IQ "/USER/IQ/Test_BPSK",1,2,1,0,0,0

The preceding example loads and stores a two-symbol I/Q file named Test_BPSK that has a Q offset. The table shown below describes the command parameters.

Table 2-6

-
 "/USER/IQ/Test_BPSK" Test_Data is the bit data filename. The directory path is specified along with the filename
- 1 Q Offset. The Q output delay is enabled.
- 2 Number of symbols
System Commands
Memory Subsystem (:MEMory)

Table 2-6
- "/USER/IQ/Test_BPSK"
 Test_Data is the bit data filename. The directory path is specified along with the filename
- 1
 Value of the first I symbol
- 0
 Value of the first Q symbol.
- 0
 Value of the second I symbol
- 0
 Value of the second Q symbol.

<table>
<thead>
<tr>
<th>Range</th>
<th>num_states: 2–2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

| i0–i(n): | -1 to 1 |
| q0–q(n): | -1 to 1 |
| num_diff_stat: 0–2 |
| diff0–diff(n): -128 to 127 |

(:DATA:PRAM:FILE:BLOCk)

Supported E8267D with Option 601 or 602

This command loads block–formatted data directly into pattern RAM volatile memory (WFM1). Pattern RAM memory describes how memory (WFM1) is used and is not a distinct piece of memory. A PRAM file is specified as an array of bytes. No directory path name is needed.

"<file_name>"
 This variable names the destination file. Refer to File Name Variables for information on the file name syntax.

<data_block>
 This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Pattern Ram files are binary files downloaded directly into waveform memory as an array of bytes. Each byte specifies a data bit (LSB 0), a burst bit (BIT 2), and an Event 1 output bit (BIT 6). Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.
System Commands
Memory Subsystem (:MEMory)

Example

:MEM:DATA:PRAM:FILE:BLOC "PRAM_Data", #14Yq8L

The preceding example downloads PRAM data to a file named PRAM_Data into the signal generator’s volatile memory.

Table 2-7

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>"PRAM_Data"</td>
<td>PRAM_Data is the data filename. PRAM files are saved to the signal generator’s non-volatile memory (WFM1).</td>
</tr>
<tr>
<td>#14Yq8L</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>4</td>
<td>Byte count</td>
</tr>
<tr>
<td>Yq8L</td>
<td>4 bytes of data</td>
</tr>
</tbody>
</table>

:DATA:PRAM:FILE:LIST

Supported E8267D with Option 601 or 602

:MEM:DATA:PRAM:FILE:LIST
"<file_name>"[,<uint8>,<...>]

This command loads list–formatted data directly into pattern RAM volatile memory (WFM1). Pattern RAM memory describes how memory (WFM1) is used and is not a distinct piece of memory. A PRAM file is specified as an array of bytes.

NOTE

This command should be preceded by a *WAI (Wait–to–Continue) command to ensure that all pending operations are completed, before loading the list.

"<file_name>" This variable names the destination file. Refer to File Name Variables for information on the file name syntax.

<uint8> This variable is any of the valid 8–bit, unsigned integer values between 0 and 255.

[,<uint8>,<...>] This variable identifies the value of the second and subsequent 8–bit unsigned integer variables.

Pattern Ram files are binary files downloaded directly into waveform memory as an array of bytes. Each byte specifies a data bit (LSB 0), a burst bit (BIT 2), and an Event 1 output bit (BIT 6). Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:PRAM:LIST "Pram_Data", 85,21,21,20,20,100
System Commands
Memory Subsystem (:MEMory)

The preceding example downloads PRAM data, in list format, to a file named Pram_Data in the signal generator’s volatile memory (WFM1).

Table 2-8

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DATA:PRAM?</td>
<td>This query is no longer supported; however, it is still valid for backward compatibility. Refer to “:DATA:PRAM?” on page 419 for information on this command.</td>
</tr>
<tr>
<td>:DATA:PRAM:BLOCk</td>
<td>This command has been replaced by “:DATA:PRAM:FILE:BLOCk” on page 58. This command is no longer supported; however, it is still valid for backward compatibility. Refer to “:DATA:PRAM:BLOCk” on page 419 for information.</td>
</tr>
<tr>
<td>:DATA:PRAM:LIST</td>
<td>This command has been replaced by “:DATA:PRAM:FILE:LIST” on page 59. This command is no longer supported; however, it is still valid for backward compatibility. Refer to “:DATA:PRAM:LIST” on page 419 for information.</td>
</tr>
</tbody>
</table>

:DATA:SHAPE

Supported E8267D with Option 601 or 602

:MEMory:DATA:SHAPE "<file_name">"",<rise_pnts>,<rp0>,<rp1>,...<fall_points>,<fp0>,<fp1>,...<fp(n)>

This command loads a burst shape file into the signal generator’s non–volatile memory (NVWFM).

"<file_name>" This variable names the destination file and directory path. Refer to File Name Variables for information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

rise_pnts This variable indicates the number of rise points used to
describe the burst shape rising slope.

rp0,...rp(n) This variable defines each successive rise point, where
0 is no power and 1 is full power.

fall_points This variable indicates the number of fall points used to
describe the burst shape falling slope.

fp0,...fp(n) This variable defines each successive fall point, where 1
is full power and 0 is no power.

Refer the Keysight Signal Generators Programming Guide for more
information on downloading and using files.

Example

:MEM:DATA:SHAPE "/USER/SHAPE/Shape_File",6,0,0.2,0.4,0.6,0.8,1.0,2,0.5,0

The preceding example loads shape data to a file named Shape_File in the
signal generator’s non–volatile memory.

Table 2-9

<table>
<thead>
<tr>
<th>Shape_File is the data filename. The directory path is specified along with the file name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>0,0.2,0.4,0.6,0.8,1.0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>0.5,0</td>
</tr>
</tbody>
</table>

Range num_rise_points: 2–256

num_fall_points: 2–256

rp0–rp(n): 0.0–1.0

fp0–fp(n): 0.0–1.0

:DATA:UNPROtected

Supported E8267D with Option 601 or 602

:MEMory:DATA:UNPROtected "<file_name>",<data_block>
System Commands
Memory Subsystem (:MEMory)

This command allows you to download data and store it in a file on the signal
generator with the ability to retrieve it. This command is intended for
downloading waveform data; however, you can use it to download all types of
data.

NOTE

If you do not use the **UNPRotected** command when downloading a
waveform file, you will not be able to retrieve or upload the file. Attempting
to do so will cause the signal generator to display the message:
ERROR:221, Access denied.

The **UNPRotected** command does not require the directory path in the
"<file_name>" parameter if the destination directory is BINARY.

Waveform files created with Keysight’s Signal Studio are encrypted. These files
can be used in other signal generators (provided the other signal generator has
the same options and licenses required by the file) only if the SECUREWAVE
directory path is specified in both the download and upload command
parameters. The securewave directory path is SNVWM: for non–volatile
waveform memory and SWFM1: for volatile waveform memory.

"<file_name>" This variable names the destination file and directory
path. Refer to File Name Variables for information on
the file name syntax.

<data_block> This parameter represents the data and file length
parameters. The data in the file is represented by the
<data_block> variable.

Refer to the **Keysight Signal Generators Programming Guide** for more
information on downloading and using files.

Example

:MEM:DATA:UNPR "NVWFM:Data_File",#18Qz37pY9o

The preceding example downloads waveform data to a file named Data_File in
the signal generator's non–volatile memory. The table shown below describes
the command parameters.

Table 2-10

<table>
<thead>
<tr>
<th>Data/File Block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:Data_File"</td>
<td>Data/File is the data filename. The directory path is implied along with the filename.</td>
</tr>
<tr>
<td>#18Qz37pY9o</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>8</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qz37pY9o</td>
<td>8 bytes of data</td>
</tr>
</tbody>
</table>
System Commands
Memory Subsystem (:MEMory)

:DELe:ALL

Supported All Models

Using this command deletes all user files including binary, list, state, and
flatness correction files, and any saved setups that use the front panel
table editor. However, this does not include files stored in the Option
601 or 602 baseband generator memory. You cannot recover the files after
executing this command.

:MEMory:DELe:ALL

This command clears the file system of all user files.

Key Entry Delete All Files

:DELe:BINary

Supported All Models

:MEMory:DELe:BINary

This command deletes all binary files.

Key Entry Delete All Binary Files

:DELe:BIT

Supported E8267D with Option 601 or 602

:MEMory:DELe:BIT

This command deletes all bit files.

Key Entry Delete All Bit Files

:DELe:DMOD

Supported E8267D with Option 601 or 602

:MEMory:DELe:DMOD

This command deletes all arbitrary waveform digital modulation (DMOD) files.

Key Entry Delete All ARB DMOD Files

:DELe:FIR

Supported E8267D with Option 601 or 602

:MEMory:DELe:FIR

This command deletes all finite impulse response (FIR) filter files.

Key Entry Delete All FIR Files
System Commands
Memory Subsystem (:MEMory)

:DELete:FSK

 Supported E8267D with Option 601 or 602

:MEMory:DELete:FSK
This command deletes all frequency shift keying (FSK) files.

 Key Entry Delete All FSK Files

:DELete:IQ

 Supported E8267D with Option 601 or 602

:MEMory:DELete:IQ
This command deletes all I/Q files.

 Key Entry Delete All I/Q Files

:DELete:LIST

 Supported All Models

:MEMory:DELete:LIST
This command deletes all List files.

 Key Entry Delete All List Files
System Commands
Memory Subsystem (:MEMory)

:DELete:MDMod

Supported E8267D with Option 601 or 602

This command deletes all arbitrary waveform multicarrier digital modulation (MDMod) files.

Key Entry Delete All ARB MDMOD Files

:DELete:MTONe

Supported E8267D with Option 601 or 602

This command deletes all arbitrary waveform multitone files.

Key Entry Delete All ARB MTONE Files

:DELete:SEQ

Supported E8267D with Option 601 or 602

This command deletes all sequence files.

Key Entry Delete All Sequence Files

:DELete:SHAPe

Supported E8267D with Option 601 or 602

This command deletes all burst shape files.

Key Entry Delete All Shape Files

:DELete:STATe

Supported All Models

This command deletes all state files.

Key Entry Delete All State Files
System Commands
Memory Subsystem (:MEMory)

:DELete:UFLT

Supported All Models
:MEMory:DELete:UFLT
This command deletes all user-flatness correction files.

Key Entry Delete All UFLT Files

:DELete[:NAME]

Supported All Models
:MEMory:DELete[:NAME] "<file_name>"
This clears the user file system of "<file_name>". When deleting an ARB waveform file, the associated marker and header files are also deleted.
Refer to File Name Variables for information on the file name syntax.

Example
:MEM:DEL="/USER/WAVEFORM/Test_Data"
The preceding example deletes the file named Test_Data from the signal generator's non-volatile memory.

Key Entry Delete File

:FREE[:ALL]

Supported All Models
:MEMory:FREE [:ALL]?
This command returns the number of bytes left in the user file system.

Key Entry All

:LOAD:LIST

Supported All Models
:MEMory:LOAD:LIST "<file_name>"
This command loads a List Sweep file.

Example
:MEM:LOAD:LIST "List_Data"
The preceding example loads the file "List_Data" into volatile waveform memory.

Key Entry Load From Selected File
System Commands
Memory Subsystem (:MEMory)

:MOVE

Supported All Models
:MEMory:MOVE "<src_file>"","<dest_file>"

This command renames the src_file to dest_file in the signal generator’s memory catalog.

Refer to File Name Variables for information on the file name syntax.

Example
:MEM:MOV "NVWFM:Test_Data","NVWFM:New_Data"

The preceding example renames the file Test_Data to New_Data in the signal generator’s non–volatile memory directory.

Key Entry Rename File

:STATE:COMMent

Supported All Models
:MEMory:STATE:COMMent <reg_num>,<seq_num>,"<comment>"
:MEMory:STATE:COMMent? <reg_num>,<seq_num>

This command lets you to add a descriptive comment to the saved instrument in the state register, <reg_num>,<seq_num>. Comments can be up to 55 characters long.

Example
:MEM:STAT:COMM 00,1, "ARB file using external reference"

The preceding example writes a descriptive comment to the state file saved in register 00, sequence 1.

Key Entry Add Comment To Seq[n] Reg[nn]

:STORe:LIST

Supported All Models
:MEMory:STORe:LIST "<file_name>"

This command stores the current list sweep data to a file.

Refer to File Name Variables for information on the file name syntax.

Example
:MEM:STOR:LIST "Test_Data"

The preceding example writes list sweep data to a file named Test_Data and stores the file in the signal generator’s non–volatile memory, List directory.

Key Entry Store To File
System Commands
Mass Memory Subsystem (:MMEMory)

Mass Memory Subsystem (:MMEMory)

:CATalog

Supported All Models

:MMEMory:CATalog? "<msus>"

This command outputs a list of the files from the specified file system. The variable "<msus>" (mass storage unit specifier) represents a file system. The file systems and types are shown in Table 2-11.

Table 2-11

<table>
<thead>
<tr>
<th>File System</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN – Binary file</td>
<td>BIN</td>
</tr>
<tr>
<td>BIT</td>
<td>BIT</td>
</tr>
<tr>
<td>DMOD – ARB digital modulation file</td>
<td>DMOD</td>
</tr>
<tr>
<td>FIR – finite impulse response filter file</td>
<td>FIR</td>
</tr>
<tr>
<td>FSK – frequency shift keying modulation file</td>
<td>FSK</td>
</tr>
<tr>
<td>I/Q – modulation file</td>
<td>IQ</td>
</tr>
<tr>
<td>LIST – sweep list file</td>
<td>LIST</td>
</tr>
<tr>
<td>MDMOD – ARB multicarrier digital modulation file</td>
<td>MDM</td>
</tr>
<tr>
<td>MTONE – ARB multitone file</td>
<td>MTON</td>
</tr>
<tr>
<td>NVMKR – non–volatile arbitrary waveform marker file</td>
<td>NVMKR</td>
</tr>
<tr>
<td>NVWF – non–volatile arbitrary waveform file</td>
<td>NVWF</td>
</tr>
<tr>
<td>SEQ – ARB sequence file</td>
<td>SEQ</td>
</tr>
<tr>
<td>SHAPE – burst shape file</td>
<td>SHAPE</td>
</tr>
<tr>
<td>STATE</td>
<td>STATE</td>
</tr>
<tr>
<td>USERFLAT – user–flatness file</td>
<td>UFLT</td>
</tr>
<tr>
<td>WFM1 – waveform file</td>
<td>WFM1</td>
</tr>
</tbody>
</table>

The return data will be in the following form:

<mem_used>,<mem_free>{,"<file_listing>"}

The signal generator will return the two memory usage parameters and as many file listings as there are files in the specified file system. Each file listing will be in the following format:

"<file_name,file_type,file_size>"
System Commands
Mass Memory Subsystem (:MMEMory)

Refer to MSUS (Mass Storage Unit Specifier) Variable for information on the use of the "<msus>" variable.

Table 2-12

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Bit</th>
<th>I/Q</th>
<th>Shape</th>
<th>MTONE</th>
<th>DMOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq</td>
<td>List</td>
<td>Binary</td>
<td>NVMKR</td>
<td>NVMFM</td>
<td></td>
</tr>
<tr>
<td>FIR</td>
<td>State</td>
<td>WFM1</td>
<td>MDMOD</td>
<td>User Flatness</td>
<td></td>
</tr>
<tr>
<td>FSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:COPY

Supported All Models

:MMEMory:COPY [:NAME] "<src_name>"","<dest_name>">

This command copies the data from one file into another file. The file can use the same name if the specified directory is different. For example, if the file resides in non–volatile waveform memory (NVWF) it can be copied, using the same name, to the signal generator’s volatile memory (WFM1)

"<src_name>" This variable names a file residing in memory that will be copied. For information on the file name syntax, see File Name Variables.

"<dest_name>" This variable names the file that is a copy of the "<src_name>" file.

Example

:MMEM:COPY "/USER/IQ/4QAM","/USER/IQ/test_QAM"

The preceding example copies the 4QAM file in the signal generator’s /USER/IQ directory to a file named test_QAM and saves it in the same directory.

Key Entry Copy File

:DATA

Supported All Models

:MMEMory:DATA "<file_name>"<data_block>
:MMEMory:DATA? "<file_name>"

This command loads waveform data into signal generator memory using the <data_block> parameter and saves the data to a file designated by the "<file_name>" variable. The query returns the file contents of the file as a datablock.
System Commands
Mass Memory Subsystem (:MMEMory)

The waveform file must be located in volatile waveform memory (WFM1) before it can be played by the signal generator's Dual ARB player. For downloads directly into volatile waveform memory use the path "WFM1:<file_name>". For downloads to non–volatile waveform memory, use the path "NVWFM:<file_name>".

Refer to File Name Variables for information on the file name syntax.

"<file_name>" This variable names the destination file, including the directory path. Refer to ARB Waveform File Directories for information on directory paths and the file name syntax.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Keysight Signal Generators Programming Guide for more information on downloading and using files.

NOTE

Files created using the :DATA command cannot be retrieved or uploaded. Attempting to do so will cause the signal generator to display the message: ERROR:221, Access denied. To download data to files for later retrieval, use the :DATA:UNPROtected command on page 61.

Example

:MMEM:DATA "NVWFM:IQ_Data",#210Qaz37pY9oL

The preceding example downloads 10 bytes of data to a file, IQ_Data., in the signal generator's non–volatile memory. The table shown below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:IQ_Data"</td>
<td>IQ_Data is the data filename. The directory path is specified along with the filename</td>
</tr>
<tr>
<td>#210Qaz37pY9oL</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>2</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>10</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qaz37pY9oL</td>
<td>10 bytes of data</td>
</tr>
</tbody>
</table>

:DELeTe:NVWFm

Supported

E8267D with Option 601 or 602

:MMEMory:DELeTe:NVWFm
System Commands
Mass Memory Subsystem (:MMEMory)

This command clears the memory file system of all non–volatile arbitrary waveform (NVWFM) files.

Key Entry Delete All NVWFM Files

:DELe:WFM

Supported E8267D with Option 601 or 602

This command clears the memory file system of all volatile arbitrary waveform files. For backwards compatible command, refer to “:DELe:WFM1” on page 420.

Key Entry Delete All WFM Files

:DELe[:NAME]

Supported All Models

:MMEM:DELe[:NAME] "<file_name>“, ["<msus>"]

This command clears the memory file system of "<file_name>" with the option of specifying the file system ["<msus>"] separately.

The variable "<msus>" (mass storage unit specifier) represents the file system. For a list of the file systems refer to Table 2-11. For information on the mass storage unit specifier, refer to “MSUS (Mass Storage Unit Specifier) Variable” on page 13.

If the optional variable "<msus>" is omitted, the file name needs to include the file system extension. Refer to File Name Variables for information on the file name syntax.

Example

:MMEM:DEL "/USER/BIN/Test_Data"
:MMEM:DEL "Test_Data",":BIN"

The preceding examples delete the file named Test_Data from the signal generator’s USER/BIN directory. The first example uses the full file name path while the second example uses the "<msus>" specifier.

Key Entry Delete File

:HEADer:CLEar

Supported E8267D

:MMEM:HEADer:CLEAR "<file_name>"
System Commands
Mass Memory Subsystem (:MMEMory)

This command deletes header file information for the waveform file "<file_name>". This command does not require a personality modulation to be on. The header file contains signal generator settings and marker routings associated with the waveform file. Refer to File Name Variables for information on the file name syntax.

Example

:MMEM:HEAD "/USER/WAVEFORM/Test_Data"

The preceding example deletes header file information for the Test_Data waveform file.

Key Entry Clear Header

:HEADer:DESCription

Supported E8267D

:MMEMory:HEADer:DESCription "<file_name>"","<description>"
:MMEMory:HEADer:DESCription? "<file_name>"

This command inserts a description for the header file named. The header description is limited to 32 characters.

Refer to File Name Variables for information on the file name syntax.

Example

:MMEM:HEAD:DESC "/USER/WAVEFORM/Test_Data","This is new header data"

The preceding example inserts a description into the Test_Data header file. In this example, the file is located in the signal generator's non–volatile waveform memory.

*RST N/A

Key Entry Edit Description

:HEADer:ID?

Supported All Models

:MMEMory:HEADer:ID?

This query returns a unique waveform identification.

Refer to File Name Variables for information on the file name syntax.

:LOAD:LIST

Supported All Models

:MMEMory:LOAD:LIST "<file_name>"
System Commands
Mass Memory Subsystem (:MMEMory)

This command loads list data from the List file "<file_name>".
Refer to File Name Variables for information on the file name syntax.

Example
:MMEM:LOAD:LIST "Sweep_Data"

The preceding example loads sweep configuration data from the Sweep_Data List file.

Key Entry Load From Selected File

:MOVE

Supported All Models
:MMEM:MOVE "<src_file>"","<src_file_1>"

This command renames the src_file to src_file_1 in the signal generator’s memory catalog.

Refer to File Name Variables for information on the file name syntax and using quotes for different programming languages.

Example
:MMEM:MOVE "NVWFM:Test_Data","NVWFM:New_Data"

The preceding example renames the file Test_Data to New_Data located in non–volatile memory (NVWFM).

Key Entry Rename File

:STORe:LIST

Supported All Models
:MMEM:STORe:LIST "<file_name>"

This command copies the current list sweep data to the "<file_name>" and saves it in the catalog of List files.

Refer to File Name Variables for information on the file name syntax.

Example
:MMEM:STORe:LIST "Sweep_Data"

The preceding example stores the current list sweep data to the file Sweep_Data in the signal generator’s catalog of List files.

Key Entry Store To File
Output Subsystem (:OUTPut)

:BLANking:AUTO

Supported
All Models

[:SOURce]:OUTPut:BLANking:AUTO ON|OFF|1|0
[:SOURce]:OUTPut:BLANking:AUTO?

This command sets the state for automatic RF Output blanking. Blanking occurs when the RF output is momentarily turned off as the sweep transitions from one frequency segment (band) to another, allowing the signal to settle. Blanking also occurs during the retrace, so the signal can settle before the next sweep. In CW mode, blanking occurs whenever you change the frequency.

ON (1) This choice activates the automatic blanking function. The signal generator determines the blanking occurrences for optimum performance.

OFF (0) This choice turns off the automatic blanking function, which also sets the blanking state to off.

Example

:OUTP:BLAN:AUTO 0

The preceding example disables RF output blanking.

*RST 1

Key Entry Output Blanking Off On Auto

:BLANking:[STATe]

Supported
All Models

[:SOURce]:OUTPut:BLANking[:STATe] ON|OFF|1|0
[:SOURce]:OUTPut:BLANking[:STATe]?

This command sets the state for RF Output blanking. Blanking occurs when the RF output is momentarily turned off as the sweep transitions from one frequency segment (band) to another, allowing the signal to settle. Blanking also occurs during the retrace, so the signal can settle before the next sweep. In CW mode, blanking occurs whenever you change the frequency.

ON (1) This choice activates the blanking function. Blanking occurs on all frequency changes, including segment transitions and retrace.

OFF (0) This choice turns off the blanking function.

Example

:OUTP:BLAN:ON
The preceding example enables RF output blanking.

Key Entry

Output Blanking Off On Auto

:MODulation[:STATe]

Supported

E8257D/E8663D with Option UNT, and E8267D

:OUTPut:MODulation[:STATe] ON|OFF|1|0

:OUTPut:MODulation[:STATe]?

This command enables or disables the modulation of the RF output with the currently active modulation type(s). Most modulation types can be simultaneously enabled except FM with ΦM.

An annunciator on the signal generator always displays to indicate whether modulation is on or off.

Example

:OUTP:MOD 0

The preceding example disables RF modulation.

*RST 1

Key Entry

Mod On/Off

:SETTled?

Supported

All Models

:OUTPut:SETTled?

This command returns the current state of the source settled line. A “1” return value indicates the source is settled. A “0” return value indicates the source is unsettled. This command does not wait for the source to settle before returning the state. This is different than the *OPC? command which delays the command response until the operation is complete.

An annunciator always displays on the signal generator to indicate whether the RF output is on or off.

:SETTled:POLarity

Supported

All models

:OUTPut:SETTled:POLarity NORMAL|INVerted

:OUTPut:SETTled:POLarity?
System Commands
Output Subsystem (:OUTPut)

This command sets the polarity of the source settled line (also referred to as: “lock and level”). When the active polarity is set to NORMal, the source settled line will be TTL low level whenever the source is settled. If the active polarity is set to INVerted, the source will be TTL high level whenever the source is settled. (This is the default condition.)

An annunciator always displays on the signal generator to indicate whether the RF output is on or off.

NORMal This choice indicates the source is settled by setting this line low.
INVerted This choice indicates the source is settled by setting this line high. (This is the default condition.)
*RST NORMal

Key Entry Source Settled Polarity Norm Inv

:SETTled:RETRace

Supported All models

:OUTPut:SETTled:RETRace NORMal|INVerted
:OUTPut:SETTled:RETRace?

This command sets the source settled state (also referred to as: “lock and level”) when a step or list sweep is armed and waiting for an external trigger input. In the “NORMal” mode, the source settled output indicates “Settled”; in the “INVerted” mode, the source settled output indicates “Not Settled.” This command is coupled to the “:SETTled:POLarity” on page 75 command. If the “:SETTled:POLarity” on page 75 command is “INVerted” and the retrace mode is “INVerted”, the source settled output will be at a TTL low level when the step or list sweep is armed and waiting for an external trigger input. (This is the default condition.)

An annunciator always displays on the signal generator to indicate whether the RF output is on or off.

NORMal This choice indicates the source is settled when waiting for an external trigger.
INVerted This choice indicates the source is not settled when waiting for an external trigger. (This is the default condition.)
*RST NORMal

Key Entry Source Settled Retrace Norm Inv
System Commands
Output Subsystem (:OUTPut)

:SETTled:RFOff

Supported All models

:OUTPut:SETTled:RFOff NORMal|INVerted
:OUTPut:SETTled:RFOff?

This command sets the source settled state when the RF is off. In normal operation, the source settled line (also referred to as: “lock and level”) indicates a “Settled” condition when the RF is off. In the “INVerted” mode, the source settled line indicates an “Not Settled” condition when the RF is off. This command is coupled to the “:SETTled:POLarity” on page 75 command. If the “:SETTled:POLarity” on page 75 command is “INVerted” and the RF off settled mode is “INVerted”, the source settled line will be TTL low level when the RF is off. (This is the default condition.)

An annunciator always displays on the signal generator to indicate whether the RF output is on or off.

NORMal This choice indicates the source is settled when the RF is off.

INVerted This choice indicates the source is unsettled when the RF is off. (This is the default condition.)

:*RST NORMal

Key Entry RF Off Source Settled Polarity Norm Inv

[:STATE]

Supported All Models

:OUTPut [:STATE] ON|OFF|1|0
:OUTPut [:STATE]?

This command enables or disables the RF output. Although you can configure and engage various modulations, no signal is available at the RF OUTPUT connector until this command is executed.

An annunciator always displays on the signal generator to indicate whether the RF output is on or off.

Example

:OUTP ON

The preceding example turns on the signal generator’s RF output.

:*RST 0

Key Entry RF On/Off
Route Subsystem (:ROUTE:HARDware:DGENerator)

:INPut:BPOLarity

Supported E8267D with Option 601 or 602

:ROUTE:HARDware:DGENerator:INPut:BPOLarity POSitive|NEGative

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the BURST GATE IN connector. This command performs the same function as "":IPOLarity:BGATe" on page 79.

Example

:ROUT:HARD:DGEN:INP:BPOL NEG

The preceding example sets up the signal generator to respond to a LOW level TTL signal at the BURST GATE IN connector.

*RST POS

Key Entry Burst Gate In Polarity Neg Pos

:INPut:C_POLarity

Supported E8267D with Option 601 or 602

:ROUTE:HARDware:DGENerator:INPut:C_POLarity POSitive|NEGative

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA CLOCK input connector. This command performs the same function as "":IPOLarity:CLOCk" on page 80.

Example

:ROUT:HARD:DGEN:INP:CPOL POS

The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA CLOCK input connector.

*RST POS

Key Entry Data Clock Polarity Neg Pos

:INPut:D_POLarity

Supported E8267D with Option 601 or 602

:ROUTE:HARDware:DGENerator:INPut:D_POLarity POSitive|NEGative

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA CLOCK input connector. This command performs the same function as "":IPOLarity:CLOCk" on page 80.
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA connector. This command performs the same function as ":IPOLarity:DATA" on page 80.

Example
:ROUTe:HARDware:DGENerator:INPut:DPOL POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA input connector.

*RST
Key Entry Data Polarity Neg Pos

:IPOLarity:SPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:INPut:SPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:SPOLarity?
This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the SYMBOL SYNC input connector.
This command performs the same function as "::IPOLarity:SSYNc" on page 80.

Example
:ROUTe:HARDware:DGENerator:INPut:SPOL POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the SYMBOL SYNC input connector.

*RST
Key Entry Symbol Sync Polarity Neg Pos

:IPOLarity:BGATe

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:IPOLarity:BGATe POSitive|NEGative
:ROUTe:HARDware:DGENerator:IPOLarity:BGATe?
This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL signal at the BURST GATE IN connector. This command performs the same function as "::INPut:BPOLarity" on page 78.

Example
:ROUTe:HARDware:DGENerator:IPOLarity:BGAT POS
The preceding example sets up the signal generator to respond to a high level TTL signal at the rear panel BURST GATE IN connector.

*RST
Key Entry
System Commands

Route Subsystem (:ROUTE:HW:DGEnator)

Key Entry
Burst Gate In Polarity Neg Pos

:IPOLarity:CLOCK

Supported
E8267D with Option 601 or 602

```plaintext  
:ROUTE:HW:DGEnator:IPOLarity:CLOCK    POSitive|NEGative
:ROUTE:HW:DGEnator:IPOLarity:CLOCK?
```

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA CLOCK connector.

This command performs the same function as “:INPut:CPOLarity” on page 78.

Example

```plaintext  
:ROUTE:HW:DGEnator:IPOL:CLOC POS
```

The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA CLOCK input connector.

*RST
POS

:IPOLarity:DATA

Supported
E8267D with Option 601 or 602

```plaintext  
:ROUTE:HW:DGEnator:IPOLarity:DATA    POSitive|NEGative
:ROUTE:HW:DGEnator:IPOLarity:DATA?
```

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the DATA connector. This command performs the same function as “:INPut:DPOLarity” on page 78

Example

```plaintext  
:ROUTE:HW:DGEnator:IPOL:DATA POS
```

The preceding example sets up the signal generator to respond to a high level TTL signal at the DATA input connector.

*RST
POS

:IPOLarity:SSYNc

Supported
E8267D with Option 601 or 602

```plaintext  
:ROUTE:HW:DGEnator:IPOLarity:SSYnc    POSitive|NEGative
:ROUTE:HW:DGEnator:IPOLarity:SSYnc?
```

This command sets the signal generator up to respond to either a high (+5 vdc) or low (0 vdc) level TTL input signal at the SYMBOL SYNC connector.
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

This command performs the same function as “:INPut:SPOLarity” on page 79.

Example

:ROUTe:HARDware:DGENerator:IPOLarity:SSYN POS

The preceding example sets up the signal generator to respond to a high level TTL signal at the SYMBOL SYNC input connector.

*RST POS
Key Entry Symbol Sync Polarity Neg Pos

:OPOLarity:CLOCk

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OPOlarity:CLOCk POSitive|NEGative
:ROUTe:HARDware:DGENerator:OPOlarity:CLOCk?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA CLK OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as “:OUTPut:CPOLarity” on page 82.

Example

:ROUTe:HARD:DGEnator:OPOl:CLOC POS

The preceding example sets up the signal generator to output a high level TTL signal at the DATA CLK OUT pin on the rear panel AUXILIARY I/O connector.

*RST POS
Key Entry Data Clock Out Neg Pos

:OPOlarity:DATA

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OPOlarity:DATA POSitive|NEGative
:ROUTe:HARDware:DGENerator:OPOlarity:DATA?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as “:OUTPut:DPOLarity” on page 84.

Example

:ROUTe:HARD:DGEnator:OPOl:DATA NEG
System Commands
Route Subsystem (:ROUTE:HW:DGEn)

The preceding example sets up the signal generator to output a low level TTL signal at the DATA OUT pin on the rear panel AUXILIARY I/O connector.

*RST POS

Key Entry Data Out Polarity Neg Pos

:OPOL:EVENT[1]|2|3|4

Supported E8267D with Option 601 or 602

POSitive|NEGative

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT 1 or EVENT 2 connector.

This command performs the same function as ":OUTPut:EPOL[1]|2|3|4" on page 84.

Example

:ROUT:HW:DGEn:OPOL:DATA NEG

The preceding example sets up the signal generator to output a low level TTL signal at the DATA OUT pin on the rear panel AUXILIARY I/O connector.

:OPOL:SSYN

Supported E8267D with Option 601 or 602

:ROUTE:HW:DGEn:OPOL:SSYN
POSitive|NEGative
:ROUTE:HW:DGEn:OPOL:SSYN?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level signal at the SYM SYNC OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as ":OUTPut:SPOLarity" on page 84.

Example

:ROUT:HW:DGEn:OPOL:SSYN POS

The preceding example sets up the signal generator to output a high level TTL signal at the SYM SYNC OUT pin on the rear panel AUXILIARY I/O connector.

*RST POS

Key Entry Symbol Sync Out Polarity Neg Pos

:OUTPut:CPOLarity

Supported E8267D with Option 601 or 602
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

:ROUTe:HARDware:DGENerator:OUTPut:CPOLarity
POSitive|NEGative
:ROUTe:HARDware:DGENerator:OUTPut:CPOLarity?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA CLK OUT pin on the rear panel AUXILIARY I/O connector.

This command performs the same function as “:OPOLarity:CLOCk” on page 81.

Example
:ROUT:HARD:DGEN:OUTP:CPOL POS
The preceding example sets up the signal generator to output a high level TTL signal at the DATA CLOCK OUT pin on the rear panel AUXILIARY I/O connector.

*RST POS
Key Entry Data Clock Polarity Neg Pos

:OUTPut:DCS[:STATe]

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OUTPut:DCS[:STATe] ON|OFF|1|0
:ROUTe:HARDware:DGENerator:OUTPut:DCS[:STATe]?

This command is used to enable or disable the DATA OUT, DATA CLK OUT, and SYM SYNC OUT signals from the rear panel AUXILIARY I/O connector. Normally, these output signals should be enabled (On). However, disabling these outputs will decrease the spurs that are sometimes present when operating at high symbol rates.

Example
:ROUT:HARD:DGEN:OUTP:DCS 1
The preceding example sets up or enables the DATA OUT, DATA CLK OUT, and SYM SYNC OUT output signals from the rear panel AUXILIARY I/O connector.

*RST 1
Key Entry DATA/CLK/SYNC Rear Outputs Off On
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

:OUTPut:DPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OUTPut:DPOLarity
POSitive | NEGative

:ROUTe:HARDware:DGENerator:OUTPut:DPOLarity?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the DATA OUT connector.

This command performs the same function as " :OPOLarity:DATA" on page 81.

Example

:ROUT:HARD:DGEN:OUTP:DPOL POS

The preceding example sets up the signal generator to output a high level TTL signal at the DATA OUT connector.

*RST POS

Key Entry Data Out Polarity Neg Pos

:OUTPut:EPOL[1]|2|3|4

Supported E8267D with Option 601 or 602

POSitive | NEGative

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT1 or EVENT 2 connector.

This command performs the same function as " :OPOLarity:EVENT[1]|2|3|4" on page 82.

Example

:ROUT:HARD:DGEN:OUTP:EPOL1 POS

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT1 or EVENT 2 connector.

:OUTPut:SPOLarity

Supported E8267D with Option 601 or 602

:ROUTe:HARDware:DGENerator:OUTPut:SPOLarity
POSitive | NEGative

:ROUTe:HARDware:DGENerator:OUTPut:SPOLarity?

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the SYMBOL SYNC connector.
System Commands
Route Subsystem (:ROUTe:HARDware:DGENerator)

Example
:ROUT:HARD:DGEN:OUTP:SPOL POS

This command sets the signal generator up to output either a high (+5 vdc) or low (0 vdc) level TTL signal at the EVENT1 or EVENT 2 connector.

*RST POS

Key Entry Symbol Sync Out Polarity Neg Pos
System Commands
Status Subsystem (:STATus)

Status Subsystem (:STATus)

:OPERation:BASEband:CONDition

Supported E8267D with Option 601 or 602

:STATus:OPERation:BASEband:CONDition?

This query returns the decimal sum of the bits in the Baseband Operation Condition register. For example, if the baseband is busy (bit 0), the value 1 is returned.

The data in this register is continuously updated and reflects current signal generator conditions.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767

:OPERation:BASEband:ENABLE

Supported E8267D with Option 601 or 602

:STATus:OPERation:BASEband <val>
:STATus:OPERation:BASEband:ENABLE?

This command enables bits in the Baseband Operation Event Enable register. Bits enabled and set in this register will set bit 10 in the Standard Operation Condition register.

The variable <val> is the sum of the decimal values of the bits you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:BAS:ENAB 3

This command enables bit 0 (decimal 1, Baseband is Busy) and bit 1 (decimal 2, Baseband 1 Communicating) in the Baseband Operation Event Enable register.

Range 0 to 32767

:OPERation:BASEband:NTRansition

Supported E8267D with Option 601 or 602

:STATus:OPERation:BASEband:NTRansition <val>
:STATus:OPERation:BASEband:NTRansition?
System Commands
Status Subsystem (:STATus)

This command enables bits in the Baseband Operation Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Baseband Operation Condition register will pass through and be read by the Baseband Operation Event register.

Refer to the **Keysight Signal Generators Programming Guide** for more information on programming the status registers.

Example

`:STAT:OPER:BAS:NTR 3`

This command enables bit 0 (decimal 1, Baseband 1 Busy) and bit 1 (decimal 2, Baseband 1 Communicating) in the Baseband Operation Negative Transition Filter register.

Range

0 to 32767

`:OPERation:BASeband:PTRansition`

Supported

E8267D with Option 601 or 602

`:STATus:OPERation:BASeband:PTRansition <val>`

`:STATus:OPERation:BASeband:PTRansition?`

This command enables bits in the Baseband Operation Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Baseband Operation Condition register will pass through and be read by the Baseband Operation Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the **Keysight Signal Generators Programming Guide** for more information on programming the status registers.

Example

`:STAT:OPER:BAS:PTR 3`

This command enables bit 0 (decimal 1, Baseband 1 Busy) and bit 1 (decimal 2, Baseband 1 Communicating) in the Baseband Operation Positive Transition Filter register.

Range

0 to 32767

`:OPERation:BASeband[:EVENt]`

Supported

E8267D with Option 601 or 602
System Commands
Status Subsystem (:STATus)

:STATus:OPERation:BASeband [:EVENt]?

This query returns the decimal sum of the bits in the Baseband Operation Event register.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range

0 to 32767

:OPERation:CONDition

Supported

All Models

:STATus:OPERation:CONDition?

This query returns the decimal sum of the bits in the Standard Operation Condition register. This register monitors signal generator functions such as I/Q calibrating, sweeping, and measuring. For example, if a sweep is in progress (bit 3), a decimal 8 is returned with this query.

The data in this register is continuously updated and reflects current conditions.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range

0 to 32767

:OPERation:ENABle

Supported

All Models

:STATus:OPERation:ENABle <val>
:STATus:OPERation:ENABle?

This command enables bits in the Standard Operation Event Enable register. Bits enabled and set in this register will set the Operation Status Summary bit (bit 7) in the Status Byte register. When bit 7 in the Status Byte register is set, you can read the Standard Operation Event register to determine the cause.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:ENAB 43
System Commands
Status Subsystem (:STATus)

This command enables bit 0 (decimal 1, I/Q calibrating), bit 1 (decimal 2, Settling), bit 3 (decimal 8, Sweeping), and bit 5 (decimal 32, Waiting for Trigger) of the Standard Operation Event Enable register.

Range 0 to 32767

:OPERation:NTRansition

Supported All Models

:STATus:OPERation:NTRansition <val>
:STATus:OPERation:NTRansition?

This command enables bits in the Standard Operation Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Standard Operation Condition register will pass through and be read by the Standard Operation Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:NTR 3

This command enables bit 0 (decimal 1, I/Q Calibrating) and bit 1 (decimal 2, Settling) in the Standard Operation Negative Transition Filter register.

Range 0 to 32767

:OPERation:PTRansition

Supported All Models

:STATus:OPERation:PTRansition <val>
:STATus:OPERation:PTRansition?

This command enables bits in the Standard Operation Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Standard Operation Condition register will pass through and be read by the Standard Operation Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:PTR 3
System Commands
Status Subsystem (:STATus)

This command enables bit 0 (decimal 1, I/Q Calibrating) and bit 1 (decimal 2, Settling) in the Standard Operation Positive Transition Filter register.

Range 0 to 32767

:OPERation[:EVENt]

Supported All Models

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:OPERation [:EVENt] ?

This query returns the decimal sum of the bits in the Standard Operation Event register.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767

:PRESet

Supported All Models

:STATus:PRESet

This command presets all positive and negative transition filters, enable registers, and error/event queue enable registers.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

:QUEStionable:CALibration:CONDition

Supported All Models

:STATus:QUEStionable:CALibration:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Calibration Condition register. For example, if the DCFM or DCΦM zero calibration fails (bit 0), a value of 1 is returned.

The data in this register is continuously updated and reflects the current conditions.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767
System Commands
Status Subsystem (:STATus)

:QUESTIONable:CALibration:ENABle

Supported All Models
:STATus:QUESTIONable:CALibration:ENABle <val>
:STATus:QUESTIONable:CALibration:ENABle?

This command enables bits in the Data Questionable Calibration Event Enable register. Bits enabled and set in this register will set the Calibration Summary bit (bit 8) in the Data Questionable Condition register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example
:STAT:QUES:CAL:ENAB 1

This command enables bit 0 (decimal 1, DCFM/DCΦM Zero Failure) in the Data Questionable Calibration Event Enable register.

Range 0 to 32767

:QUESTIONable:CALibration:NTRansition

Supported All Models
:STATus:QUESTIONable:CALibration:NTRansition <val>
:STATus:QUESTIONable:CALibration:NTRansition?

This command enables bits in the Data Questionable Calibration Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Calibration Condition register will pass through and be read by the Data Questionable Calibration Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example
:STAT:OPER:NTR 3

This command enables bit 0 (decimal 1, DCFM/DCΦM Zero Failure) and bit 1 (decimal 2, I/Q Calibration Failure) in the Data Questionable Calibration Negative Transition Filter register.

Range 0 to 32767
System Commands
Status Subsystem (:STATus)

:QUEStionable:CALibration:PTRansition

Supported All Models

:STATus:QUEStionable:CALibration:PTRansition <val>
:STATus:QUEStionable:CALibration:PTRansition?

This command enables bits in the Data Questionable Calibration Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Calibration Condition register will pass through and be read by the Data Questionable Calibration Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:OPER:PTR 3

This command enables bit 0 (decimal 1, DCFM/DCΦM Zero Failure) and bit 1 (decimal 2, I/Q Calibration Failure) in the Data Questionable Calibration Positive Transition Filter register.

Range 0 to 32767

:QUEStionable:CALibration[:EVENT]

Supported All Models

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUEStionable:CALibration[:EVENT]?

This command returns the decimal sum of the bits in the Data Questionable Calibration Event register.

Refer to the **Keysight Signal Generators Programming Guide** for more information on programming the status registers.

Range 0 to 32767

:QUEStionable:CONDition

Supported All Models

:STATus:QUEStionable:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Condition register. For example, if the internal reference oscillator oven is cold (bit 4), a value of 16 is returned.
System Commands
Status Subsystem (:STATus)

The data in this register is continuously updated and reflects current conditions.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767

:QUEStionable:ENABle

Supported All Models

:STATus:QUEStionable:ENABle <val>
:STATus:QUEStionable:ENABle?

This command enables bits in the Data Questionable Event Enable register. Bits enabled and set in this register will set the Data Questionable Summary bit (bit 3) in the Status Byte register. When bit 3 in the Status Byte register is set, you can read the Data Questionable Event register to determine the cause.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:ENAB 8

This command enables bit 3 (decimal 8, the Power Summary bit), in the Data Questionable Event Enable register.

Range 0 to 32767

:QUEStionable:FREQuency:CONDition

Supported All Models

:STATus:QUEStionable:FREQuency:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Frequency Condition register. For example, if the 1 GHz internal reference clock is unlocked (bit 2), a value of 4 is returned.

The data in this register is continuously updated and reflects current conditions.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767

:QUEStionable:FREQuency:ENABle

Supported All Models
System Commands
Status Subsystem (:STATus)

:STATus:QUEStionable:FREQuency:ENABLE <val>
:STATus:QUEStionable:FREQuency:ENABLE?

This command enables bits in the Data Questionable Frequency Event Enable register. Bits enabled and set in this register will set the Data Questionable Condition register bit 5.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:FREQ:ENAB 7

This command enables bit 0 (decimal 1, Synthesizer Unlocked), bit 1 (decimal 2, 10 MHz Reference Unlocked), and bit 2 (decimal 4, 1 GHz reference Unlocked) in the Data Questionable Frequency Event Enable register.

Range 0 to 32767

:QUEStionable:FREQuency:NTRansition

Supported All Models

:STATus:QUEStionable:FREQuency:NTRansition <val>
:STATus:QUEStionable:FREQuency:NTRansition?

This command enables bits in the Data Questionable Frequency Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Frequency Condition register will pass through and be read by the Data Questionable Frequency Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:FREQ:NTR 96

This command enables bit 5 (decimal 32, Sampler Loop Unlocked) and bit 6 (decimal 64, YO Loop Unlocked) in the Data Questionable Frequency Negative Transition Filter register.

Range 0 to 32767

:QUEStionable:FREQuency:PTRansition

Supported All Models
System Commands
Status Subsystem (:STATus)

:STATus:QUEStionable:FREQuency:PTRansition <val>
:STATus:QUEStionable:FREQuency:PTRansition?

This command enables bits in the Data Questionable Frequency Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Frequency Condition register will pass through and be read by the Data Questionable Frequency Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:FREQ:PTR 8

This command enables bit 3 (decimal 8, Baseband 1 Unlocked) in the Data Questionable Frequency Positive Transition Filter register.

Range 0 to 32767

:QUEStionable:FREQuency[:EVENt]

Supported All Models

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUEStionable:FREQuency[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Frequency Event register.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767
:QUEStionable:MODulation:CONDition

Supported All Models

:STATus:QUEStionable:MODulation:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Modulation Condition register. For example, if the modulation is uncalibrated (bit 4), a value of 16 is returned.

The data in this register is continuously updated and reflects current conditions.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Range 0 to 32767

:QUEStionable:MODulation:ENABle

Supported All Models

:STATus:QUEStionable:MODulation:ENABLE <val>

:STATus:QUEStionable:MODulation:ENABLE?

This command enables bits in the Data Questionable Modulation Event Enable register. Bits enabled and set in this register will set bit 7 in the Data Questionable Condition register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:MOD:ENAB 20

This command enables bit 2 (decimal 4, Modulation 1 Overmod) and bit 4 (decimal 16, Modulation Uncalibrated) in the Data Questionable Modulation Event Enable register.

Range 0 to 32767

:QUEStionable:MODulation:NTRansition

Supported All Models

:STATus:QUEStionable:MODulation:NTRansition <val>

:STATus:QUEStionable:MODulation:NTRansition?

This command enables bits in the Modulation Questionable Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Modulation Questionable Condition register will pass through and be read by the Modulation Questionable Event register.
System Commands
Status Subsystem (:STATus)

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

`:STAT:QUES:MOD:NTR 3`

This command enables bit 0 (decimal 1, Modulation 1 Undermod) and bit 1 (decimal 2, Modulation 1 Overmod) in the Data Questionable Modulation Negative Transition Filter register.

Range

0 to 32767

`:QUEStionable:MODulation:PTRansition`

Supported

All Models

`:STATus:QUEStionable:MODulation:PTRansition <val>`

`:STATus:QUEStionable:MODulation:PTRansition?`

This command enables bits in the Data Questionable Modulation Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Modulation Condition register will pass through and be read by the Data Questionable Modulation Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the **Keysight Signal Generators Programming Guide** for more information on programming the status registers.

Example

`:STAT:QUES:MOD:PTR 3`

This command enables bit 0 (decimal 1, Modulation 1 Undermod) and bit 1 (decimal 2, Modulation 1 Overmod) in the Data Questionable Modulation Positive Transition Filter register.

Range

0 to 32767

`:QUEStionable:MODulation[:EVENt]`

Supported

All Models

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

`:STATus:QUEStionable:MODulation[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Modulation Event register.
System Commands
Status Subsystem (:STATus)

Refer to the *Keysight Signal Generators Programming Guide* for more information on programming the status registers.

Range 0 to 32767

:QUESTionable:NTRansition

Supported All Models

`:STATus:QUEStionable:NTRansition <val>`

`:STATus:QUEStionable:NTRansition?`

This command enables bits in the Data Questionable Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Condition register will pass through and be read by the Data Questionable Event register.

The variable `<val>` is the sum of the decimal values of the bits that you want to enable.

Refer to the *Keysight Signal Generators Programming Guide* for more information on programming the status registers.

Example

`:STAT:QUES:MOD:NTR 3072`

This command enables bit 10 (decimal 1024, Baseband is busy) and bit 11 (decimal 2048, Sweep Calculating) in the Data Questionable Negative Transition Filter register.

Range 0 to 32767

:QUESTionable:POWer:CONDition

Supported All Models

`:STATus:QUEStionable:POWer:CONDition?`

This query returns the decimal sum of the bits in the Data Questionable Power Condition register. For example, if the RF output signal is unleveled (bit 1), a value of 2 is returned.

The data in this register is continuously updated and reflects current conditions.

Refer to the *Keysight Signal Generators Programming Guide* for more information on programming the status registers.

Range 0 to 32767

:QUESTionable:POWer:ENABle

Supported All Models
System Commands
Status Subsystem (:STATus)

:STATus:QUESTionable:POWer:ENABle <val>
:STATus:QUESTionable:POWer:ENABle?

This command enables bits in the Data Questionable Power Event Enable register. Bits enabled and set in this register will set bit 3 in the Data Questionable Condition register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Refer to the Keysight Signal Generators Programming Guide for more information on programming the status registers.

Example

:STAT:QUES:POW:ENAB 1

This command enables bit 0 (decimal 1, Reverse Power Protection Tripped) in the Data Questionable Power Event Enable register.

Range

0 to 32767

:QUESTionable:POWer:NTRansition

Supported All Models

:STATus:QUESTionable:POWer:NTRansition <val>
:STATus:QUESTionable:POWer:NTRansition?

This command enables bits in the Data Questionable Power Negative Transition Filter register. A negative transition (1 to 0) of corresponding bits in the Data Questionable Power Condition register will pass through and be read by the Data Questionable Power Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

See the Keysight Signal Generators Programming Guide for more information on programming the status register system.

Example

:STAT:QUES:POW:NTR 1

This command enables bit 0 (Reverse Power Protection Tripped) in the Data Questionable Power Negative Transition Filter register.

Range

0 to 32767
System Commands
Status Subsystem (:STATus)

:QUESTionable:POWer:PTRansition

Supported All Models

:STATus:QUESTionable:POWer:PTRansition <val>
:STATus:QUESTionable:POWer:PTRansition?

This command enables bits in the Data Questionable Power Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Power Condition register will pass through and be read by the Data Questionable Power Event register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

See the Keysight Signal Generators Programming Guide for more information on programming the status register system.

Example

:STAT:QUE:POW:PTR 1

This command enables bit 0 (decimal 1, Reverse Power Protection Tripped) in the Data Questionable Power Positive Transition Filter register.

Range 0 to 32767

:QUESTionable:POWer[:EVENt]

Supported All Models

:STATus:QUESTionable:POWer[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Power Event register.

See the Keysight Signal Generators Programming Guide for more information on programming the status register system.

Range 0 to 32767

:QUESTionable:PTRansition

Supported All Models

:STATus:QUESTionable:PTRansition <val>
:STATus:QUESTionable:PTRansition?

This command enables bits in the Data Questionable Positive Transition Filter register. A positive transition (0 to 1) of corresponding bits in the Data Questionable Condition register will pass through and be read by the Data Questionable Event register.
System Commands
Status Subsystem (:STATus)

See the Keysight Signal Generators Programming Guide for more information on programming the status register system.

Example

:STAT:QUES:PTR 8
This command enables bit 3 (decimal 8, Power Summary) in the Data Questionable Positive Transition Filter register.

Range 0 to 32767

:QUEStionable[:EVENt]

Supported All Models

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUEStionable[:EVENt]?
This query returns the decimal sum of the bits in the Standard Operation Event register.

See the Keysight Signal Generators Programming Guide for more information on programming the status register system.

Range 0 to 32767
System Subsystem (:SYSTem)

:ALTerate

Supported
All with Option 007

:SYSTem:ALTerate <reg_num>
:SYSTem:ALTerate? [MAXimum|MINimum]

This command sets up the signal generator to use a sweep state stored in a state register to alternate with the current sweep. The alternate sweep state must be stored in state registers 1 through 9 in sequence 0. Alternate sweep must be selected and both sweeps must be ramp sweeps.

Example

:SYST:ALT 3

The preceding example alternates the current sweep with the sweep settings saved in state register number three.

Key Entry
Alternate Sweep Seq 0, Register 1–9

:ALTerate:STAte

Supported
All with Option 007

:SYSTem:ALTerate:STATe ON|OFF|1|0
:SYSTem:STATe?

This command enables or disables the alternate sweep state for the signal generator. With alternate state on, the signal generator uses the current sweep setup and alternates with a sweep saved in one of the state registers. Both sweeps must be ramp sweeps.

Example

:SYST:ALT:STAT OFF

The preceding example disables the alternate sweep mode.

Key Entry
Alternate Sweep Off On

:CAPability

Supported
All Models

:SYSTem:CAPability?

This query returns the signal generator’s capabilities and outputs the appropriate specifiers:

(RFSOURCE
WITH((AM|FM|PULM|PM|LFO) & (FSSWEEP|FLIST) & (PSSWEEP|PLIST)
&TRIGGER&REFERENCE))
System Commands
System Subsystem (:SYSTem)

This is a list of the SCPI–defined basic functionality of the signal generator and the additional capabilities it has in parallel (a&b) and singularly (a|b).

:DATE

Supported All Models
:SYSTem:DATE <year>,<month>,<day>
:SYSTem:DATE?

This command sets the date as shown in the lower right area of the signal generator display.

<year> This variable requires a four digit integer.
The query returns the date in the following format: <+year>, <+month>, <+day>

Example
:SYST:DATE 2004,12,15
The preceding example sets the date.

Range <month>: 1–12 <day>: 1–31

Key Entry Time/Date

:ERRor[:NEXT]

Supported All Models
:SYSTem:ERRor [:NEXT]?

This query returns the most recent error message from the signal generator error queue. If there are no error messages, the query returns the following output:

+0,"No error"

When there is more than one error message, the query will need to be sent for each message.
The error messages are erased after being queried.

Key Entry Error Info View Next Error Message

:ERRor:SCPI[:SYNTax]

Supported All Models
:SYSTem:ERRor:SCPI [:SYNTax] ON\OFF\1\0
:SYSTem:ERRor:SCPI [:SYNTax]?
System Commands
System Subsystem (:SYSTem)

This command allows you to turn on verbose error messages that point out where the SCPI parser generated an error. Use the \texttt{ERRor[:NEXT]} command to read any reported errors.

\textbf{CAUTION}

\textbf{When this command is enabled, the instrument's speed is slowed. Where speed is important, disable this feature.}

\textbf{Example}

\texttt{:SYST:ERR:SCPI ON}

The preceding example enables the SCPI command error report function.

\texttt{*RST 0}

\textbf{:FILEsystem:SAFEmode}

\textbf{Supported} All Models

\texttt{:SYSTem:FILEsystem:SAFEmode \texttt{ON|OFF|1|0}}

\texttt{:SYSTem:FILEsystem:SAFEmode?}

This command selects the safe mode for file handling. When safe mode is set to OFF, volatile waveform files can be edited and saved while the signal generator plays the file without signal interruption. However, it is possible with complex waveforms, for corruption of memory to occur which will be reported as an error on the front panel display and require a reboot of the signal generator to resolve.

\textbf{Example}

\texttt{:SYST:FILE:SAVE ON}

The preceding example enables the safe mode setting and waveform files cannot be edited without signal disruption while the signal generator plays them.

\texttt{*RST On}

\textbf{:HELP:MODE}

\textbf{Supported} All Models

\texttt{:SYSTem:HELP:MODE \texttt{SINGle|CONTinuous}}

\texttt{:SYSTem:HELP:MODE?}

This command sets the help function mode of the signal generator.

\texttt{SINGle} Help is provided only for the next key that you press.

\texttt{CONTinuous} Help is provided for each key you press. In addition, the function of the key is executed.

The setting enabled by this command is not affected by a signal generator power–on, preset, or \texttt{*RST} command.
System Commands
System Subsystem (:SYSTem)

Example

:SYST:HELP:MODE CONT

The preceding example enables the Help system continuous mode.

Key Entry Help Mode Single Cont

:IDN

Supported All Models

:SYSTem:IDN "string"
:SYSTem:IDN?

These commands modify the identification string that the *IDN? query returns. Sending an empty string returns the query output of *IDN? to its factory–shipped setting. The maximum string length is 72 characters.

Modification of the *IDN? query output enables the signal generator to identify itself as another signal generator when used as a replacement.

The display diagnostic information, shown by pressing the Diagnostic Info softkey, is not affected by this command.

The setting enabled by this command is not affected by a signal generator *RST command.

:IDN:CONFigure

Supported All Models

:SYSTem:IDN:CONFigure FACTory|AGILEnt|USER
:SYSTem:IDN:CONFigure?

These commands modify the identification string that the *IDN? query returns. FACTory returns the query output of *IDN? to its factory–shipped setting. USER selects a user defined string specified with SYST:IDN. If no string was set, then USER defaults to the factory string.

Modification of the *IDN? query output enables the signal generator to identify itself as another signal generator when used as a replacement.

The display diagnostic information, shown by pressing the Diagnostic Info softkey, is not affected by this command.

The setting enabled by this command is not affected by a signal generator *RST command.

:LANGuage

Supported All Models
System Commands
System Subsystem (:SYSTem)

:SYSTem:LANGuage
"SCPI" | "COMP" | "8340" | "8360" | "83712" | "83732" | "83752" | "8757"
| "8662" | "8663"

:SYSTem:LANGuage?
This command sets the remote language for the signal generator.

SCPI This choice provides compatibility for SCPI commands.

COMP This choice provides compatibility for a system, comprising a PSG signal generator and a 8757D scalar network analyzer. It is supported only through a GPIB interface.

8340 This choice provides compatibility for 8340B and 8341B microwave sources, which are supported by using the GPIB interface.

8360 This choice provides compatibility for 8360 series swept signal generators, which are supported only through a GPIB interface.

83712 This choice provides compatibility for 83711B and 83712B synthesized CW generators, which are supported only through a GPIB interface.

83732 This choice provides compatibility for 83731B and 83732B synthesized signal generators, which are supported only through a GPIB interface.

83752 This choice provides compatibility for 83751B and 83752B synthesized sweepers, which are supported only through a GPIB interface.

8757 This choice provides compatibility for a system, comprising a PSG signal generator and a 8757D scalar network analyzer. It is supported only through a GPIB interface.

8662 This choice provides compatibility for the Keysight 8662A Synthesized Signal Generator. The 8662A is controlled only through a GPIB interface.

8663 This choice provides compatibility for the Keysight 8663A Synthesized Signal Generator. The 8663A is controlled only through a GPIB interface.

The setting enabled by this command is not affected by a power–on, preset, or *RST command.

For more information on supported SCPI commands and programming codes, refer to Chapter 7, “SCPI Command Compatibility”, on page 417.

Example

:SYST:LANG "8757"
System Commands
System Subsystem (:SYSTem)

The preceding example enables the 8757 Network Analyzer language as the language used to control the signal generator.

Table 2-14

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>SCPI</th>
<th>8757D System</th>
<th>8340B, 8341B</th>
<th>83731B, 83732B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8360 Series</td>
<td>8662A, 8663A</td>
<td>83711B, 83712B</td>
<td>83751B, 83752B</td>
<td></td>
</tr>
</tbody>
</table>

:LOCK:NAME?

Supported

All Models

:SYSTem:LOCK:NAME?

This command returns the current I/O interface (the I/O interface in use by the querying computer).

Example

:SYST:LOCK:NAME?

Use this command to determine the interface you are currently using. Then use the Appendix ":SYSTem:LOCK:OWNer?" command to determine which interface, if any, has the lock.

:LOCK:OWNer?

Supported

All Models

:SYSTem:LOCK:OWNer?

Returns the I/O interface that currently has a lock.

Example

:SYST:LOCK:OWN?

:LOCK:RELease

Supported

All Models

:SYSTem:LOCK:RELease

Decrement the lock count by one, and may release the I/O interface from which the command is executed.

Example

:SYST:LOCK:REL

NOTE

For each successful lock request, a lock release is required. Two requests require two releases.
System Commands
System Subsystem (:SYSTem)

:LOCK:REQuest?

Supported All Models

:SYSTEM:LOCK:REQuest?

Requests a lock of the current I/O interface. This provides a mechanism by which you can lock the instrument's configuration or cooperatively share the instrument with other computers.

Example

:SYST:LOCK:REQ?

Lock requests can be nested, and each request increases the lock count by 1. For each request, you will need to issue a release from the same I/O interface (see “:SYSTem:LOCK:RELease” command).

Instrument locks are handled at the I/O interface level (GPIB, USB, LAN, etc.), and you are responsible for all coordination between threads and/or programs on that interface.

When a request is granted, only I/O sessions from the present interface will be allowed to change, and fully interact with, the state of the instrument. Locked-out interfaces (all others if there is a lock in-place) can only perform the following commands/queries: *IDN?, *OPT?, SYST:LOCK:..., SYST:METR:..., SYST:DATE?, and SYST:TIME?. All other commands/queries will fail and time out. SYST:ERR? will result in the error message "Instrument locked by another I/O session".

Locks from LAN sessions will be automatically released when a LAN disconnect is detected.

:METRics:ENABle

Supported All Models with Option U05

:SYSTEM:METRics:ENABle ON|1|OFF|0

:SYSTEM:METRics:ENABle?

This command enables system metrics.

Example

:SYST:METR:ENAB

Persistent (not affected by *RST – but by “:SYSTem:PRESet:PERSistent” on page 115. Default state would be OFF.)

:METRics:FPANel?

Supported All Models with Option U05

:SYSTEM:METRics:FPANel?

This command returns the timestamp of the last Front Panel user interaction.
System Commands
System Subsystem (:SYSTem)

Example

:SYST:METR:FPAN?
The return value is a timestamp string with the format
“YYYY-MM-DD<space>HH:MM:SS”. The timestamp is reported in Local Time,
ot UTC or GMT.

If no activity has been recorded yet, the command reports the time of the
current boot.

:METRics:SCPI?

Supported All Models with Option U05

:SYSTem:METRics:SCPI?

This command returns the timestamp of the last SCPI command received by
the instrument (with exception of e.g.: SYST:METR:..., *IDN?, SYST:ERR?)

Example

:SYST:METR:SCPI?
The return value is a timestamp string with the format
“YYYY-MM-DD<space>HH:MM:SS”. The timestamp is reported in Local Time,
ot UTC or GMT.

If no activity has been recorded yet, the command reports the time of the
current boot.

:METRics:STIMe?

Supported All Models with Option U05

:SYSTem:METRics:STIMe?

This command returns the time of the instrument start (boot).

Example

:SYST:METR:STIM?
The return value is a timestamp string with the format
“YYYY-MM-DD<space>HH:MM:SS”. The timestamp is reported in Local Time,
ot UTC or GMT.

If no activity has been recorded yet, the command reports the time of the
current boot.

:OEMHead:FREQuency:STARt

Supported All Models

:SYSTem:OEMHead:FREQuency:STARt <val>
:SYSTem:OEMHead:FREQuency:STARt?
System Commands
System Subsystem (:SYSTem)

This command sets the start frequency or minimum band frequency for an external source module. The pre-defined start or minimum band frequency for the selected WR (waveguide rectangular) is overwritten with this command. For more information on pre-defined frequency bands, refer to “:OEMHead:FREQuency:BAND WR15|WR12|WR10|WR8|WR6|WR5|WR3” on page 111.

Example

:SYST:OEMH:FREQ:STAR 90GHZ

The preceding example sets the start frequency for the OEM module to 90 GHz.

*RST 5.0000000000000E+10

Key Entry Min Band Freq

:OEMHead:FREQuency:STOP

Supported All Models

:SYSTem:OEMHead:FREQuency:STOP <val>
:SYSTem:OEMHead:FREQuency:STOP?

This command sets the stop frequency or maximum band frequency for an external source module. The pre-defined stop or maximum band frequency for the selected WR (waveguide rectangular) is overwritten with this command. For more information on pre-defined frequency bands, refer to “:OEMHead:FREQuency:BAND WR15|WR12|WR10|WR8|WR6|WR5|WR3” on page 111.

Example

:SYST:OEMH:FREQ:STOP 70GHZ

The preceding example sets the stop frequency for the OEM module to 70 GHz.

*RST 7.0000000000000E+10

Key Entry Max Band Freq

:OEMHead:SELect

Supported All Models

:SYSTem:OEMHead:SELect ON|OFF|NONE|REAR|FRONT
:SYSTem:OEMHead:SELect?

This command selects an external millimeter-wave source module. The ON, REAR, and FRONT parameters select the OEM source module while the OFF and NONE parameters deselect the OEM source module. The MMOD and MULT annunciators, in the signal generator’s frequency display will appear when a OEM millimeter-wave source module is selected.

Example
System Commands
System Subsystem (:SYSTem)

:SYST:OEMH:SEL ON

The preceding example turns on the OEM source module.

*RST Off

Key Entry OEM Source Module Off On

:OEMHead:FREQuency:BAND WR15|WR12|WR10|WR8|WR6|WR5|WR3

Supported All Models

This command allows you to select a pre-defined waveguide rectangular (WR) frequency band. The WR selection is determined by the external millimeter-wave source module frequency range. Selection of a WR frequency band sets the minimum and maximum frequency bands, for the external mm-wave source module, to pre-defined values shown in the table below. These pre-defined frequency bands are common to commercially available mixers and multipliers. Different start, stop, and multiplier values can be selected from the menu displayed under the OEM Source Module Config softkey.

Table 2-15

<table>
<thead>
<tr>
<th>Waveguide Band</th>
<th>PSG Start Frequency</th>
<th>PSG Stop Frequency</th>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR15 50–75GHz</td>
<td>12.5000000000 GHz</td>
<td>18.7500000000 GHz</td>
<td>4.000 x</td>
</tr>
<tr>
<td>WR12 60–90GHz</td>
<td>10.0000000000 GHz</td>
<td>15.0000000000 GHz</td>
<td>6.000 x</td>
</tr>
<tr>
<td>WR10 75–110GHz</td>
<td>12.5000000000 GHz</td>
<td>18.4000000000 GHz</td>
<td>6.000 x</td>
</tr>
<tr>
<td>WR8 90–140GHz</td>
<td>11.2200000000 GHz</td>
<td>17.5000000000 GHz</td>
<td>8.000 x</td>
</tr>
<tr>
<td>WR6 110–170GHz</td>
<td>9.1000000000 GHz</td>
<td>14.2000000000 GHz</td>
<td>12.000 x</td>
</tr>
<tr>
<td>WR5 140–220GHz</td>
<td>11.6000000000 GHz</td>
<td>18.4000000000 GHz</td>
<td>12.000 x</td>
</tr>
<tr>
<td>WR3 220–325GHz</td>
<td>12.2000000000 GHz</td>
<td>18.1000000000 GHz</td>
<td>18.000 x</td>
</tr>
</tbody>
</table>

Example

:SYST:OEMH:FREQ:BAND WR12

The preceding example selects the 60–90 GHz WR frequency band.

*RST WR15

Key Entry WR15 50–75GHz
System Commands
System Subsystem (:SYSTem)

:OEMHead:FREQuency:MULTiplier

Supported All Models

:SYSTem:OEMHead:FREQuency:MULTiplier <val>
:SYSTem:OEMHead:FREQuency:MULTiplier?

This command selects a multiplier for an external millimeter–wave source module.

The multiplier factor allows the signal generator’s frequency display to show the source module’s frequency. The selection is valid only when the OEM source module is selected. The signal generator’s actual RF frequency is not changed by the multiplier. For example, if the signal generator’s RF frequency is 20 GHz and a 4.000 x multiplier is selected, the signal generator will display 80 GHz.

The displayed frequency on the signal generator is affected if the frequency reference and frequency offset settings. The relationship is described as follows: Displayed Frequency = (Actual Freq – Freq Reference)* Frequency Multiplier + Freq Offset. Refer to the :FREQuency:OFFSet and :FREQuency:REFerence command descriptions for more information.

Example

:SYST:OEMH:FREQ:MULT 4

The preceding example selects a 4x multiplier so that the signal generator display shows the frequency at the output of the mm–wave source module.

*RST 4.00000000E+000

Key Entry Freq Multiplier

:PON TYPE

Supported All Models

:SYSTem:PON:TYPE PRESet|LAST
:SYSTem:PON:TYPE?

This command sets the defined conditions for the signal generator at power on.

PRESet This choice sets the conditions to factory– or user–defined as determined by the choice for the preset type. Refer to the :PRESet:TYPE command for selecting the type of preset.

LAST This choice retains the settings at the time the signal generator was last powered down.

The selection is not affected by a signal generator power–on, preset, or the *RST command.
System Commands
System Subsystem (:SYSTem)

NOTE

When LAST is selected, no signal generator interaction can occur for at least 3 seconds prior to cycling the power for the current settings to be saved.
System Commands
System Subsystem (:SYSTem)

Example
:SYSTem:POWER:TYPE PRES
The preceding example sets the preset state for the signal generator to factory settings.

Key Entry Power On Last Preset

:PRESet

Supported All Models

SYSTem:PRESet
This command returns the signal generator to a set of defined conditions. It is equivalent to pressing the front panel Preset hardkey.

The defined conditions are either factory– or user–defined. Refer to the :PRESet:TYPE command for selecting the type of defined conditions.

Key Entry Preset

:PRESet:ALL

Supported All Models

:SYSTem:PRESet:ALL
This command sets all states of the signal generator back to their factory default settings, including states that are not normally affected by a signal generator power–on, preset, or *RST command.

:PRESet:LANGUAGE

Supported All Models

:SYSTem:PRESet:LANGUAGE
"SCPI" | "8340" | "8360" | "83712" | "83732" | "83752" | "8757" | "8662" | "8663"

:SYSTem:PRESet:LANGUAGE?
This command sets the remote language that is available when the signal generator is preset.

SCPI This choice provides compatibility for SCPI commands.
8340 This choice provides compatibility for 8340B and 8341B microwave sources, which are supported by using the GPIB interface.
8360 This choice provides compatibility for 8360 series swept signal generators, which are supported only through a GPIB interface.
System Commands
System Subsystem (:SYSTem)

83712 This choice provides compatibility for 83711B and 83712B synthesized CW generators, which are supported only through a GPIB interface.

83732 This choice provides compatibility for 83731B and 83732B synthesized signal generators, which are supported only through a GPIB interface.

83752 This choice provides compatibility for 83751B and 83752B synthesized sweepers, which are supported only through a GPIB interface.

8757 This choice provides compatibility for a system, comprising a PSG signal generator and a 8757D scalar network analyzer. It is supported only through a GPIB interface.

8662 This choice provides compatibility for 8662A series synthesized waveform generators, which are supported only through a GPIB interface.

8663 This choice provides compatibility for 8663A series synthesized waveform generators, which are supported only through a GPIB interface.

Example

:SYST:PRES:LANG "8340"

The preceding example selects 8340 signal generator language as the language used by the signal generator following an instrument preset.

*RST "SCPI"

Table 2-16

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>SCPI</th>
<th>8757D System</th>
<th>8340B, 8341B</th>
<th>83731B, 83732B</th>
</tr>
</thead>
<tbody>
<tr>
<td>8360 Series</td>
<td>8662A, 8663A</td>
<td>83711B, 83712B</td>
<td>83751B, 83752B</td>
<td></td>
</tr>
</tbody>
</table>

:PRESet:PERSistent

Supported All Models

:SYSTem:PRESet:PERSistent

This command sets the states that are not affected by a signal generator power–on, preset, or *RST command to their factory default settings.

Key Entry Restore Sys Defaults
System Commands
System Subsystem (:SYSTem)

:PRESet:PN9

Supported All Models

:SYSTem:PRESet:PN9 NORMal | QUICk
:SYSTem:PRESet:PN9?

This command sets the preset length of the PN9 sequence for personalities that require software PRBS generation.

NORMal This choice produces a maximal length PN9 sequence.
QUICk This choice produces a truncated (216 bits) PN9 sequence.

Example

:SYST:PRES:PN9 NORMAL

The preceding example selects a maximum length PN9 sequence.

*RST NORM

Key Entry PN9 Mode Preset Normal Quick

:PRESet:TYPE

Supported All Models

:SYSTem:PRESet:TYPE NORMal | USER
:SYSTem:PRESet:TYPE?

This command toggles the preset state between factory– and user–defined conditions. Refer to the :PRESet[:USER]:SAVE command for saving the USER choice preset settings. The setting enabled by the command is not affected by a signal generator power–on, preset, or *RST command.

Example

:SYST:PRES:TYPE USER

The preceding example selects a user defined conditions for the signal generator preset state.

Key Entry Preset Normal User

:PRESet[:USER]:SAVE

Supported All Models

:SYSTem:PRESet [:USER] :SAVE

This command saves your user–defined preset conditions to a state file. Only one user–defined preset file can be saved. Subsequent saved user–defined preset files will overwrite the previously saved file.
System Commands
System Subsystem (:SYSTem)

Key Entry Save User Preset

:SECurity:DISPlay

Supported All Models

:SYSTem:SECurity:DISPLAY ON|OFF|1|0
:SYSTem:SECurity:DISPLAY?

This command enables or disables the secure display mode.

On(1) This selection turns the signal generator display back on, showing the current settings. Cycling the signal generator power also restores the display, however the current settings may change depending on the power–on configuration choice. Refer to the :PON:TYPE command for information on the power–on choices available.

OFF(0) This selection blanks the signal generator's display, hiding the settings and disabling the front panel keys. While in this mode, the display shows *** SECURE DISPLAY ACTIVATED ***.

For more information about security functions, refer to the E8257D/67D, E8663D PSG Signal Generators User's Guide.

Example

:SYST:SEC:DISP OFF

The preceding example enables the secure display mode.

*RST 1

Key Entry Activate Security Display

:SECurity:ERASall

Supported All Models

:SYSTem:SECurity:ERASall

This command removes all user files, flatness correction files, and baseband generator files. In addition, all table editor files are returned to their original factory values.

This command differs from the :DELe:ALL command, which does not reset table editors to factory values. For more information about security functions, refer to the E8257D/67D, E8663D PSG Signal Generators User's Guide.

Key Entry Erase All
System Commands
System Subsystem (:SYSTem)

:SECurity:LEVel

Supported All Models

:SYSTem:SECurity:LEVel NONE|ERASe|OVERwrite|SANitize

:SYSTem:SECurity:LEVel?

This command selects the security level operation for the signal generator.

- **NONE** This selection causes the signal generator to reset to factory default settings.
- **ERASe** This selection removes all user files, table editor files, flatness correction files, and baseband generator files.
- **OVERwrite** This selection removes all user files, table editor files, flatness correction files, and baseband generator files. The memory is then overwritten with random data.
- **SANitize** This selection removes all user files, table editor files, flatness correction files, and baseband generator files using the same techniques as the OVERwrite selection for SRAM and flash memory. For the hard disk, the signal generator overwrites all addressable locations with a single character, its complement, and then with a random character.

SRAM All addressable locations will be overwritten with random characters.
Hard Disk All addressable locations will be overwritten with random characters.
Flash Memory The flash blocks will be erased.

SANitize This selection removes all user files, table editor files, flatness correction files, and baseband generator files using the same techniques as the OVERwrite selection for SRAM and flash memory. For the hard disk, the signal generator overwrites all addressable locations with a single character, its complement, and then with a random character.

Once you select the security level, you must execute the command from :SECurity:LEVel:STATe to arm the security level.

NOTE

Once you select a security level and arm it, you cannot change the level.

For other cleaning and security operation descriptions, see also the :SECurity:ERASeall, the :SECurity:OVERwrite, and the :SECurity:SANitize commands. For more information about security functions, refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide.

Example

:SYST:SEC:LEV NONE

The preceding example sets the secure mode so it resets the signal generator to factory settings after completing the security operation.

Key Entry None Erase Overwrite Sanitize
:SECurity:LEVel:STATe

Supported

All Models

CAUTION

Ensure that you select the security level prior to executing this command with the ON (1) selection. Once you enable the state, you cannot reduce the security level.

:SYSTem:SECurity:LEVel:STATe

ON	OFF
1 | 0

This command arms and executes the current security level parameter.

- **On (1)**
 This selection arms and prevents any changes to the current security level. Refer to :SECurity:LEVel command for setting the security level.

- **OFF (0)**
 This selection performs the actions required for the current security level setting. Cycling the signal generator power also performs the same function.

For more information about security functions, refer to the E8257D/67D, E8663D PSG Signal Generators User's Guide.

Example

:SYST:SEC:LEV:STAT ON

The preceding example arms the secure mode selected with the SYSTem:SECurity:LEVel command.

Key Entry

Enter Secure Mode

:SYSTem:SECurity:OVERwrite

Supported

All Models

This command removes all user files, table editor files values, flatness correction files, and baseband generator files. The memory is then overwritten with random data as described below. For more information about security functions, refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide.

SRAM

All addressable locations will be overwritten with random characters.

HARD DISK

All addressable locations will be overwritten with random characters.

FLASH MEMORY

The flash blocks will be erased.

Key Entry

Erase and Overwrite All
System Commands
System Subsystem (:SYSTem)

:SECurity:SANitize

Supported All Models

:SYSTem:SECurity:SANitize

This command removes all user files, table editor files values, flatness correction files, and baseband generator files. The memory is then overwritten with a sequence of data as described below. For more information about security functions, refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide.

SRAM All addressable locations will be overwritten with random characters.

HARD DISK All addressable locations will be overwritten with a single character and then a random character.

FLASH MEMORY The flash blocks will be erased.

Key Entry Erase and Sanitize All

:SSAVer:DELay

Supported All Models

:SYSTem:SSAVer:DELay <val>
:SYSTem:SSAVer:DELay?

This command sets the amount of time before the display light or display light and text is switched off. The time delay represents the time during which there is no signal generator front panel input. The variable <val> is a positive integer number, in hours. The setting enabled by this command is not affected by power–on, preset, or *RST. See also the :SSAVer:MODE command for selecting the screen saver mode.

Example

:SYST:SSAV:DEL 2

The preceding example sets two hours delay time for the screen saver mode.

Range 1–12

Key Entry Screen Saver Delay

:SSAVer:MODE

Supported All Models

:SYSTem:SSAVer:MODE LIGHT | TEXT
:SYSTem:SSAVer:MODE?

This command toggles the screen saver mode between light only or light and text.
System Commands
System Subsystem (:SYSTem)

LIGHT Enables only the light to turn off during the screen saver operation while leaving the text visible on the darkened screen.

TEXT Enables both the display light and text to turn off during screen saver operation.

The setting is not affected by a signal generator power–on, preset, or *RST command.

Example

:SYST:SSAV:MODE TEXT

The preceding example sets the screen saver mode.

Key Entry Screen Saver Mode

:SSAVer:STATe

Supported All Models

:SYSTem:SSAVer:STATe ON|OFF|1|0
:SYSTem:SSAVer:STATe?

This command enables or disables the display screen saver. The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:SYST:SSAV:STAT 1

The preceding example enables the screen saver mode.

Key Entry Screen Saver Off On

:TIME

Supported All Models

:SYSTem:TIME <hour>,<minute>,<second>
:SYSTem:TIME?

This command sets the time displayed in the lower right area of the signal generator's display.

Range <hour>: 0–23 <minute>: 0–59 <second>: 0–59

Example

:SYST:TIME 9,30,45

The preceding example sets the signal generator time to 09:30:45.

Key Entry Time/Date
System Commands
System Subsystem (:SYSTem)

:VERSion

Supported All Models

:SYSTem:VERSion?

This command returns the SCPI version number with which the signal generator complies.
System Commands
Trigger Subsystem

Trigger Subsystem

:ABORt

Supported All Models

:ABORt

This command causes the List or Step sweep in progress to abort. If
INIT:CONT[:ALL] is set to ON, the sweep will immediately re-initiate. The
pending operation flag affecting *OPC, *OPC?, and *WAI will undergo a
transition once the sweep has been reset.

:INITiate:CONTinuous[:ALL]

Supported All Models

:INITiate:CONTinuous[:ALL] ON|OFF|1|0

:INITiate:CONTinuous[:ALL]?

This command selects either a continuous or single List or Step sweep.
Execution of this command does not affect a sweep in progress.

ON (1) Selects continuous sweep where, after the completion
of the previous sweep, the sweep restarts automatically,
or waits for a trigger.

OFF (0) This choice selects a single sweep. Refer to the
:INITiate[:IMMediate][:ALL] command for single sweep
triggering information.

Example

:INIT:CONT ON

The preceding example enables the continuous mode for the sweep type.

*RST 0

Key Entry Sweep Repeat Single Cont

:INITiate[:IMMediate][:ALL]

Supported All Models

:INITiate[:IMMediate][:ALL]

This command either sets or sets and starts a single List or Step sweep,
depending on the trigger type. The command performs the following:

- arms a single sweep when BUS, EXTernal, or KEY is the trigger source selection
- arms and starts a single sweep when IMMEDIATE is the trigger source selection
System Commands
Trigger Subsystem

This command is ignored if a sweep is in progress. For setting a continuous or single sweep, refer to the :INITiate:CONTinuous[:ALL] command. The trigger source is selected by the :TRIGger[:SEQuence]:SOURce command.

In some atypical cases, the :INIT command could be ignored if it immediately follows an *OPC? command. If the :INIT command is ignored, then use a 10ms sleep function before sending the command.

Key Entry Single Sweep

:TRIGger:OUTPut:POLarity

Supported All Models
:TRIGger:OUTPut:POLarity \text{ POSitive|NEGative}
:TRIGger:OUTPut:POLarity?

Sets the TTL signal level present at the TRIGGER OUT connector to either high (5 vdc) or low (0 vdc). The trigger out is asserted after the frequency and/or power is set while the sweep is waiting for its step trigger. In addition, the swept–sine sends a pulse to the TRIGGER OUT at the beginning of each sweep.

Example

:TRIG:OUTP:POL NEG

The preceding example enables the continuous mode as the sweep type.

*RST POS

Key Entry Trigger Out Polarity Neg Pos

:TRIGger[:SEQuence]:SLOPe

Supported All Models
:TRIGger[:SEQuence]:SLOPe \text{ POSitive|NEGative}
:TRIGger[:SEQuence]:SLOPe?

This command sets the polarity of the ramp or sawtooth waveform slope present at the TRIGGER IN connector that will trigger a List or Step sweep.

Example

:TRIG:SLOP POS

The preceding example sets a positive ramp slope.

*RST POS

Key Entry Trigger In Polarity Neg Pos
System Commands
Trigger Subsystem

:TRIGger[:SEQUence]:SOURce

Supported All Models

:TRIGger[:SEQUence]:SOURce BUS|IMMediate|EXTernal|KEY
:TRIGger[:SEQUence]:SOURce?

This command sets the sweep trigger source for a List or Step sweep.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS–232 triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.

KEY This choice enables front panel triggering by pressing the Trigger hardkey.

The wait for the BUS, EXTernal, or KEY trigger can be bypassed by sending the :TRIGger[:SEQUence][:IMMediate] command.

Example

:TRIG:SOUR BUS

The preceding example sets the sweep trigger source to BUS.

*RST IMM
Key Entry Bus Free Run Ext Trigger Key

:TRIGger[:SEQUence][:IMMediate]

Supported All Models

:TRIGger[:SEQUence][:IMMediate]

This event command causes an armed List or Step sweep to immediately start without the selected trigger occurring.

In some atypical cases, the :TRIG command could be ignored if it immediately follows an *OPC? command. If the :TRIG command is ignored, then use a 10ms sleep function before sending the command.
Unit Subsystem (:UNIT)

:POWer

Supported All Models

:UNIT:POWer DBM|DBUV|DBUVEMF|V|VEMF|DB
:UNIT:POWer?

This command terminates an amplitude value in the selected unit of measure.

If the amplitude reference state is set to on, the query returns units expressed in dB. Setting any other unit will cause a setting conflict error stating that the amplitude reference state must be set to off. Refer to the :REfer:ence:STATe command for more information.

All power values in this chapter are shown with DBM as the unit of measure. If a different unit of measure is selected, replace DBM with the newly selected unit whenever it is indicated for the value.

Example

:UNIT:POW DBM

The preceding example selects dBm as the unit of amplitude measurement.

*RST DBM

Key Entry dBM dBuV dBuVemf mV uV mVemf uVemf
3 Basic Function Commands

In the following sections, this chapter provides SCPI descriptions for subsystems dedicated to signal generator operations common to all PSG models:

- “Correction Subsystem ([SORce]:CORRection)” on page 128
- “Frequency Subsystem ([SORce])” on page 131
- “List/Sweep Subsystem ([SORce])” on page 152
- “Marker Subsystem–Option 007 ([SORce])” on page 165
- “Power Subsystem ([SORce]:POWer)” on page 169
- “Trigger Sweep Subsystem ([SORce])” on page 185
Correction Subsystem ([SOURce]:CORRection)

:FLATness:LOAD

Supported All Models

```
[:SOURce]:CORRection:FLATness:LOAD "<file_name>"
```

This command loads a user flatness correction file designated by the file name "<file_name>" variable. The file will be loaded from the signal generator’s USERFLAT directory. The directory path does not need to be specified in the command. Refer to the *Keysight Signal Generators Programming Guide* for more information on flatness corrections.

For information on file name syntax, refer to “File Name Variables” on page 11.

Example

```
:CORR:FLAT:LOAD "Flatness_Data"
```

The preceding example loads a user flatness file named “Flatness_Data” from the signal generator’s user flatness directory.

Key Entry Load From Selected File

:FLATness:PAIR

Supported All Models

```
[:SOURce]:CORRection:FLATness:PAIR <freq>,<corr>
```

This command adds or edits a frequency and amplitude correction pair. The maximum number of pairs or points that can be entered is 3201. Refer to the *Keysight Signal Generators Programming Guide* for more information on flatness corrections. The <corr> variable is the power correction in dB.

Power and frequency ranges for different signal generator models and options are listed on page 183.

Example

```
:CORR:FLAT:PAIR 10MHz,.1
```

The preceding example enters a frequency of 10 megahertz and a power of 0.1dB into the user flatness table.

RST

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 513</td>
<td>+1.30000000000000E+10</td>
</tr>
<tr>
<td>Option 520</td>
<td>+2.00000000000000E+10</td>
</tr>
<tr>
<td>Option 532</td>
<td>+3.20000000000000E+10</td>
</tr>
<tr>
<td>Option 540</td>
<td>+4.00000000000000E+10</td>
</tr>
<tr>
<td>Option 544</td>
<td>+4.40000000000000E+10</td>
</tr>
<tr>
<td>Option 550</td>
<td>+5.00000000000000E+10</td>
</tr>
</tbody>
</table>
Basic Function Commands
Correction Subsystem ([SOURce]:CORRection)

Option 567: +6.7000000000000E+10

Range
Option 513: 250kHZ–13GHZ
Option 520: 250kHZ–20GHZ
Option 532: 250kHZ–32GHZ
Option 540: 250kHZ–40GHZ
Option 544: 250kHZ–44GHZ
Option 550: 250kHZ–50GHZ
Option 567: 250kHZ–70GHZa

a. 67–70 GHz performance not specified

Key Entry
Configure Cal Array

:FLATness:POINTS

Supported All Models

[:SOURce]:CORRection:FLATness:POINTS?
This query returns the number of points in the user flatness correction file.

:FLATness:PRESet

Supported All Models

CAUTION
Once this command is executed, correction data is overwritten; If needed, save the current correction data (see “:FLATness:STORe” on page 129).

[:SOURce]:CORRection:FLATness:PRESet
This command presets the user flatness correction to a factory–defined setting that consists of one frequency point and one amplitude point with no corrections.

Key Entry
Preset List

:FLATness:STORe

Supported All Models

[:SOURce]:CORRection:FLATness:STORe "<file_name>"
This command stores the current user flatness correction data to a file named by the "<file_name>" variable. All user flatness files are stored in the signal generator's USERFLAT directory. The directory path does not need to be specified in the command.
Basic Function Commands
Correction Subsystem ([:SOURce]:CORRection)

For information on file name syntax, refer to “File Name Variables” on page 11.

Example
:CORR:FLAT:STOR "New_Flat_data"
The preceding example stores the current user flatness table entries in a file
named "New_Flat_data".

Key Entry Store To File

[:STATe]

Supported All Models

[:SOURce]:CORRection[:STATe] ON|OFF|1|0
[:SOURce]:CORRection[:STATe]?

This command toggles the application of user flatness corrections to the
current signal generator power output.

Example
:CORR OFF

The preceding example turns off correction data.

*RST 0

Key Entry Flatness Off On
Basic Function Commands
Frequency Subsystem ([SOURce])

Frequency Subsystem ([SOURce])

:FREQuency:CENTer

Supported All with Option 007

[:SOURce]:FREQuency:CENTer <val>[<unit>]|UP|DOWN
[:SOURce]:FREQuency:CENTer? [MAXimum|MINimum]

This command sets the center frequency for a ramp sweep. The center frequency symmetrically divides the selected frequency span and is coupled to the start and stop frequency settings. The frequency range and reset values are dependent on the signal generator model and option number. The query returns the start and stop ramp frequencies if the optional MAXimum or MINimum are used.

*RST

Option 513: +1.3000000000000E+10
Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.0000000000000E+10
Option 544: +4.4000000000000E+10
Option 550: +5.0000000000000E+10
Option 567: +7.0000000000000E+10

Range

Option 513: 250kHZ–13GHZ
Option 520: 250kHZ–20GHZ
Option 532: 250kHZ–32GHZ
Option 540: 250kHZ–40GHZ
Option 544: 250kHZ–44GHZ
Option 550: 250kHZ–50GHZ
Option 567: 250kHZ–70GHZ

a. 67–70 GHz performance not specified

Example

:FREQ:CENT 15GHZ

The preceding example sets the center frequency for a ramp sweep to 15 GHz.

Key Entry Freq Center12
Basic Function Commands
Frequency Subsystem ([:SOURce])

:FREQuency:CHANnels:BAND

Supported All Models

[[:SOURce]:FREQuency:CHANnels:BAND
NBASe|NMObile|BPBSm|MPBSm|EGBSm|MBGSm|MRGSm|BPCS|MDCS|BP450|GM450|B480|M480|M850|M8|M15|M390|B420|B460|B915|M380|M410|M450|M870|PHS|DECT

[[:SOURce]:FREQuency:CHANnels:BAND?]

This command sets the frequency of the signal generator by specifying a frequency channel band. The frequency channel state must be enabled for this command to work. See “:FREQuency:CHANnels[:STATe]” on page 135.

- **NBASe**: This choice selects Standard Base as the frequency band for NADC.
- **NMObile**: This choice selects Standard Mobile as the frequency band for NADC.
- **BPBSm**: This choice selects P–Gsm 900 Base as the frequency band for GSM.
- **MPBSm**: This choice selects P–Gsm 900 Mobile as the frequency band for GSM.
- **EGBSm**: This choice selects E–Gsm 900 Base as the frequency band for GSM.
- **MBGSm**: This choice selects E–Gsm 900 Mobile as the frequency band for GSM.
- **BRGSm**: This choice selects R–Gsm 900 Base as the frequency band for GSM.
- **MRGSm**: This choice selects R–Gsm 900 Mobile as the frequency band for GSM.
- **BPCS**: This choice selects PCS 1900 Base as the frequency band for GSM.
- **MDCS**: This choice selects PCS 1900 Mobile as the frequency band for GSM.
- **BP450**: This choice selects Gsm 450 Base as the frequency band for GSM.
- **GM450**: This choice selects Gsm 450 Mobile as the frequency band for GSM.
- **B480**: This choice selects Gsm 480 Base as the frequency band for GSM.
- **M480**: This choice selects Gsm 480 Mobile as the frequency band for GSM.
- **B850**: This choice selects Gsm 850 Base as the frequency band for GSM.
- **M850**: This choice selects Gsm 850 Mobile as the frequency band for GSM.
- **B8**: This choice selects 800MHz Base as the frequency band for PDC.
- **M8**: This choice selects 800MHz Mobile as the frequency band for PDC.
- **B15**: This choice selects 1500MHz Base as the frequency band for PDC.
- **M15**: This choice selects 1500MHz Mobile as the frequency band for PDC.
- **B390**: This choice selects Base 390–400 as the frequency band for TETRA.
Basic Function Commands

Frequency Subsystem ([:SOURce])

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>P–GSM</th>
<th>E–GSM</th>
<th>R–GSM</th>
<th>DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Base</td>
<td>Base</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>PCS Base</td>
<td>GSM 450</td>
<td>GSM 480</td>
<td>GSM 850</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>Base</td>
<td>Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADC Base</td>
<td>800MHz</td>
<td>1500MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>Base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Base</td>
<td>390/400</td>
<td>420/430</td>
<td>460/470</td>
<td></td>
</tr>
<tr>
<td>Tetra Base</td>
<td>915/921</td>
<td>PHS</td>
<td>DECT</td>
<td></td>
</tr>
<tr>
<td>PCS Mobile</td>
<td>GSM 450</td>
<td>GSM 480</td>
<td>GSM 850</td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>Base</td>
<td>Base</td>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>NADC Mobile</td>
<td>800MHz</td>
<td>1500MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile</td>
<td>Base</td>
<td>Base</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

```
:FREQ:CHAN:BAND DECT
```

The preceding example sets the frequency band to standard DECT.

```text
*RST
```

This choice selects Base 420–430 as the frequency band for TETRA.

This choice selects Base 460–470 as the frequency band for TETRA.

This choice selects Base 915–921 as the frequency band for TETRA.

This choice selects Mobile 380–390 as the frequency band for TETRA.

This choice selects Mobile 410–420 as the frequency band for TETRA.

This choice selects Mobile 450–460 as the frequency band for TETRA.

This choice selects Mobile 870–876 as the frequency band for TETRA.

This choice selects Standard PHS as the frequency band.

This choice selects Standard DECT as the frequency band.
Basic Function Commands
Frequency Subsystem ([:SOURce])

:FREQuency:CHANnels:NUMBer

Supported	All Models

[:SOURce]:FREQuency:CHANnels:NUMBer <number>
[:SOURce]:FREQuency:CHANnels:NUMBer?

This command sets the frequency of the signal generator by specifying a channel number of a given frequency band.

The channel band and channel state must be enabled for this command to work. Refer to “:FREQuency:CHANnels[:STATe] on page 135.

Example

: FREQ:CHAN:NUMB 24

The preceding example sets the channel number to 24 for the current band.

*RST +1

Range

P–GSM Base/Mobile: 1–24
E–GSM and R–GSM Base/Mobile: 1–1023
DCS Base/Mobile: 512–885
PCS Base/Mobile: 512–900
GSM–450 Base/Mobile: 259–293
GSM–480 Base/Mobile: 306–340
GSM–850 Base/Mobile: 128–251
NADC Base/Mobile: 1–1023
800MHz Base/Mobile: 0–640
1500MHz Base/Mobile: 0–960
TETRA 380/390 Mobile: 3600–4000
TETRA 390/4000 Base: 3600–4000
TETRA 410/420 Mobile: 800–1200
TETRA 420/430 Base: 800–1200
TETRA 460/470: 2400 through 2800 2400–2800
Basic Function Commands
Frequency Subsystem ([:SOURce])

TETRA 870/876 Mobile: 600–640
TETRA 915/921 Base: 600–940
PHS Standard: 1–255
DECT Standard: 0–9

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Channel Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:CHANnels[:STATe]</td>
<td></td>
</tr>
</tbody>
</table>

Supported All Models

[:SOURce]:FREQuency:CHANnels[:STATe] ON|OFF|1|0
[:SOURce]:FREQuency:CHANnels[:STATe]?

This command enables or disables the frequency channel and band selection. The signal generator frequency will be set to the channel frequency when the state is on. To set frequency channel bands refer to “:FREQuency:CHANnels:BAND” on page 132.

Example

:FREQ:CHAN ON

The preceding example turns on the frequency channel.

*RST 0

Key Entry Freq Channels Off On

:FREQuency:COHerent

Supported E8267D with Option HCC

[:SOURce]:FREQuency:COHerent:MODE OFF|MASTER|SLAVe|SWITch
[:SOURce]:FREQuency:COHerent:MODE?

This command enables the “Coherent Mode” which links several instruments together.

Example

:FREQ:COH

The preceding example turns on the frequency channel.

*RST Off

Key Entry Frequency More More [More (If Option 007 is present)]
Coherent Mode Off Master Slave Switch
Basic Function Commands
Frequency Subsystem ([SOURce])

:FREQuency:CONtinuous

Supported All models with Option U01

[:SOURce]:FREQuency:CONtinuous:MODE ON|OFF|1|0
[:SOURce]:FREQuency:CONtinuous:MODE?

This command enables the Phase Continuous Fine Sweep mode. The mode is persistent and is not changed by *RST.

SYST:PRES:PERS turns this mode OFF.

Example

:FREQ:CONT:MODE

Key Entry Frequency More More [More (If Option 007 is present)]
Phase Continuous Mode Off On

*RST Normal

:FREQuency:FIXed

Supported All Models

[:SOURce]:FREQuency:FIXed <val><unit>|UP|DOWN
[:SOURce]:FREQuency:FIXed?

This command sets the signal generator output frequency, or increments or decrements the current RF frequency setting.

<val> A frequency value.

UP Increases the current frequency setting by the value set with the :FREQuency[:CW]:STEP[:INCRement] command found on page 146. The front panel up arrow key performs the same function.

DOWN Decreases the current frequency setting by the value set with the :FREQuency[:CW]:STEP[:INCRement] command found on page 146. The front panel down arrow key performs the same function.

To set the frequency mode, see “:FREQuency:MODE” on page 139. For a listing of signal generator frequency and power specifications, refer to “[:LEVel][:IMMediate][:AMPLitude]” on page 183.

Example

:FREQ:FIX 10GHz

The preceding example sets the signal generator frequency to 10 GHz.

*RST Option 513: +1.3000000000000E+10
Basic Function Commands
Frequency Subsystem ([:SOURce])

Key Entry

<table>
<thead>
<tr>
<th>Frequency Subsystem ([:SOURce])</th>
<th>Option 520: +2.0000000000000E+10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 532: +3.2000000000000E+10</td>
</tr>
<tr>
<td></td>
<td>Option 540: +4.0000000000000E+10</td>
</tr>
<tr>
<td></td>
<td>Option 544: +4.4000000000000E+10</td>
</tr>
<tr>
<td></td>
<td>Option 550: +5.0000000000000E+10</td>
</tr>
<tr>
<td></td>
<td>Option 567: +6.7000000000000E+10</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>Range</th>
<th>Option 513: 250kHZ–13GHZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 520: 250kHZ–20GHZ</td>
</tr>
<tr>
<td></td>
<td>Option 532: 250kHZ–32GHZ</td>
</tr>
<tr>
<td></td>
<td>Option 540: 250kHZ–40GHZ</td>
</tr>
<tr>
<td></td>
<td>Option 544: 250kHZ–44GHZ</td>
</tr>
<tr>
<td></td>
<td>Option 550: 250kHZ–50GHZ</td>
</tr>
<tr>
<td></td>
<td>Option 567: 250kHZ–70GHZ</td>
</tr>
</tbody>
</table>

a. 67–70 GHz performance not specified

Key Entry

<table>
<thead>
<tr>
<th>Freq CW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW</td>
</tr>
</tbody>
</table>

Freq CW
Basic Function Commands
Frequency Subsystem ([:SOURce])

:FREQuency:LBPath

Supported
All Models with Option 1EH or 521

[:SOURce]:FREQuency:LBPath NORMal|LNOise

This command enables Low Phase Noise (<250 MHz).

RST
Normal

Key Entry
Low Phase Noise Below 250 MHz

:FREQuency:MANual

Supported
All with Option 007

[:SOURce]:FREQuency:MANual <val><unit>

[:SOURce]:FREQuency:MANual?

This command sets the RF output frequency when performing a ramp sweep in manual mode. The frequency value selected must fall within the range of the current start and stop frequency settings.

Entering a value with this command has no effect unless manual sweep mode is on. Refer to :SWEep:MODE command for setting the mode.

The variable <val> is a numeric value. The <units> variable can be expressed in Hz, KHz, MHz, or GHZ.

Example

:FREQ:MAN 10GHz

The preceding example sets the signal generator manual ramp sweep frequency to 10 GHz.

RST
Option 513: +1.30000000000000E+10

Option 520: +2.00000000000000E+10

Option 532: +3.20000000000000E+10

Option 540: +4.00000000000000E+10

Option 544: +4.40000000000000E+10

Option 550: +5.00000000000000E+10

Option 567: +6.70000000000000E+10
Basic Function Commands
Frequency Subsystem ([:SOURce])

Range
Option 513: 250kHZ–13GHZ
Option 520: 250kHZ–20GHZ
Option 532: 250kHZ–32GHZ
Option 540: 250kHZ–40GHZ
Option 544: 250kHZ–44GHZ
Option 550: 250kHZ–50GHZ
Option 567: 250kHZ–70GHZ

Key Entry
Manual Freq

:FREQuency:MODE

Supported
All Models

[:SOURce]:FREQuency:MODE FIXed|CW|SWEep|LIST
[:SOURce]:FREQuency:MODE?

This command sets the frequency mode of the signal generator.

FIXed and CW
These choices are synonymous. Any currently running frequency sweeps are turned off, and the current CW frequency settings are used to control the output frequency.

To set the frequency in the CW frequency mode, see "::FREQuency::CW" on page 145.

To set the frequency in the fixed frequency mode, see "::FREQuency:FIXed" on page 136.

SWEep
The effects of this choice are determined by the sweep generation type selected (refer to "::SWEep:GENeration" on page 161). In analog sweep generation, the ramp sweep frequency settings (start, stop, center, and span) control the output frequency. In step sweep generation, the current step sweep frequency settings control the output frequency. In both cases, this selection also activates the sweep. This choice is available with Option 007 only.
Basic Function Commands
Frequency Subsystem ([:SOURCE])

LIST

This choice selects the swept frequency mode. If sweep triggering is set to immediate along with continuous sweep mode, executing the command starts the LIST or STEP frequency sweep.

To perform a frequency and amplitude sweep, you must also select LIST or SWEep as the power mode (see ":MODE" on page 177).

Example

:FREQ:MODE LIST

The preceding example selects a list frequency sweep.

*:RST CW

Key Entry
Freq CW Sweep Type Freq Off Freq & Ampl

**:FREQuency:MULTiplier

Supported All Models

[:SOURCE]:FREQuency:MULTiplier <val>
[:SOURCE]:FREQuency:MULTiplier?

This command sets the multiplier for the signal generator carrier frequency. For any multiplier other than one, the MULT indicator is shown in the frequency area of the display. The multiplier value is used to multiply the signal generator’s displayed frequency. The true frequency remains constant. For example, if the signal generator frequency is 20 GHz and a multiplier of 3 is selected, the displayed frequency will be 60 GHz. This feature is useful when working with mixers and multipliers.

Example

:FREQ:MULT 2

The preceding example sets the carrier multiplier to 2.

*:RST +1.00000000E+000

Key Entry Freq Multiplier

**:FREQuency:OFFSet

Supported All Models

[:SOURCE]:FREQuency:OFFSet <val><units>
[:SOURCE]:FREQuency:OFFSet?

This command sets the frequency offset. When an offset has been entered, the OFFS indicator appears in the frequency area of the signal generator’s front panel display and the frequency reading will include the offset value.
Basic Function Commands
Frequency Subsystem ([SOURce])

When any non–zero value is entered, the frequency offset state turns on; entering zero turns it off. To set the offset state independent of entering offset values refer to :FREQuency:OFFSet:STATe command.

Example
:FREQ:OFFS 10GHZ
The preceding example sets the frequency offset to 10 GHz.

*RST +0.0000000000000E+00
Range –200 GHz to 200 GHz
Key Entry Freq Offset

:FREQuency:OFFSet:STATe

Supported All Models

[:SOURce] :FREQuency:OFFSet:STATe ON|OFF|1|0
[:SOURce] :FREQuency:OFFSet:STATe?

This command enables or disables the offset frequency. Entering OFF (0) will set the frequency offset to 0 Hz.

Example
:FREQ:OFFS:STAT 0
The preceding example disables the frequency offset and sets the offset to 0 hertz.

*RST 0
Key Entry Freq Offset

:FREQuency:REFerence

Supported All Models

[:SOURce] :FREQuency:REFerence <val><units>
[:SOURce] :FREQuency:REFerence?

This command sets the output reference frequency for the signal generator. Once the reference frequency is set, any change to the signal generator’s CW frequency will be displayed referenced to 0 hertz. For example, if the signal generator’s CW frequency is set to 100 megahertz and the frequency reference is set (the frequency reference state will automatically turn on). The frequency display will read 0 Hz. If you change the signal generator’s CW frequency to 1 megahertz, the frequency display will read 1 megahertz. However, the true frequency is 101 megahertz. This can be verified by turning the frequency reference state off. The signal generator frequency display will read 101 megahertz. Refer to :FREQuency:REFerence:STATe command.

Example
Basic Function Commands
Frequency Subsystem ([:SOURce])

:FREQ:REF 100MHz
The preceding example sets the output reference frequency to 100 megahertz.

*RST +0.0000000000000E+00
Key Entry Freq Ref Set

:FREQuency:REFerence:SET
Supported All Models
[:SOURce]:FREQuency:REFerence:SET
This command sets the current CW output frequency, along with any offset, as a 0 hertz reference value.

*RST +0.0000000000000E+00
Key Entry Freq Ref Set

:FREQuency:REFerence:STATe
Supported All Models
[:SOURce]:FREQuency:REFerence:STATe ON|OFF|1|0
[:SOURce]:FREQuency:REFerence:STATe?
This command enables or disables the frequency reference mode. When the frequency reference mode is on, changes in the signal generator's CW frequency are displayed relative to the 0 hertz frequency reference. When the state is off, the front panel display indicates the true signal generator frequency.

Example
:FREQ:REF:STAT OFF
The preceding example turns off the reference frequency mode.

*RST 0
Key Entry Freq Ref Off On

:FREQuency:SPAN
Supported All with Option 007
[:SOURce]:FREQuency:SPAN <num>[<freq_suffix>] |UP|DOWN
[:SOURce]:FREQuency:SPAN? [MAXimum|MINimum]
This command sets the length of the frequency range for a ramp sweep. Span setting is symmetrically divided by the selected center frequency and is coupled to the start and stop frequency settings. The span range is dependent on the signal generator model and option number.

Example
Basic Function Commands
Frequency Subsystem ([;SOURce])

[:FREQ:SPAN 100MHz]
The preceding example sets the frequency span to 100 megahertz.

*RST +0.0000000000000E+00
Key Entry Freq Span

[:FREQ:STARt]
Supported All Models
[:SOURce]:FREQuency:STARt <val><units>
[:SOURce]:FREQuency:STARt?
This command sets the frequency start point for a step sweep or ramp sweep (Option 007). In a ramp sweep setup, the selected value must be less than or equal to the value selected for the frequency stop point. In ramp sweep, this setting is coupled with the span and center frequency settings.

Refer to [:LEVel][:IMMediate][:AMPLitude] command for frequency and power specifications for different signal generator options and model numbers.

Example

*:FREQ:STAR 1GHZ
The preceding example sets the start frequency for a sweep to 1 GHz.

*RST Option 513: +1.3000000000000E+10
Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.0000000000000E+10
Option 544: +4.40000000000000E+10
Option 550: +5.00000000000000E+10
Option 567: +6.70000000000000E+10

Range Option 513: 250kHZ–13GHZ
Option 520: 250kHZ–20GHZ
Option 532: 250kHZ–32GHZ
Basic Function Commands
Frequency Subsystem [:SOURce])

:FRQ:STOP

Supported All Models
[:SOURce]:FRQ:STOP <val><units>
[:SOURce]:FRQ:STOP?

This command sets the stop frequency for a step sweep or ramp sweep (Option 007). In a ramp sweep setup, the selected value must be greater than or equal to the value selected for the frequency start point. In ramp sweep, this setting is coupled with the span and center frequency settings.

Refer to [:LEV]::IMMediate[:AMPLitude] command for frequency and power specifications for different signal generator options and model numbers.

Example
:FREQ:STOP 10GHZ

The preceding example sets the stop frequency for a sweep to 10 GHz.

*RST

Option 513: +1.3000000000000E+10
Option 520: +2.0000000000000E+10
Option 532: +3.2000000000000E+10
Option 540: +4.0000000000000E+10
Option 544: +4.4000000000000E+10
Option 550: +5.0000000000000E+10
Option 567: +6.7000000000000E+10

Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

a. 67–70 GHz performance not specified
Basic Function Commands
Frequency Subsystem ([:SOURce])

Key Entry

Freq Stop

`:FREQuency[:CW]`

Supported All Models

[:SOURce]:FREQuency[:CW] <val><unit>|UP|DOWN

[:SOURce]:FREQuency[:CW]?

This command sets the signal generator output frequency for the CW frequency mode, or increments or decrements the current RF frequency setting.

- **<val>** A frequency value.
- **UP** Increases the current frequency setting by the value set with the :FREQuency[:CW]:STEP[:INCRement] command found on page 146. The front panel up arrow key performs the same function.
- **DOWN** Decreases the current frequency setting by the value set with the :FREQuency[:CW]:STEP[:INCRement] command found on page 146. The front panel down arrow key performs the same function.

To set the frequency mode to CW, refer to “:FREQuency:MODE” on page 139.

Example

`:FREQ 12GHZ`

The preceding example sets signal generator’s output frequency to 12 GHz.

RST Option 513: +1.3000000000000E+10

Range

Option 513: 250kHZ–13GHZ

Option 520: 250kHZ–20GHZ

Option 532: 250kHZ–32GHZ

Option 540: 250kHZ–40GHZ

Option 544: 250kHZ–44GHZ

Option 550: 250kHZ–50GHZ

Option 567: 250kHZ–70GHZ

a. 67–70 GHz performance not specified
Basic Function Commands
Frequency Subsystem ([SOURce])

Key Entry

Frequency

:SREQuency[:CW]:STEP[:INCRement]

Supported All Models

[:SOURce]:FREQuency[:CW]:STEP[:INCRement] <val><unit>
[:SOURce]:FREQuency[:CW]:STEP[:INCRement]?

This command sets the incremental step value for the frequency parameter. The value set with this command is not affected by *RST or a power cycle.

Range .01 Hz to 99 GHz

Key Entry Incr Set

Option 520: +2.0000000000000E+10
Option 532: +3.20000000000000E+10
Option 540: +4.00000000000000E+10
Option 544: +4.40000000000000E+10
Option 550: +5.00000000000000E+10
Option 567: +6.70000000000000E+10

Range Option 513: 250kHz–13GHz
Option 520: 250kHz–20GHz
Option 532: 250kHz–32GHz
Option 540: 250kHz–40GHz
Option 544: 250kHz–44GHz
Option 550: 250kHz–50GHz
Option 567: 250kHz–70GHz

a. 67–70 GHz performance not specified
Basic Function Commands
Frequency Subsystem ([SOURce])

[:FREQuency:SYNThesis[:MODE]]

Supported All Models with Option UNY

[:SOURce]:FREQuency:SYNThesis[:MODE] 1 | 2
[:SOURce]:FREQuency:SYNThesis[:MODE]?

This command sets the phase-lock loop (PLL) bandwidth to optimize phase noise for offsets above and below 150 kHz.

1 This choice will select mode 1, which optimizes phase noise at offsets below 150 kHz.

2 This choice will select mode 2, which optimizes phase noise at offsets above 150 kHz.

*RST +1

Key Entry Optimize Phase Noise

[:FREQuency:SYNThesis:SWEep:FREQuency]?

Supported All Models with Option UNY

[:SOURce]:FREQuency:SYNThesis:SWEep:FREQuency?

This command is used to query the current system frequency during a phase continuous sweep.

[:FREQuency:SYNThesis:SWEep[:GOTO] <freq>,<rate>

Supported All Models with Option UNY

[:SOURce]:FREQuency:SYNThesis:SWEep[:GOTO] <freq>,<rate>

This command combines the setup of target frequency and rate with the start.

[:FREQuency:SYNThesis:SWEep:RATE

Supported All Models with Option UNY

This command specifies the global sweep rate for a phase continuous frequency sweep. This global sweep rate can also be referenced from within a list sweep.

*RST 1 kHz/s

Key Entry (only available when the Phase Continuous Mode is ON)

Frequency Sweep Rate

Keystone E8257D/67D & E8663D PSG Signal Generators SCPI Command Reference 147
Basic Function Commands
Frequency Subsystem [:SOURce]

:FREQuency:SYNThesis:SWEep:STATe

Supported
All Models with Option UNY

[:SOURce]:FREQuency:SYNThesis:SWEep:STATe
START | PAUSE | CONTinue

[:SOURce]:FREQuency:SYNThesis:SWEep:STATe? (returns OFF | RUN | PAUS | END)

These commands pause or continue a phase continuous frequency sweep.

*RST
OFF

Key Entry
(only available when the Phase Continuous Mode is ON)

Frequency
Start Phase Continuous Sweep
Frequency Pause / Continue Phase Continuous Sweep
Basic Function Commands
Frequency Subsystem ([:SOURce])

: FREQuency:SYNThesis:SWEep:TARGet

Supported All Models with Option UNY
[[:SOURce]: FREQuency:SYNThesis:SWEep:TARGet <freq in Hz>
[[:SOURce]: FREQuency:SYNThesis:SWEep:TARGet?

This command specifies the target frequency for a phase continuous frequency sweep.

*RST 1 GHz
Key Entry (only available when the Phase Continuous Mode is ON)

Frequency Target Freq

: PHASe:REFerence

Supported All Models
[[:SOURce]: PHASe:REFerence

This command sets the output phase reference to zero. Subsequent phase adjustments are set relative to the new reference.

Key Entry Phase Ref Set

: PHASe[:ADJust]

Supported All Models
[[:SOURce]: PHASe[:ADJust] <val><unit>
[[:SOURce]: PHASe[:ADJust]?

This command adjusts the phase of the modulating signal. The query returns values in radians.

Example

:PHAS 30DEG

The preceding example sets the phase of the modulating signal to 30 degrees relative to the previous phase setting.

*RST +0.00000000E+000

Range Radians: -3.14 to 3.14RAD Degrees: -180 to 179DEG

Key Entry Adjust Phase

: RADio[1]:ARB:WAVeform:SEGMenTs?

Supported E8267D

[[:SOURce]: RADio[1]:ARB:WAVeform:SEGMenTs? MAXimum|MINimum
Basic Function Commands
Frequency Subsystem ([:SOURce])

This command returns the minimum or maximum number of segments in a sequence.

Example

:ROSCillator:BANDwidth:DEFaults

Supported: All Models with Option UNR/UNX/UNY

[:SOURce]:ROSCillator:BANDwidth:DEFaults
This command resets the bandwidth of the reference oscillator to the factory–defined default state. The default value for the internal reference bandwidth is 125 Hz. The default value for the external reference bandwidth is listed below.

<table>
<thead>
<tr>
<th>Option</th>
<th>Internal Reference</th>
<th>External Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNR</td>
<td>125 Hz</td>
<td>25 Hz</td>
</tr>
<tr>
<td>UNX</td>
<td>125 Hz</td>
<td>650 Hz</td>
</tr>
<tr>
<td>UNY</td>
<td>125 Hz</td>
<td>650 Hz</td>
</tr>
</tbody>
</table>

Key Entry: Restore Factory Defaults

:ROSCillator:BANDwidth:EXTernal

Supported: All Models with Option UNR/UNX/UNY

[[:SOURce]]:ROSCillator:BANDwidth:EXTernal
25HZ | 55HZ | 125HZ | 300HZ | 650HZ
[:SOURce]:ROSCillator:BANDwidth:EXTernal?

This command sets the bandwidth of the internal reference oscillator when an external reference is applied.

Example
:ROSC:BAND:EXT 300HZ
The preceding example sets the bandwidth of the internal oscillator to 300 hertz.

Key Entry: External Ref Band width

:ROSCillator:BANDwidth:INTerneal

Supported: All Models with Option UNR/UNX/UNY
Basic Function Commands
Frequency Subsystem [:SOURce]

[:SOURce]:ROSCillator:BANDwidth:INTernal
25HZ|55HZ|125HZ|300HZ|650HZ
[:SOURce]:ROSCillator:BANDwidth:INTernal?

This command sets the bandwidth of the internal reference oscillator.

Example

:ROSC:BAND:INT 125HZ

The preceding example sets the bandwidth of the internal oscillator to 125 hertz.

Key Entry Internal Ref Bandwidth

:ROSCillator:SOURce:AUTO

Supported All Models without Option UNR/UNX/UNY

[:SOURce]:ROSCillator:SOURce:AUTO ON|OFF|1|0
[:SOURce]:ROSCillator:SOURce:AUTO?

This command enables or disables the ability of the signal generator to automatically select between the internal and an external reference oscillator.

ON (1) This choice enables the signal generator to detect when a valid reference signal is present at the 10 MHz IN connector and automatically switches from internal to external frequency reference.

OFF (0) This choice selects the internal reference oscillator and disables the switching capability between the internal and an external frequency reference.

Example

:ROSC:SOUR:AUTO 0

The preceding example turns off the automatic selection of internal or external reference oscillators.

*RST 1

Key Entry Ref Oscillator Source Auto Off On

:ROSCillator:SOURce

Supported All Models

[:SOURce]:ROSCillator:SOURce?

This command queries the reference oscillator source: INT (internal) or EXT (external).
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

List/Sweep Subsystem ([:SOURce])

A complete sweep setup requires commands from other subsystems. Table shows the function and location of these commands.

Table 3-1 Location of Commands from the other Subsystems

<table>
<thead>
<tr>
<th>Sweep Type</th>
<th>Function</th>
<th>Command Location</th>
<th>Key Entry under Sweep/List key</th>
</tr>
</thead>
<tbody>
<tr>
<td>List and Step</td>
<td>Start/stop frequency sweep</td>
<td>"FREQuency:MODE" on page 139</td>
<td>Freq Off</td>
</tr>
<tr>
<td></td>
<td>Start/stop amplitude sweep</td>
<td>"MODE" on page 177</td>
<td>Ampl Off</td>
</tr>
<tr>
<td></td>
<td>Start/stop frequency and amplitude sweep</td>
<td>"MODE" on page 177</td>
<td>Freq & Ampl Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"FREQuency:MODE" on page 139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set up & control sweep triggering</td>
<td>"Trigger Sweep Subsystem ([:SOURce])" on page 185</td>
<td>See the Trigger Sweep Subsystem ([:SOURce])</td>
</tr>
<tr>
<td>Step</td>
<td>Start frequency sweep</td>
<td>"FREQuency:STARt" on page 143</td>
<td>Freq Start</td>
</tr>
<tr>
<td></td>
<td>Stop frequency sweep</td>
<td>"FREQuency:STOP" on page 144</td>
<td>Freq Stop</td>
</tr>
<tr>
<td></td>
<td>Start amplitude sweep</td>
<td>"STARt" on page 182</td>
<td>Ampl Start</td>
</tr>
<tr>
<td></td>
<td>Stop amplitude sweep</td>
<td>"STOP" on page 182</td>
<td>Ampl Stop</td>
</tr>
</tbody>
</table>

a. Execute both commands to start or stop a frequency and amplitude sweep.
b. For point to point triggering, see "LIST:TRIGger:SOURce" on page 157.

:LIST:DIRection

Supported All Models

[::SOURce]:LIST:DIRection UP|DOWN
[::SOURce]:LIST:DIRection?

This command sets the direction of a list or step sweep.

UP This choice enables a sweep in an ascending order:
 – first to last point for a list sweep
 – start to stop for a step sweep

DOWN This choice reverses the direction of the sweep.

Example

:LIST:DIR UP
The preceding example selects an ascending sweep direction.

*RST UP
Basic Function Commands

List/Sweep Subsystem ([:SOURce])

Key Entry

<table>
<thead>
<tr>
<th>Sweep Direction</th>
<th>Down</th>
<th>Up</th>
</tr>
</thead>
</table>

:LIST:DWELL

Supported All Models

`:SOURce`:LIST:DWELL `<val>`, `<val>`

`:SOURce`:LIST:DWELL?

This command sets the dwell time for points in the current list sweep.

The variable `<val>` is expressed in units of seconds with a 0.001 resolution. If only one point is specified, that value is used for all points in the list. Otherwise, there must be a dwell point for each frequency and amplitude point in the list.

NOTE

The dwell time `<val>` does not begin until the signal generator frequency and/or amplitude change has settled.

Dwell time is used when **IMMediate** is the trigger source. Refer to :LIST:TRIGGER:SOURce command for the trigger setting.

The dwell time is the amount of time the sweep pauses after setting the frequency and/or power for the current point.

The setting enabled by this command is not affected by a signal generator power cycle, preset, or **:*RST** command.

Example

`:LIST:DWEL 1, 1.2, 1.1, 2, 3`

The preceding example sets the dwell time for a list of five points.

Range 0.001 to 60 seconds

:LIST:DWELL:POINts

Supported All Models

`:SOURce`:LIST:DWELL:POINts?

This command queries the signal generator for the number of dwell points in the list sweep file.

:LIST:DWELL:TYPE

Supported All Models

`:SOURce`:LIST:DWELL:TYPE LIST|STEP

`:SOURce`:LIST:DWELL:TYPE?

This command toggles the dwell time for the list sweep points between the values defined in the list sweep and the value for the step sweep.
Basic Function Commands
List/Sweep Subsystem ([SOURce])

LIST This choice selects the dwell times from the list sweep. Refer to :LIST:DWELL command for setting the list dwell points.

STEP This choice selects the dwell time from the step sweep. Refer to :SWEep:DWELL command for setting the step dwell.

Example

:LIST:DWELL:TYPE STEP
The preceding example selects the dwell time from step sweep values.

*RST
LIST

Key Entry
Dwell Type List Step

:LIST:FREQuency

Supported All Models

[:SOURce]:LIST:FREQuency <val>{,<val>}
[:SOURce]:LIST:FREQuency?

This command sets the frequency values for the current list sweep points. The maximum number of points is 3201. The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

The variable <val> is expressed in hertz.

For signal generator frequency and power specifications, refer to “[:LEVEL][:IMMediate][:AMPLitude]” on page 183.

Example

:LIST:FREQ 10GHZ,12GHZ,14GHZ,16GHZ
The preceding example sets the frequency value for a four point sweep.

*RST

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>+1.30000000000000E+10</td>
</tr>
<tr>
<td>520</td>
<td>+2.00000000000000E+10</td>
</tr>
<tr>
<td>532</td>
<td>+3.20000000000000E+10</td>
</tr>
<tr>
<td>540</td>
<td>+4.00000000000000E+10</td>
</tr>
<tr>
<td>544</td>
<td>+4.40000000000000E+10</td>
</tr>
<tr>
<td>550</td>
<td>+5.00000000000000E+10</td>
</tr>
<tr>
<td>567</td>
<td>+6.70000000000000E+10</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>Option</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>250kHz–13GHz</td>
</tr>
<tr>
<td>520</td>
<td>250kHz–20GHz</td>
</tr>
</tbody>
</table>
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

List/Sweep Subsystem ([:SOURce])

[:SOURce]:LIST:FREQuency:POINts

Supported All Models

[:SOURce]:LIST:FREQuency:POINts?

This command queries the current list sweep file for the number of frequency points.

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?

This command selects a list point or step sweep point as the current sweep point controlling the frequency and power output. If list or step mode is controlling frequency or power, or both, the indexed point in the respective list(s) is used. The MANual mode must be selected and sweep enabled for this command to have an effect. For information on setting the proper mode, see the :LIST:MODE command.

If the point selected is beyond the length of the longest enabled list, the point sets to the maximum possible point, and an error is generated.

Example

:LIST:MAN UP

The preceding example selects the next positive direction, sequential point in the list.

Range List Sweep: 1 to 3201

Step Sweep: 1 to 65535

Key Entry Manual Point

[:SOURce]:LIST:MANual <val> |UP|DOWN

[:SOURce]:LIST:MANual?
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

[:SOURce]:LIST:MODE AUTO|MANual
[:SOURce]:LIST:MODE?

This command sets the operating mode for the current list or step sweep.

AUTO This choice enables the selected sweep type to perform a sweep of all points.

MANual This choice enables you to select an individual sweep point to control the RF output parameters. For more about selecting a sweep point, see “:LIST:MANual” on page 155.

Example

[:LIST:MODE AUTO]

The preceding example sets the mode to automatic.

*RST AUTO

Key Entry Manual Mode Off On

[:LIST:POWer]

Supported All Models

[:SOURce]:LIST:POWer <val>{,<val>}
[:SOURce]:LIST:POWer?

This command sets the amplitude for the current list sweep points.

The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

During an amplitude sweep operation, signal generators with Option 1E1 protect the step attenuator by automatically switching to attenuator hold mode (OFF). The attenuator locks at its current setting and the amplitude sweep range is limited to 40 dB. The maximum number of points is 3201.

Example

[:LIST:POW .1,.2,.1,.3,.1,–.1]

The preceding example sets the power level for a six point sweep list.

Range See also: “[:LEVel][:IMMediate][:AMPLitude]” on page 183.

[:LIST:POWer:POINts]

Supported All Models

[:SOURce]:LIST:POWer:POINts?

This command queries the number of power points in the current list sweep file.
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

:LIST:RATE

Supported All Models

:LIST:RATE <val>{,<val>} (value 0 to use global rate, -1 for jump)

This command sets the frequency values for the sweep rate of a phase continuous sweep. When the rate is set to 0 “Global Rate” or a specific rate value, the LIST:FREQ turns into the Target Frequency for that point.

The Dwell time (LIST:DWELL) would take place after the point is reached.

With a rate of -1 “JUMP”, the LIST:FREQ is the conventional FREQ:CW

:LIST:RATE:POINts?

Supported All Models

:LIST:RATE:POINts?

This command queries the current list sweep file for the number of sweep rate points.

:LIST:RETRace

Supported All Models

[:SOURce]:LIST:RETRace ON|OFF|1|0

[:SOURce]:LIST:RETRace?

Upon completion of a single sweep operation, this command either resets the sweep to the first sweep point, or leaves it at the last sweep point. The command is valid for the list, step, or ramp (Option 007) single–sweep modes.

ON (1) The sweep resets to the first sweep point.
OFF (0) The sweep stays at the last sweep point.

Example

:LIST:RETR 1

The preceding example sets the retrace on. The sweep will reset to the first point after completing a sweep.

*RST 1

Key Entry Sweep Retrace Off On

:LIST:TRIGger:SOURce

Supported All Models
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

`:SOURce`:LIST:TRIGger:SOURce BUS|IMMediate|EXTernal|KEY
`:SOURce`:LIST:TRIGger:SOURce?
This command sets the trigger source for a list or step sweep event.
To set the sweep trigger, see “:TRIGger[:SEQUence]:SOURce” on page 125.

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>This choice enables GPIB triggering using the *TRG or GET command, or LAN and RS–232 triggering using the *TRG command.</td>
</tr>
<tr>
<td>IMMEDIATE</td>
<td>This choice enables immediate triggering of the sweep event.</td>
</tr>
<tr>
<td>EXTERNAL</td>
<td>This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.</td>
</tr>
<tr>
<td>KEY</td>
<td>This choice enables triggering by pressing the front panel Trigger hardkey.</td>
</tr>
</tbody>
</table>

Example

`:LIST:TRIG:SOUR BUS`
The preceding example sets the trigger source to the instrument BUS.

*RST IMM

:LIST:TYPE

Supported All Models

`:SOURce`:LIST:TYPE LIST|STEP
`:SOURce`:LIST:TYPE?

This command selects the sweep type.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST</td>
<td>This type of sweep has arbitrary frequencies and amplitudes.</td>
</tr>
<tr>
<td>STEP</td>
<td>This type of sweep has equally spaced frequencies and amplitudes.</td>
</tr>
</tbody>
</table>

Example

`:LIST:TYPE LIST`
The preceding example selects list as the sweep type.

*RST STEP

Key Entry Sweep Type List Step
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

:LIST:TYPE:LIST:INITialize:FSTep

Supported All Models

CAUTION

When you execute this command, the current list sweep data is overwritten. If needed, save the current data. For information on storing list sweep files, see ":STORe:LIST" on page 67.

[>:SOURce]:LIST:TYPE:LIST:INITialize:FSTep

This command replaces the loaded list sweep data with the settings from the current step sweep data points. You can have only one sweep list at a time.

The maximum number of list sweep points is 1,601. When copying the step sweep settings over to a list sweep, ensure that the number of points in the step sweep do not exceed the maximum list sweep points.

Key Entry Load List From Step Sweep
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

:LIST:TYPE:LIST:INITialize:PRESet

Supported All Models

When you execute this command, the current list sweep data is overwritten. If needed, save the current data. For information on storing list sweep files, see "*:STORe:LIST" on page 67.

[[:SOURce]:LIST:TYPE:LIST:INITialize:PRESet

This command replaces the current list sweep data with a factory–defined file consisting of one point at a frequency, amplitude, and dwell time.

Key Entry Preset List

:SWEep:CONTrol:STATe

Supported All models with Option 007

[[:SOURce]:SWEep:CONTrol:STATe ON|OFF|1|0
[[:SOURce]:SWEep:CONTrol:STATe?

This command sets the sweep control state for a PSG in a dual–PSG ramp sweep setup. When the sweep control is on, you can designate whether the PSG is operating as the master or the slave. For information on setting master and slave designations, see “:SWEep:CONTrol:TYPE” on page 160.

The dual–PSG ramp sweep setup uses a serial cable to connect the two signal generators. This connection enables one PSG to function as the master so that sweep, bandcross, and retrace times are synchronized between the two. Each PSG can have a different sweep range, but they must have identical sweep time settings.

Example

:SWE:p:CONT:STAT 1

The preceding example sets the sweep control state to on.

*RST 0

Key Entry Sweep Control

:SWEep:CONTrol:TYPE

Supported All models with Option 007

[[:SOURce]:SWEep:CONTrol:TYPE MASTer|SLAVe
[[:SOURce]:SWEep:CONTrol:TYPE?

In a dual–PSG ramp sweep setup, this command designates whether the PSG is performing as the master or the slave. The master/slave setup requires two signal generators from the same instrument family. Refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide for more information.
Basic Function Commands
List/Sweep Subsystem ([SOURce])

MASTer
This choice enables the PSG to provide the triggering.

SLAVe
This choice causes the PSG to submit to the triggering parameters provided by the master PSG. You must set the slave PSG triggering to CONTinuous using the :INITiate::CONTinue[:ALL] command.

Example
:SWE:CONT:TYPE MAST

The preceding example sets the PSG as the master sweep control instrument.

*RST
0

Key Entry
Master or Slave

:SWEep:DWELl

Supported
All Models

[:SOURce]:SWEep:DWELl <val>
[:SOURce]:SWEep:DWELl?

This command enables you to set the dwell time for a step sweep.
The variable <val> is expressed in seconds with a 0.001 resolution.

The dwell time <val> does not begin until the signal generator has settled for the current frequency and/or amplitude change.

Dwell time is used when the trigger source is set to IMMEDIATE.
For the trigger setting, refer to “:LIST:TRIGger:SOURce” on page 157.
The dwell time is the amount of time the sweep pauses after setting the frequency or power, or both, for the current point.

Example
:SWE:DWEL .1

The preceding example sets the dwell time for a step sweep to 100 milliseconds.

*RST
+2.00000000E−003

Range
0.001 ms to 60 seconds

Key Entry
Step Dwell

:SWEep:GENeration

Supported
All models with Option 007

[:SOURce]:SWEep:GENeration ANALog|STEPped
[:SOURce]:SWEep:GENeration?
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

This command sets the sweep type to analog or stepped.

ANALog
This choice selects a ramp sweep.

STEPped
This choice selects a step sweep.

Example
:SWE:GEN STEP
The preceding example selects a step sweep.

*RST STEP

Key Entry Sweep Type

:SWEep:MODE

Supported All models with Option 007

[:SOURce] :SWEep:MODE AUTO | MANual
[:SOURce] :SWEep:MODE?

This command sets the current ramp sweep operating mode.

AUTO
This choice enables the signal generator to automatically sweep through the selected frequency range.

MANual
This choice enables you to select a single frequency value within the current sweep range to control the RF output. For information on selecting the frequency value, see “:FREQuency:MANual” on page 138.

Example
:SWE:MODE AUTO

The preceding example sets the signal generator to automatically complete a sweep.

*RST AUTO

Key Entry Manual Mode Off On
Basic Function Commands
List/Sweep Subsystem [:SOURce]

:SWEep:POINts

Supported All Models

[:SOURce]:SWEep:POINts <val>
[:SOURce]:SWEep:POINts?

This command enables you to define the number of points in a step sweep.

Example

:SWE:POIN 2001

The preceding example sets the number of step sweep points to 2001.

*RST 2
Range 2 to 65535
Key Entry # Points

:SWEep:TIME

Supported All models with Option 007

[:SOURce]:SWEep:TIME <val><units>
[:SOURce]:SWEep:TIME?

This command enables you to set the sweep time for a ramp sweep in seconds. If this command is executed while the signal generator is in automatic sweep time mode, the manual sweep time mode is activated and the new sweep time value is applied. The sweep time cannot be set to a value faster than what the automatic mode provides.

The sweep time is the duration of the sweep from the start frequency to the stop frequency. It does not include the bandcross time that occurs during a sweep or the retrace time that occurs between sweep repetitions.

Example

:SWE:TIME .250

The preceding example sets the ramp sweep time to 250 milliseconds.

*RST 1.00000000E−002
Range 10 ms to 99 seconds
Key Entry Sweep Time

:SWEep:TIME:AUTO

Supported All models with Option 007

[:SOURce]:SWEep:TIME:AUTO ON|OFF|0|1
[:SOURce]:SWEep:TIME:AUTO?
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

This command enables you to set the sweep time mode for a ramp sweep.

The sweep time is the duration of the sweep from the start frequency to the stop frequency. It does not include the bandcross time that occurs during a sweep or the retrace time that occurs between sweep repetitions.

ON (1) This choice enables the signal generator to automatically calculate and set the fastest allowable sweep time.

OFF (0) This choice enables you to select the sweep time. The sweep time cannot be set to a value faster than what the automatic mode provides. To set the sweep time refer to “:SWeep:TIME” on page 163.

Example

:SWE:TIME:_AUTO 0

The preceding example sets the ramp sweep time to manual allowing you to select a sweep time.

*RST 1

Key Entry Sweep Time Manual Auto
Basic Function Commands
Marker Subsystem–Option 007 ([:SOURce])

:MARKer:AMPLitude[:STATe]

Supported All models with Option 007

[:SOURce]:MARKer:AMPLitude[:STATe] ON|OFF|1|0
[:SOURce]:MARKer:AMPLitude[:STATe]?

This command sets the amplitude marker state for the currently activated markers. When the state is switched on, the RF output signal exhibits a spike with a magnitude relative to the power level at each marker’s set frequency. (To set the magnitude of the spike, refer to :MARKer:AMPLitude:VALue command.) The width of the amplitude spike is a nominal eight buckets, based on 1601 buckets per sweep.

Example
:MARK:AMPL ON

The preceding example enables amplitude markers.

*RST 0
Key Entry Amplitude Markers Off On

:MARKer:AMPLitude:VALue

Supported All models with Option 007

[:SOURce]:MARKer:AMPLitude:VALue <num>[DB]
[:SOURce]:MARKer:AMPLitude:VALue?

This command sets the relative power for the amplitude spikes at each marker’s set frequency when the amplitude marker mode is activated. (To activate the amplitude markers, refer to “:MARKer:AMPLitude[:STATe]” on page 165.)

Example
:MARK:AMPL:VAL 4DB

The preceding example sets the relative marker power to 4 dB for all markers.

*RST 2dB
Range −10 to +10 dB
Key Entry Marker Value

:MARKer:AOFF

Supported All models with Option 007

[:SOURce]:MARKer:AOFF
Basic Function Commands
Marker Subsystem–Option 007 ([:SOURce])

This command turns off all active markers.

Key Entry
Turn Off Markers

`:MARKer:DELTa?`

Supported
All models with Option 007

[:SOURce]:MARKer:DELTa? <num>,<num>

This query returns the frequency difference between two amplitude markers. The variables <num> are used to designate the marker numbers.

Example

:MARK:DELT? 1,2

The preceding example returns the frequency difference between amplitude markers 1 and 2.

Range
0 to 9

`:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency`

Supported
All models with Option 007

[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency <val><unit>
[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9]:FREQuency?
MAXimum|MINimum

This command sets the frequency for a specific marker. If the marker designator [n] is not specified, marker 0 is the default. The frequency value must be within the current start, stop, frequency sweep range. Using the MAXimum or MINimum parameters in the query will return the frequency boundary values for the markers.

If the marker frequency mode is set to delta when the query is sent, the returned value is not absolute, but is relative to the reference marker. (See the :MARKer:MODe command for more information.)

Example

:MARK2:FREQ 10GHZ

The preceding example places amplitude marker 2 at 10 GHz.

*RST +5.25000000E+008

Range
Equivalent to current sweep range

Key Entry
Marker Freq
Basic Function Commands
Marker Subsystem–Option 007 ([:SOURce])

:MARKer:MODE

Supported
All Models with Option 007

[:SOURce]:MARKer:MODE FREquency|DELTa
[:SOURce]:MARKer:MODE?

This command sets the frequency mode for all markers.

FREQuency The frequency values for the markers are absolute.
DELTa The frequency values for the markers are relative to the designated reference marker. The reference marker must be designated before this mode is selected. (See the :MARKer:REFerence command to select a reference marker.)

Example

:MARK:MODE DELT

The preceding example sets the marker mode to delta.

*RST FREquency

Key Entry Marker Delta
Off On

:MARKer:REFerence

Supported
All models with Option 007

[:SOURce]:MARKer:REFerence <marker>
[:SOURce]:MARKer:REFerence?

This command designates the reference marker when using markers in delta mode. The variable <marker> designates the marker number.

Example

:MARK:REF 6

The preceding example sets marker 6 as the reference marker.

*RST 0
Range 0 to 9
Key Entry Delta Ref Set

:MARKer[0,1,2,3,4,5,6,7,8,9][:STATE]

Supported
All models with Option 007

[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9][:STATE] ON|OFF|1|0
[:SOURce]:MARKer[0,1,2,3,4,5,6,7,8,9][:STATE]?
Basic Function Commands
Marker Subsystem–Option 007 ([:SOURce])

This command turns a marker on or off. Marker 0 is the default if the marker
designator \([n]\) is not specified.

Example

`:MARK6 ON`

The preceding example turns marker 6 on.

`*RST 0`

Key Entry

* Marker On Off
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

Power Subsystem ([SOURce]:POWer)

:ALC:BANDwidth|BWIDth

Supported All Models

[:SOURce]:POWer:ALC:BANDwidth|BWIDth <num>[<freq_suffix>] [:SOURce]:POWer:ALC:BANDwidth|BWIDth?

This command sets the bandwidth of the automatic leveling control (ALC) loop. You can select bandwidths of 100 Hz, 1 kHz, 10 kHz, or 100kHz. If you do not specify one of these exact bandwidths, your entry rounds to the nearest acceptable value. The bandwidth choices for this command are not effective if an internal I/Q source is being used. Refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide for information on ALC and bandwidth considerations.

Example

:POW:ALC:BWID 1KHZ

The preceding example sets the ALC bandwidth to 1 kHz.

*RST 100.0

Key Entry ALC BW

:ALC:BANDwidth|BWIDth:AUTO

Supported All Models

[:SOURce]:POWer:ALC:BANDwidth|BWIDth:AUTO ON|OFF|1|0 [:SOURce]:POWer:ALC:BANDwidth|BWIDth:AUTO?

This command sets the state of the automatic leveling control (ALC) automatic bandwidth function. When this state is turned on, the signal generator automatically selects the optimum bandwidth for the ALC.

Example

:POW:ALC:BWID:AUTO 0

The preceding example disables the automatic bandwidth optimizing function.

*RST 1

Key Entry ALC BW
Basic Function Commands
Power Subsystem (::SOURce::POWer)

:ALC:LEVEL

Supported E8257D/E8663D with Option 1E1 and E8267D

[::SOURce]:POWer:ALC:LEVEL <value>DB
[::SOURce]:POWer:ALC:LEVEL?

This command sets the automatic leveling control (ALC) level when the attenuator hold is active.

Use this command when the automatic attenuation mode is set to OFF (0). Refer to :ATTenuation:AUTO command for choosing the attenuator mode.

Example

[:POW:ALC:LEV] 10DB

The preceding example sets the ALC to 10 dB.

*RST +1.00000000E+000
Range –20 to 25 dB
Key Entry Set ALC Level

:ALC:RCPFilter

Supported E8257D/E8663D with Option HY2

[::SOURce]:POWer:ALC:RCPFilter:AUTO ON|OFF|1|0
[::SOURce]:POWer:ALC:RCPFilter:AUTO?
[::SOURce]:POWer:ALC:RCPFilter[:STATe] ON|OFF|1|0
[::SOURce]:POWer:ALC:RCPFilter?

These two commands together define the state of the RCP filter: AUTO, ON, or OFF. If AUTO is ON, any specified fixed value does not apply and the firmware will determine whether the filter is engaged or not.

Example

[:POW:ALC:RCPF]

The RCP filter reduces wideband AM noise on CW signals in ALC BWs <=10KHZ in certain bands.

*RST Auto
Range OFF (0) or ON (1)
Key Entry Amplitude->More->More->ALC RCP Filter Off On
Auto
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

:ALC:SEARch

Supported All Models

([SOURce]:POWer:ALC:SEARch MANUal|AUTO|SPAN

:SOURce:POWer:ALC:SEARch?**

Power Search is a cal routine which improves output power accuracy when ALC is off.

This command enables or disables the internal power search calibration. A power search is recommended for pulse–modulated signals with pulse widths less than one microsecond. Refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide for more information on ALC and the power search function.

Power search has three modes of operation:

Manual
This choice executes a single power search of the current RF output signal when the ‘Do Power Search’ key is pressed.

Auto
This choice executes the power search automatically with each change in RF frequency or power when the ‘Do Power Search’ key is pressed.

Span
The cal routine pre-computes the cal values over a range of frequencies and applies the values as the frequency changes. When the ‘Do Power Search’ key is pressed, the cal will pre-compute the cal values at all selected frequencies.

Selecting Span mode causes subsequent power searches done by pressing the ‘Do Power Search’ key to be performed over an entire range of frequencies at one time. The power search corrections are then stored and used whenever the signal generator is tuned within the selected range. Due to thermal drift, the power search values should be periodically recomputed.

Use this command when the automatic leveling control (ALC) state is set to OFF (0). Refer to :ALC[:STATe] command for setting the ALC state.

If ON was previously selected, executing ONCE will cause OFF to be the current selection after the power search is completed.

Example

:POW:ALC:SEAR ONCE

The preceding example starts a single power search of the RF output signal.
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

*RST 0

Key Entry Power Search Manual Do Power Search
Auto Span

:ALC:SEARch:REFerence

Supported All Models

[:SOURce]:POWer:ALC:SEARch:REFerence
RMS|FIXed|MANual|MODulated
[:SOURce]:POWer:ALC:SEARch:REFerence?

The Power Search Reference allows selection of the power search reference voltage used while the RF signal is being modulated.

During power search the I/Q modulator is biased with a voltage equivalent to the RMS level of the active ARB waveform. The RMS level of the ARB waveform can be computed by the user and set in the waveform header file. If the RMS level is not set in the waveform header file, the value will be computed by the firmware when the waveform is selected and played.

When power search is complete, the I/Q modulator bias is removed and the internal ARB signal is re-applied to the I/Q modulator.

The reference can be:

RMS Uses a DC bias equivalent to the current I/Q data. This selection is used only when the internal baseband generator (ARB) is active.

FIXed This selection is typically used with externally supplied I/Q modulating signals. During the power search, the I/Q modulation is disabled and the I/Q modulator is biased with a fixed 1.0 volt DC signal. This is equivalent to the specified external input signal level. When the power search is complete, the DC bias is removed and the I/Q signal is re-applied to the I/Q modulator.

MANual RMS This selection is typically used when the FIXed level of 1.0 volt is not appropriate for the external I/Q signal level or when the internal RMS calculated value is not representative of the desired power level. This selection requires the user to specify the DC bias level applied to the I/Q modulator during the power search.

MODulated This selection can be used with internally generated or externally applied I/Q modulation. When MOD is selected, the actual modulating signal is used to provide an AC I/Q bias on the I/Q modulator. Due to the time varying nature of the I/Q data, this search can take longer to settle and be less accurate than the other
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

reference bias types. This bias type is not recommended for use with bursted or low symbol rate modulation formats.

Example

:`POW:ALC:SEAR:REF FIX`

The preceding example selects a fixed voltage as the reference for a power search.

RST FIXed

NOTE

When the internal baseband generator is enabled, the reference is automatically set to RMS.

Key Entry Power Search Reference Fixed Mod

:`ALC:SEARch:REFerence:LEVel`

This function is only active when the power search reference type is set to Manual.

Supported All Models

`:[SOURce]:POWer:ALC:SEARch:REFerence:LEVel`
`:[SOURce]:POWer:ALC:SEARch:REFerence:LEVel?`

This command allows adjustment of the voltage level used as the power search reference when the reference type is set to MANual. Setting this voltage is equivalent to varying the waveform RMS voltage and is used to provide a DC bias on the I/Q modulator that approximates the level of the modulating voltage.

Example

:`POW:ALC:SEAR:REF:LEV 0.51`

The preceding example sets the power search reference level to .51 volts rms.

RST 1.0 V

Key Entry Power Search Reference Level

:`ALC:SEARch:SPAN:START`

Supported All Models

`:[SOURce]:POWer:ALC:SEARch:SPAN:START <val><units>`
`:[SOURce]:POWer:ALC:SEARch:SPAN:START?`
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

This command sets the start frequency for a power search over a user–defined range. The start frequency has no default value. The start frequency value will be set before powering off the instrument.

Example

:POW:ALC:SEAR:SPAN:START 12GHZ

The preceding example selects 12 GHz as the start frequency for a power search.

Key Entry

<table>
<thead>
<tr>
<th>Start Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ALC:SEARch:SPAN:STOP</td>
</tr>
</tbody>
</table>

Supported

All Models

[:SOURce]:POWer:ALC:SEARch:SPAN:STOP <val><units>
[:SOURce]:POWer:ALC:SEARch:SPAN:STOP?

This command sets the stop frequency for a power search over a user–defined range. The stop frequency has no default value. The stop frequency value will be set before powering off the instrument

Example

:POW:ALC:SEAR:SPAN:STOP 20GHZ

The preceding example selects 20 GHz as the stop frequency for a power search.

Key Entry

<table>
<thead>
<tr>
<th>Stop Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ALC:SEARch:SPAN:TYPE FULL</td>
</tr>
</tbody>
</table>

Supported

All Models

[:SOURce]:POWer:ALC:SEARch:SPAN:TYPE FULL|USER
[:SOURce]:POWer:ALC:SEARch:SPAN:TYPE?

This command enables you to select the frequency range for a power search. You can specify the range (USER) or you can select the full range (FULL) of the signal generator.

Example

:POW:ALC:SEAR:SPAN:TYPE USER

The preceding example selects a user–defined frequency range for the power search.

Key Entry

<table>
<thead>
<tr>
<th>Span Type User Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ALC:SEARch:SPAN[:STATe] ON</td>
</tr>
</tbody>
</table>

Supported

All Models
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

[:SOURce]:POWer:ALC:SEARch:SPAN [:STATe] ON|OFF|1|0
[:SOURce]:POWer:ALC:SEARch:SPAN [:STATe]?

This command enables (1) or disables (0) the span mode, allowing you to perform power searches over a selected range of frequencies. The power search corrections are then stored and used whenever the signal generator is tuned within the selected range.

Example

:POW:ALC:SEAR:SPAN ON

The preceding example enables the span mode.

:ALC:SOURce

Supported All Models

[:SOURce]:POWer:ALC:SOURce INTernal|DIODe|MMHead
[:SOURce]:POWer:ALC:SOURce?

This command enables you to select an automatic level control (ALC) source. You can select the internal ALC source, an external detector source, or a millimeter–wave source module. Refer to the E8257D/67D, E8663D PSG Signal Generators User's Guide for more information on ALC leveling, bandwidth, and the power search function.

Example

:POW:ALC:SOUR MMH

The preceding example selects a Keysight 8355x series external millimeter head as the source (the unit must be connected to the signal generator).

*RST INT

Key Entry Leveling Mode

:ALC:SOURce:EXTernal:COUPling

Supported All Models

[:SOURce]:POWer:ALC:SOURce:EXTernal:COUPling <value>DB
[:SOURce]:POWer:ALC:SOURce:EXTernal:COUPling?

This command sets the external detector coupling factor. Use the :ALC:SOURce command when DIODe is the selected ALC source. (0 to 32 coupling value).

Example

:POW:ALC:SOUR:EXT:COUP 20DB

The preceding example sets the external coupling factor to 20 dB.

*RST +1.60000000E+001
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

<table>
<thead>
<tr>
<th>Range</th>
<th>-200 to 200 dB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Ext Detector Coupling Factor</td>
</tr>
</tbody>
</table>

:ALC[:STATe]

Supported
All Models

```
[:SOURce]:POWer:ALC[:STATe]  ON|OFF|1|0
[:SOURce]:POWer:ALC[:STATe]?
```

This command enables or disables the automatic leveling control (ALC) circuit. The purpose of the ALC circuit is to hold output power at a desired level by adjusting the signal generator power circuits for power drift. Power will drift over time and with changes in temperature. Refer to the E8257D/67D, E8663D PSG Signal Generators User’s Guide for more information on the ALC.

Example

`:POW:ALC ON`

The preceding example sets the ALC on.

```
*RST 1
```

Key Entry
ALC Off On

:ATTenuation

Supported
E8257D/E8663D with Option 1E1 and E8267D

```
[:SOURce]:POWer:ATTenuation <val><unit>
[:SOURce]:POWer:ATTenuation?
```

This command sets the attenuation level when the attenuator hold is active. For the E8267D, the attenuation is set in increments of 5 dB. For the E8257D/E8663D with Option 1E1, the progression is 0, 5, 15, 25 and continues in 10 dB increments. For the E8257D with Option 550 or Option 567, the attenuation is set in increments of 10 dB with a range of 0 to 90 dB.

The output power is the ALC level minus the attenuator setting.

Use this command when the automatic attenuation mode is set to OFF (0). Refer to :ATTenuation:AUTO command for choosing the attenuator mode.

Example

`:POW:ATT 10DB`

The preceding example sets the attenuator to 10 dB.

```
*RST +115
```

Range
0 to 115 dB

Key Entry
Set Atten
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

:ATTenuation:AUTO

Supported E8257D/E8663D with Option 1E1 and E8267D

[:SOURce]:POWer:ATTenuation:AUTO ON|OFF|1|0
[:SOURce]:POWer:ATTenuation:AUTO?

This command sets the state of the attenuator hold function.

ON (1) This choice enables the attenuator to operate normally.
OFF (0) This choice holds the attenuator at its current setting or
 at a selected value that will not change during power
 adjustments.

OFF (0) eliminates the power discontinuity normally associated with the
attenuator switching during power adjustments. During an amplitude sweep
operation, signal generators with Option 1E1 protect the step attenuator by
automatically switching to attenuator hold mode (ON). The attenuator is
locked at its current setting and the amplitude sweep range is limited to 40 dB.

Example

:POW:ATT:AUTO OFF

The preceding example turns off the attenuator hold function.

*RST 1

Key Entry Atten Hold Off On

:MODE

Supported All Models

[:SOURce]:POWer:MODE FIXed|SWEep|LIST
[:SOURce]:POWer:MODE?

This command starts or stops an amplitude sweep and sets the power mode of
the signal generator.

FIXed This choice stops a power sweep and allows the signal
generator to operate at a fixed power level. Refer to
[:LEVel][:IMMediate][:AMPLitude] command for more
information on running power sweeps and setting CW
amplitude settings that control the output power.

SWEep The effects of this choice are determined by the sweep
generation type selected (refer to “:SWEep:GENERation”
on page 161). If you are using analog sweep
generation, the current ramp sweep amplitude settings
(start and stop) control the output power. If you are
using step sweep generation, the current step sweep
amplitude settings control the output power. In both
cases, this selection also activates the sweep. This
choice is available with Option 007 only.
Basic Function Commands
Power Subsystem [:SOURce]:POWer

LIST
This choice selects the swept power mode. If sweep triggering is set to immediate along with continuous sweep mode, executing the command starts the LIST or STEP frequency sweep.

NOTE
To perform a frequency and amplitude sweep, you must also select LIST or SWEep as the frequency mode (see ":FREQuency:MODE" on page 139).

Example
:POW:MODE LIST
The preceding example sets list as the amplitude sweep mode.

*RST
FIX
Key Entry Sweep Type Ampl Off Freq & Ampl

:NOIS[e][:STATe]
Supported All Models
[:SOURce]:POWer:NOIS[e][:STATe] ON|OFF|1|0
[:SOURce]:POWer:NOIS[e][:STATe]?
This command enables the optimize signal–to–noise ratio (SNR) state on or off. A front panel LED indicates an On state and optimizes the attenuator and ALC setting to provide optimal signal–to–noise performance; it does not change the RF output power.

NOTE
This mode is mutually exclusive with attenuator hold (Atten Hold), and any modulation type. A settings conflict error will be generated if attenuator hold or any modulation is activated when optimize signal–to–noise is active (On).

Example
:POW:NOIS ON
The preceding example enables the SNR On.

Default Off
Key Entry Optimize S/N Off/On

:POWer:LI MI t[::MAX]:ADJust
Supported E8257D/E8663D with Option 1E1 and E8267D
[:SOURce]:POWer:LI MI t[::MAX]:ADJust <ON|OFF|1|0>
[:SOURce]:POWer:LI MI t[::MAX]:ADJust?
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

This command locks or unlocks the RF output power limit adjust function. Refer to the Users Guide and to the Key Reference. See also “:POWer:LIMit[:MAX]” on page 179.

ON (1) Unlocks (sets to Adjust) the manual RF output power limit adjustment (i.e. The RF output limit can now be adjusted).

OFF (0) Locks the manual RF output power limit adjustment (i.e. The RF output limit cannot be adjusted). (This is the default.)

Example

:POW:LIM:ADJ ON

The preceding example unlocks the power limit adjust function (i.e. sets Power Limit Adjust to Adjust).

*RST 0

Key Entry RF Output Limit Lock Adjust

:POWer:LIMit[:MAX]

Supported E8257D/E8663D with Option 1E1 and E8267D

[:SOURce]:POWer:LIMit[:MAX] <amplitude>

[:SOURce]:POWer:LIMit[:MAX]?

This command sets the RF output power limit when the power limit adjust function has been set to Adjust. Refer to the Users Guide and to the Key Reference. See also “:POWer:LIMit[:MAX]:ADJust” on page 178.

Example

:POW:LIM 30 dBm

The preceding example sets the signal generator to 30 dBm of output power.

*RST 25 dBm

Key Entry RF Output Limit

:PROTection:STATe

Supported E8257D/E8663D with Option 1E1 and E8267D

[:SOURce]:POWer:PROTection[:STATe] ON|OFF|1|0

[:SOURce]:POWer:PROTection[:STATe]?

This command enables or disables the power search protection function. The power search protection function sets the attenuator to its maximum level whenever a power search is initiated. This can be used to protect devices that
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

are sensitive to high average power or high power changes. The trade off on using the power protection function is decreased attenuator life, as the attenuator will switch to its maximum setting during a power search.

NOTE
Continual or excessive use of the power search protection function can decrease attenuator life.

| ON (1) | Causes the attenuator to switch to and hold its maximum level setting during a power search. |
| OFF (0) | Sets the attenuator normal mode. The attenuator is not used during power search. |

Example

:POW:PROT ON

The preceding example enables the power inhibit function.

*RST 0

Key Entry RF During Power Search Normal Minimum
Basic Function Commands
Power Subsystem [:SOURce]:POWer

:REFerence

Supported All Models

[:SOURce]:POWer:REFerence <val><unit>
[:SOURce]:POWer:REFerence?

This command sets the power level for the signal generator RF output reference. The RF output power is referenced to the value entered in this command.

Example

:POW:REF 50DBM

The preceding example sets the RF output power reference to 50 dBm.

*RST +0.00000000E+000

Range -400 to 300 dBm

Key Entry Ampl Ref Set

:REFerence:STATe

Supported All Models

[:SOURce]:POWer:REFerence:STATe ON|OFF|1|0
[:SOURce]:POWer:REFerence:STATe?

This command enables or disables the RF output reference.

ON (1) Sets the power reference state ON. dB is the unit displayed for commands ("*:ANNotation:AMPLitude:UNIT" on page 34 and "*:POWer" on page 126).

OFF (0) Sets the power reference state OFF.

Once the reference state is ON, all subsequent output power settings are set relative to the reference value. Amplitude offsets can be used with the amplitude reference mode.

Example

:POW:REF:STAT 1

The preceding example sets the reference state on.

*RST 0

Key Entry Ampl Ref Off On
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

:SSTARt

Supported All Models

[:SOURce]:POWer:STARt <val><unit>
[:SOURce]:POWer:STARt?

This command sets the amplitude of the first point in a step or ramp sweep (Option 007).

During an amplitude sweep operation, signal generators with Option 1E1 protect the step attenuator by automatically switching to attenuator hold (ON) mode. The attenuator is locked at its current setting and the amplitude sweep range is limited to 40 dB.

Example

:POW:STAR -30DBM

The preceding example sets the amplitude of the first point in the sweep to −30 dBm.

RST Depends on model and option number

Range Refer to [:LEVel]:IMMediate[:AMPLitude] command for the output power ranges.

Key Entry Ampl Start

:STOP

Supported All Models

[:SOURce]:POWer:STOP <val><unit>
[:SOURce]:POWer:STOP?

This command sets the amplitude of the last point in a step or ramp sweep (Option 007).

During an amplitude sweep, signal generators with Option 1E1 protect the step attenuator by switching to attenuator hold (ON) mode. The attenuator is locked at its current setting and the amplitude sweep range is limited to 40 dB.

Example

:POW:STOP -10DBM

The preceding example sets the amplitude of the last point in the sweep to −10 dBm.

RST Depends on model and option number.

Range See the [:LEVel]:IMMediate[:AMPLitude] command for the available power ranges.

Key Entry Ampl Stop
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

[:LEVel][:IMMediate]:OFFSet

Supported All Models

[:SOURce]:POWer[:LEVel][:IMMediate]:OFFSet <val><unit>
[:SOURce]:POWer[:LEVel][:IMMediate]:OFFSet?

This command sets the power offset value as a dB power offset to the actual RF output. This simulates a power level at a test point beyond the RF OUTPUT connector without changing the actual RF output power. The offset value only affects the displayed amplitude setting.

You can enter an amplitude offset anytime in either normal operation or amplitude reference mode.

Example

:POW:OFFS 10DB

The preceding example sets the amplitude offset to 10 dB.

*RST +0.00000000E+000

Range –200 to 200 dB

Key Entry Ampl Offset

[:LEVel][:IMMediate][:AMPLitude]

Supported All Models

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] <val><unit>
[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]?

This command sets the RF output power.

The ranges for this command are specified values from the data sheet.

Example

:POW 0DBM

The preceding example sets the signal generator output power level to 0 dBm.

*RST Depends on model and option number

Range See data sheet

Key Entry Amplitude
Basic Function Commands
Power Subsystem [:SOURce]:POWer

[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCREment]

Supported All Models

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCREment] <val><unit>

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCREment]?

This command sets the increment value for the output power/amplitude. The increment values are persistent.

The ranges for this command are specified values from the data sheet.

*RST Value is persistent (Factory value is 1 dB).

Range .01 to 100 dB

Key Entry Incr Set
Basic Function Commands
Trigger Sweep Subsystem ([:SOURce])

Trigger Sweep Subsystem ([:SOURce])

:TSTWEEP

Supported All Models

[:SOURce]:TSTWEEP

This command aborts the current sweep, then either arms or arms and starts a single list, step, or ramp sweep (Option 007), depending on the trigger type.

The command performs the following:

– arms a single sweep when BUS, EXTERNAL, or KEY is the trigger source selection
– arms and starts a single sweep when IMMEDIATE is the trigger source selection

Key Entry Single Sweep
Basic Function Commands
Trigger Sweep Subsystem ([:SOURce])
This chapter provides SCPI descriptions for subsystems dedicated to the E8257D PSG Analog, E8663D PSG Analog and E8267D PSG Vector signal generators. The following is a list of the subsystems:

- “Amplitude Subsystem ([:SOURce])” on page 188
- “Frequency Modulation Subsystem ([:SOURce])” on page 200
- “Low Frequency Output Subsystem ([:SOURce]:LFOoutput)” on page 209
- “Phase Modulation Subsystem ([:SOURce])” on page 215
- “Pulse Modulation Subsystem ([:SOURce])” on page 226
Amplitude Subsystem ([:SOURce])

:AM[1]|2...

Supported All Models

[[SOURce]:AM[1]|2...

This prefix enables the selection of the AM path and is part of most SCPI commands associated with this subsystem. The two paths are equivalent to the AM Path 1 2 softkey.

AM1 AM Path 1 2 with 1 selected
AM2 AM Path 1 2 with 2 selected

When just AM is shown in a command, the command defaults to path 1.

Each path is set up separately. When a SCPI command uses AM1, only path one is affected. Consequently, when AM2 is selected, only path two is set up. However, the depth of the signals for the two paths can be coupled.

The two AM paths can be on at the same time provided the following conditions have been met:
- dual–sine or swept–sine is not one of the selections for the waveform type
- Each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

:AM:INTernal:FREQuency:STEP[:INCRement]

Supported All Models

[[SOURce]:AM:INTernal:FREQuency:STEP[:INCRement]<num>|MAXimum|MINimum|DEFault
[[SOURce]:AM:INTernal:FREQuency:STEP[:INCRement]?

This command sets the step value for the AM internal frequency.

The step value set by this command is used with the UP and DOWN choices for the :AM[1]|2:INTernal[1]|2:FREQuency command.

The step value set with this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:AM:INT:FREQ:STEP 1E3

The preceding example sets the step size to 1000 hertz.

Range 0.5 to 1E6
Key Entry Incr Set
Analog Commands
Amplitude Subsystem ([SOURce])

:AM:MODE

Supported All models with Option UNT

[:SOURce]:AM:MODE DEEP|NORMAL
[:SOURce]:AM:MODE?

This command sets the mode for amplitude modulation.

- **DEEP**: This choice enables amplitude modulation depth with a greater dynamic range than normal mode which utilizes the ALC. DEEP has no specified parameters and emulates the amplitude modulation NORMAL mode with the ALC disabled.
- **NORMAL**: This choice maintains the amplitude modulation standard behavior and has specified parameters as outlined in the data sheet.

The ALC is disabled when the carrier amplitude is less than –10 dBm and DEEP is the AM mode.

DEEP is limited to repetitive AM and will not work with a dc modulation signal.

Example

:AM:MODE NORM

The preceding example selects the normal mode for amplitude modulation.

*RST NORM

Key Entry AM Mode Normal Deep

:AM:POLarity

Supported Option UNT

[:SOURce]:AM[1]|2:POLarity NORMAL|INVerted
[:SOURce]:AM[1]|2:POLarity?

This command sets the AM polarity mode for the RF output amplitude when an AM input voltage is applied to one of the instrument’s rear panel input connectors. Refer to the *User's Guide*.

- **NORMAL**: This choice configures the PSG so that a negative AM input voltage will decrease the RF output amplitude.
- **INVerted**: This choice configures the PSG so that a positive AM input voltage will decrease the RF output amplitude.

*RST NORM

Key Entry AM Polarity Norm Inv
Analog Commands
Amplitude Subsystem ([:SOURce])

:AM:WIDeband:SENSitivity

Supported E8267D with Option UNT

[:SOURce]:AM:WIDeband:SENSitivity <val>
[:SOURce]:AM:WIDeband:SENSitivity?

This command sets the sensitivity level of the wideband AM signal in units of dB/volt. Sensitivity is .5V = 100% and is linear with .25V = 50%. Wideband AM uses input from the front panel I INPUT.

Example

:AM:WID:SENS 20

The preceding example sets the sensitivity level to 20%.

*RST +2.00000000E+001

Range 0 to 40 dB

Key Entry AM Depth

:AM:WIDeband:STATe

Supported E8267D with Option UNT

[:SOURce]:AM:WIDeband:STATe ON|OFF|1|0
[:SOURce]:AM:WIDeband:STATe?

This command enables or disables wideband amplitude modulation. The RF carrier is modulated when the instrument's :MODulation[:STATe] command is enabled ON. The signal generator’s I input is used to drive wideband AM modulation.

Whenever wideband amplitude modulation is enabled, the AM annunciator appears on the signal generator’s front panel display. Both AM paths (1 and 2) may be simultaneously set to ON by the :AM[1]|2... command.

Example

:AM:WID:STAT 0

The preceding example turns off wideband amplitude modulation.

*RST 0

Key Entry AM Off On

Supported All Models

Analog Commands
Amplitude Subsystem ([SOURce])

This command sets the coupling type for the selected external input. The command does not change the active source or switch the modulation on or off. The modulating signal may be the sum of several signals, with either internal or external sources.

- **AC** This choice will pass only ac signal components.
- **DC** This choice will pass both ac and dc signal components.

Example

:AM1:EXT1:COUP AC

The preceding example sets the AM path 1, external 1 source coupling to AC.

* RST DC

Key Entry Ext Coupling DC AC

Supported All Models

This command sets the impedance for the external input.

Example

:AM1:EXT1:IMP 600

The preceding example sets the AM path 1, external 1 source impedance to 600 ohms.

* RST +5.00000000E+001

Key Entry Ext Impedance 50 Ohm 600 Ohm

Supported All models with Option UNT

This command sets the internal AM rate using the variable `<val><units>`. The command, used with the UP|DOWN parameters, will change the frequency rate by a user-defined step value. For setting the value associated with the UP and DOWN choices, refer to the :PULM:INTernal[1]:FREQuency:STEP command.

The command changes:

- the frequency rate of the first tone of a dual-sine waveform
Analog Commands
Amplitude Subsystem ([:SOURce])

- the start frequency for a swept–sine waveform
- the AM frequency rate for all other waveforms

Example

:AM1:INT2:FREQ UP

The preceding example increases the modulation rate for AM path 1, and AM internal source 2 by the step value set with the :AM:INTernal:FREQuency:STEP[:INCRement] command.

*RST +4.00000000E+002

Range Dual–Sine & Sine: 0.5 Hz to 1 MHz Swept–Sine: 1 Hz to 1 MHz

All Other Waveforms: 0.5 Hz to 100 kHz

Key Entry AM Tone 1 AM Start AM
Rate Rate Rate

Supported All models with Option UNT

This command sets the frequency for the alternate signal. The alternate signal frequency is the second tone of a dual–sine or the stop frequency of a swept–sine waveform.

Example

:AM2:INT1:FREQ:ALT 500KHZ

The preceding example sets the alternate frequency (AM path 2, AM internal source 1) for AM tone 2 to 500 kHz.

*RST +4.00000000E+002

Range Dual–Sine: 0.5 Hz to 1 MHz Swept–Sine: 1 Hz to 1 MHz

Key Entry AM Tone 2 AM Stop
Rate Rate
Analog Commands
Amplitude Subsystem ([:SOURce])

Supported All models with Option UNT

This command sets the amplitude of the second tone for a dual-sine waveform as a percentage of the total amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude.

Example

:AM2:INT1:FUNC:NOS 50

The preceding example sets the amplitude (AM path 2, AM internal source 1) for AM tone 2 to 50% of the total amplitude.

*RST +5.00000000E+001

Range 0 to 100 percent

Key Entry AM Tone 2 Amp Percent Of Peak

Supported All models with Option UNT

This command selects a gaussian or uniform noise modulation for the selected waveform.

Example

:AM2:INT1:FUNC:NOS GAUS

The preceding example selects the gaussian noise waveform for AM modulation on AM path 2, internal source 1.

*RST UNIF

Key Entry Gaussian Uniform
Analog Commands
Amplitude Subsystem ([SOURce])

Supported All models with Option 007 and UNT

POSitive|NEGative

This command selects a positive or negative slope for the modulating ramp waveform.

Example

:AM2:INT1:FUNC:RAMP NEG

The preceding example sets the slope of the ramp modulation for AM path 2, internal source 1, to negative.

*RST POS

Key Entry

Positive Negative

Supported All models with Option UNT

SINE|TRIangle|SQUare| RAMP|NOISe|DUALsine|SWEPtsine

This command sets the AM waveform type. The INTernal2 source selection does not support the dual–sine or Sweep–Sine waveform choices.

Example

:AM1:INT1:FUNC:SHAP DUAL

The preceding example sets the AM waveform type for AM path 1, internal source 1, to dual sine.

*RST SINE

Key Entry

Sine Triangle Square Ramp Noise Dual–Sine Swept–Sine

[:AM1]|2:INTernal[1]:SWEep:RATE

Supported All models with Option UNT

[:SOURce]:AM[1]|2:INTernal[1]:SWEep:RATE <val><units>
[:SOURce]:AM[1]|2:INTernal[1]:SWEep:RATE?
Analog Commands
Amplitude Subsystem ([SOURce])

This command sets the sweep rate for the AM swept–sine waveform.

For the waveform selection, refer to the

Example

:AM2:INT1:SWE:RATE 1KHZ

The preceding example sets the sweep rate for AM path 1 and internal source 1 to 1 kHz.

*RST +4.00000000E+002
Range 0.5 Hz to 100 kHz

Key Entry AM Sweep Rate

Supported All models with Option UNT

BUS | IMMEDIATE | EXTERNAL | KEY

This command sets the trigger source for the AM swept–sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN triggering using the *TRG command.
IMMediate This choice enables immediate triggering of the sweep event.
EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.
KEY This choice enables triggering through front panel interaction by pressing the Trigger hardkey.

For the waveform selection, refer to the

Example

:AM1:INT1:SWE:TRIG EXT

The preceding example sets an external trigger source for the swept–sine waveform on AM path 1.

*RST IMM

Key Entry Bus Free Ext Trigger
Run Key
Analog Commands
Amplitude Subsystem [:SOURce]

:AM[1]|2:SOURce

Supported All models with Option UNT

[:SOURce]:AM[1]|2:SOURce?

This command selects the source for amplitude modulation.

Example

:AM2:SOUR INT1

The preceding example selects internal source 1 as the source for AM path 2.

*RST**

INT

Key Entry

<table>
<thead>
<tr>
<th>Internal</th>
<th>Internal</th>
<th>Ext1</th>
<th>Ext2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:AM[1]|2:STATe

Supported All models with Option UNT

[:SOURce]:AM[1]|2:STATe ON|OFF|1|0

[:SOURce]:AM[1]|2:STATe?

This command enables or disables amplitude modulation for the selected path.

The RF carrier is modulated when the instrument’s :MODulation[:STATe] command is enabled ON.

Whenever amplitude modulation is enabled, the AM annunciator appears on the signal generator’s front panel display.

The two paths can be simultaneously enabled (ON), by the :AM[1]|2...

Example

:AM1:STAT ON

The preceding example turns on AM modulation for AM path 1.

*RST**

0
Analog Commands
Amplitude Subsystem ([:SOURce])

Key Entry AM Off On

:AM[1]|2:TYPE

Supported All models with Option UNT

[:SOURce]:AM[1]|2:TYPE LINear|EXPonential
[:SOURce]:AM[1]|2:TYPE?

This command sets the AM type to linear or exponential AM.

LINear This choice selects linear AM type with depth values in units of percent/volt.

EXPonential This choice selects exponential AM type with depth values in units of dB/volt.

Example

:AM2:TYPE EXP

The preceding example selects exponential type depth values for AM path 2.

*RST LIN

Key Entry AM Type LIN EXP

:AM[1]|2[:DEPTh]:EXPonential

Supported All models with Option UNT

[:SOURce]:AM[1]|2[:DEPTh]:EXPonential <val>
[:SOURce]:AM[1]|2[:DEPTh]:EXPonential?

This command sets the AM depth in dB/volt units. EXPonential must be the current AM type for this command to have any affect. Refer to the :AM[1]|2:TYPE command.

Example

:AM2:EXP 20

The preceding example sets the exponential depth to 20 dB for AM path 2.

*RST +4.00000000E+001

Range 0.00 to 40.00 dB

Key Entry AM Depth

:AM[1]|2[:DEPTh][[:LINear]]

Supported All models with Option UNT

[:SOURce]:AM[1]|2[:DEPTh][[:LINear]] <val>|UP|DOWN
[:SOURce]:AM[1]|2[:DEPTh][[:LINear]]?
Analog Commands
Amplitude Subsystem ([:SOURce])

This command sets the AM depth in percent/volt units. The command, used with the UP|DOWN parameters, will change the depth by a user-defined step value. The value associated with the UP and DOWN choices, are set by the :AM[:DEPTh]:STEP[:INCRement] command.

LINear must be the current AM type for this command to have any affect. To set the AM measurement type, use the :AM[1]|2:TYPE command. When the depth values are coupled, a change made to one path is applied to both. For AM depth value coupling, refer to the :AM[1]|2[:DEPTh][:LINear]:TRACk command.

Example

`:AM2 20`

The preceding example sets the AM path 2 linear depth to 20%.

*RST +1.00000000E–001

Range
0.0 to 100 percent

Key Entry
AM Depth

`:AM[1]|2[:DEPTh][:LINear]:TRACk`

Supported
All models with Option UNT

[[:SOURce]:AM[1]|2 [:DEPTh] [:LINear] :TRACk ON|OFF|1|0
[[:SOURce]:AM[1]|2 [:DEPTh] [:LINear] :TRACk?]

This command enables or disables AM depth value coupling between AM paths 1 and 2. When the depth values are coupled, a change made to one path is applied to both. LINear must be the AM type for this command to have any affect. To set the AM measurement type, use the :AM[1]|2:TYPE command.

Example

`:AM1:TRAC ON`

The preceding example enables AM depth coupling between AM path 1 and AM path 2.

*RST 0

Key Entry
AM Depth Couple Off On
Analog Commands
Amplitude Subsystem ([SOURce])

:AM[:DEPTH]:STEP[:INCREMENT]

Supported All models with Option UNT

[:SOURce]:AM[:DEPTH]:STEP[:INCREMENT]

<val>|MAXimum|MINimum|DEFault

[:SOURce]:AM[:DEPTH]:STEP[:INCREMENT]?

This command sets the linear depth step value in percent/volt units.

The step value set by this command is used with the UP and DOWN choices for the :AM[:1]|2[:DEPTH][:LINEar] command.

The setting enabled by this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:AM:STEP 10

The preceding example sets the step value for AM depth to 10%.

Range 0.1 to 100 percent

Key Entry Incr Set
Analog Commands
Frequency Modulation Subsystem ([SOURce])

Frequency Modulation Subsystem ([SOURce])

:FM[1]|2...

Supported All Models

[:SOURce]: FM [1] | 2...

This prefix enables the selection of the FM path and is associated with all SCPI commands in this subsystem. The two paths are equivalent to the FM Path 1 2 softkey.

FM1 FM Path 1 2 with 1 selected

FM2 FM Path 1 2 with 2 selected

When just FM is shown in a command, this means the command applies to path one only.

Each path is set up separately. When a SCPI command uses FM1, only path one is affected. Consequently, when FM2 is selected, only path two is set up. However, the deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of FM1 to FM2. Changing the deviation value for one path changes it for the other. These two paths can be on at the same time provided the following conditions have been met:

– dual–sine or swept–sine is not the selection for the waveform type

– each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)

– FM2 must be set to a deviation less than FM1

:FM:INTernal:FREQuency:STEP[:INCRement]

Supported All models with Option UNT

[:SOURce]: FM: INTERNAL: FREQUENCY: STEP [:INCRement] <num> | MAXimum | MINimum | DEFault

[:SOURce]: FM: INTERNAL: FREQUENCY: STEP [:INCRement]?

This command sets the step value for the internal frequency modulation.

The step value set by this command is used with the UP and DOWN choices for the :FM[1]|2:INTERNAL[1]|2:FREQuency command.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:FM: INT: FREQ: STEP 1E5

The preceding example sets the step value to .1 MHz.

Range 0.5 to 1E6
Analog Commands
Frequency Modulation Subsystem ([SOURce])

Supported All models with Option UNT

This command sets the coupling type for the selected external input. The command does not change the active source or switch modulation on or off. The modulating signal may be the sum of several signals, from either internal or external sources.

AC This choice will pass only ac signal components.
DC This choice will pass both ac and dc signal components.

Example
:FM1:EXT1:COUP AC

The preceding example sets the coupling for FM path 1, external source 1 to AC.

*RST DC

Key Entry Ext Coupling DC AC

Supported All models with Option UNT

This command sets the impedance for the external input.

Example
:FM1:EXT2:IMP 600

The preceding example sets the FM path 1, external 1 source impedance to 600 ohms.

*RST +5.00000000E+001

Key Entry Ext Impedance 50 Ohm 600 Ohm

Supported All models with Option UNT

[:SOURce]:FM[1]|2:INTern[1]:FREQuency:ALTernate <val><units>
[:SOURce]:FM[1]|2:INTern[1]:FREQuency:ALTernate?
Analog Commands
Frequency Modulation Subsystem ([SOURce])

This command sets the internal FM rate of the alternate signal. The alternate signal frequency is the second tone of a dual–sine or the stop frequency of a swept–sine waveform.

Example

:FM1:INT:FREQ:ALT 20KHZ

The preceding example sets the FM tone 2 rate for FM path 1, FM source 1, to 20 kHz.

*RST +4.00000000E+002
Range dual–sine: 0.5 Hz to 100 kHz swept–sine: 0.5 Hz to 100 kHz
Key Entry FM Tone 2 Rate FM Stop Rate

Supported All models with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent <val><units>
[:SOURce]:FM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for a dual–sine waveform as a percentage of the total amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude.

Example

The preceding example sets the amplitude for FM tone 2, FM path 1, FM internal source 1 to 20% of the total amplitude.

*RST +5.00000000E+001
Range 0 to 100 percent
Key Entry FM Tone 2 Amp Percent Of Peak

Supported All models with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:SWEep:RATE <val><units>
[:SOURce]:FM[1]|2:INTernal[1]:SWEep:RATE?
Analog Commands
Frequency Modulation Subsystem ([SOURce])

This command sets the sweep rate for the swept–sine waveform. The minimum resolution is 0.5 hertz. For waveform selection, use the :FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe command.

Example
:FM1:INT:SWE:RATE 20KHZ

The preceding example sets the sweep rate for the swept–sine waveform to 20 kilohertz.

*RST	+4.00000000E+002
Range	0.5 Hz to 100 kHz
Key Entry	FM Sweep Rate

Supported All models with Option UNT

[:SOURce]:FM[1]|2:INTernal[1]:SWEep:TRIGger
BUS|IMMediate|EXTernal|KEY
[:SOURce]:FM[1]|2:INTernal[1]:SWEep:TRIGger?

BUS	This choice enables GPIB triggering using the *TRG or GET command or LAN triggering using the *TRG command.
IMMEDIATE	This choice enables immediate triggering of the sweep event. This choice is equivalent to pressing the Free Run softkey.
EXTERNAL	This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.
KEY	Enables triggering through front panel interaction (the Trigger hardkey).

| *RST | IMM |

Example
:FM1:INT:SWE:TRIG BUS

The preceding example selects the bus as the trigger source for FM path 1.
Analog Commands
Frequency Modulation Subsystem ([SOURce])

Supported All models with Option UNT

This command sets the internal FM rate using the <val><units> variable, or changes the FM rate by a user-defined up/down step value. Refer to the :FM:INTernal:FREQuency:STEP[:INCRement] command for setting the value associated with the UP and DOWN choices.

The command changes:
- the FM rate of the first tone of a dual-sine waveform
- the starting FM rate for a swept-sine waveform
- the FM rate for all other waveforms

Example

:FM2:INT:FREQ 40KHZ

The preceding example sets the modulation rate for FM path 2 to 40 kHz.

*RST

<table>
<thead>
<tr>
<th>Range</th>
<th>Dual–Sine & Sine: 0.5 Hz to 1 MHz</th>
<th>Swept–Sine: 1 Hz to 1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Other Waveforms: 0.5 Hz to 100 kHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>FM Tone 1 Rate</th>
<th>FM Start Rate</th>
<th>FM Rate</th>
</tr>
</thead>
</table>

Supported All models with Option UNT

This command selects a gaussian or uniform noise type as the modulation. For waveform selection, use the :FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe command.

Example

:FM2:INT2:FUNC:NOIS UNIF
Analog Commands
Frequency Modulation Subsystem ([SOURce])

The preceding example selects a uniform noise waveform as the modulation for FM path 2 and FM source 2.

*RST UNIF

Key Entry Gaussian Uniform

Supported All models with Option UNT

POSitive|NEGative

This command selects a positive or negative ramp as the internal modulating waveform. Refer to :FM[1]|2:INTernal[1]|2:FUNCtion:SHAPe command for the waveform selection.

Example

:FM2:INT2:FUNC:RAMP POS

The preceding example selects a positive sloped ramp as the internal modulating waveform.

*RST POS

Key Entry Positive Negative

Supported All models with Option UNT

SINE|TRIangle|SQUARE|RAMP|NOISE|DUALsine|SWEPtsine

This command selects the FM waveform type. The INTernal2 source selection does not support the dual–sine or Sweep–Sine waveform types.

Example

:FM2:INT1:FUNC:SHAP SQU

The preceding example selects a square wave as the internal modulating waveform.

*RST SINE

Key Entry Sine Triangle Square Ramp Noise Dual–Sine Swept–Sine
Analog Commands
Frequency Modulation Subsystem ([SOURce])

:F(M)M[1]|2:SOURce

Supported All models with Option UNT

[:SOURce]:FM[1]|2:SOURce?

This command selects the FM source.

INT This choice selects internal source 1 or 2 to provide an ac–coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to provide an externally applied signal that can be ac– or dc–coupled. The externally applied, ac–coupled input signal is tested for a voltage level and an annunciator, on the signal generator’s front panel display, will indicate a high or low condition if that voltage is $> \pm 3\%$ of 1 V_p.

Example

:FM2:SOUR INT2

The preceding example selects internal source 2 as the FM source for FM path 2.

*RST

Key Entry

<table>
<thead>
<tr>
<th>Internal 1</th>
<th>Internal 2</th>
<th>Ext1</th>
<th>Ext2</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT</td>
<td>INT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported All models with Option UNT

[:SOURce]:FM[1]|2:STATe ON|OFF|1|0
[:SOURce]:FM[1]|2:STATe?

This command enables or disables the selected FM path.

The RF carrier is modulated when the instrument’s :MODulation[:STATe] command is enabled ON.

Whenever frequency modulation is enabled, the FM annunciator appears on the signal generator’s front panel display.

The two paths for frequency modulation can be simultaneously enabled ON with the :FM[1]|2... command.

Example

:FM2:STAT ON

The preceding example enables FM path 2.
Analog Commands
Frequency Modulation Subsystem ([SOURce])

*RST 0

Key Entry FM Off On

:FM[1]|2[:DEViation]

Supported All models with Option UNT

[:SOURce]:FM[1]|2[:DEViation] <val><units>
[:SOURce]:FM[1]|2[:DEViation]?

This command sets the FM deviation for the selected FM path.

If deviation tracking is ON, a change to the deviation value on one path will apply to both. To set the deviation tracking, use the :FM[1]|2[:DEViation]:TRACk command.

Example

:FM2 1MHZ

The preceding example sets the frequency deviation to 1 megahertz.

*RST +1.00000000E+003

<table>
<thead>
<tr>
<th>Range</th>
<th>Frequency</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>250KHZ–250MHZ</td>
<td>0–2MHz</td>
<td></td>
</tr>
<tr>
<td>> 250–500MHz</td>
<td>0–1MHz</td>
<td></td>
</tr>
<tr>
<td>> 0.5–1GHz</td>
<td>0–2MHz</td>
<td></td>
</tr>
<tr>
<td>> 1–2GHz</td>
<td>0–4MHz</td>
<td></td>
</tr>
<tr>
<td>> 2–3.2GHz</td>
<td>0–8MHz</td>
<td></td>
</tr>
<tr>
<td>> 3.2–10GHz</td>
<td>0–16MHz</td>
<td></td>
</tr>
<tr>
<td>> 10–20GHz</td>
<td>0–32MHz</td>
<td></td>
</tr>
<tr>
<td>> 20–28.5GHz</td>
<td>0–48MHz</td>
<td></td>
</tr>
<tr>
<td>> 20–40GHz</td>
<td>0–64MHz</td>
<td></td>
</tr>
<tr>
<td>> 28.5–44GHz</td>
<td>0–80MHz</td>
<td></td>
</tr>
<tr>
<td>> 40–67GHz</td>
<td>0–128MHz</td>
<td></td>
</tr>
</tbody>
</table>

a. E8267D Only

Key Entry FM DEV
Analog Commands
Frequency Modulation Subsystem ([SOURce])

:FM[1]|2[:DEViation]:TRACk

Supported All models with Option UNT

[:SOURce]:FM[1]|2[:DEViation]:TRACk ON|OFF|1|0
[:SOURce]:FM[1]|2[:DEViation]:TRACk?

This command enables or disables deviation coupling between FM paths 1 and 2.

ON (1) This choice will link the deviation value of FM1 with FM2; FM2 will assume the FM1 deviation value. For example, if FM1 deviation is set to 500 Hz and FM2 is set to 2 kHz, enabling the deviation tracking will cause the FM2 deviation value to change to 500 Hz. This applies regardless of the path (FM1 or FM2) selected.

OFF (0) This choice disables the coupling and both paths will have independent deviation values.

This command uses exact match tracking, not offset tracking.

Example

:FM2:TRAC 0

The preceding example disables deviation coupling.

RST

Key Entry FM Dev Couple Off On
Analog Commands
Low Frequency Output Subsystem ([:SOURce]:LFOoutput)

Low Frequency Output Subsystem ([:SOURce]:LFOoutput)

:LFOoutput:AMPLitude

Supported All models with Option UNT

[:SOURce]:LFOoutput:AMPLitude <val><units>
[:SOURce]:LFOoutput:AMPLitude?

This command sets the amplitude of the signal at the LF OUTPUT connector.

Example

:LFO:AMPL 2.1VP

The preceding example sets the peak amplitude to 2.1 volts.

*RST 0.00
Range 0.000 to 3.5 VP
Key Entry LF Out Amplitude

Supported All models with Option UNT

[:SOURce]:LFOoutput:FUNCtion[1]|2:FREQuency <val><units>
[:SOURce]:LFOoutput:FUNCtion[1]|2:FREQuency?

This command sets the frequency of function generator 1 or 2. The command sets:
– the frequency of the first tone of a dual–sine waveform
– the start frequency for a swept–sine waveform
– the frequency for all other waveform types
For selecting the waveform type, use the :LFOoutput:FUNCtion[1]|2:SHAPE command.

Example

:LFO:FUNC1:FREQ 1MHZ

The preceding example sets the frequency for function generator 1 to 100 kHz.

*RST +4.00000000E+002
Range Sine and Dual–Sine: 0.5 Hz to 1 MHz

Range Swept–Sine: 1 Hz to 1 MHz
Analog Commands
Low Frequency Output Subsystem [:SOURce]:LFOutput

All Other Waveforms: 0.5 Hz to 100 kHz

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>LF Out Tone 1</th>
<th>LF Out Start</th>
<th>LF Out Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq</td>
<td>Freq</td>
<td>Freq</td>
</tr>
</tbody>
</table>

::LFOOutput::FUNCTION[1]:FREQuency:ALTernate

Supported All models with Option UNT

[:SOURce]:LFOOutput::FUNCTION[1]:FREQuency:ALTErnate
<val><units>
[:SOURce]:LFOOutput::FUNCTION[1]:FREQuency:ALTErnate?

This command sets the frequency for the alternate LF output signal. The alternate frequency is the second tone of a dual–sine or the stop frequency of a swept–sine waveform.

For selecting the waveform type, use the ::LFOOutput::FUNCTION[1]|2:SHAPE command.

Example

::LFO::FUNCTION1::FREQ::ALT 20KHZ

The preceding example sets the alternate frequency to 20 kHz.

*RST +4.000000000E+002

Range Dual–Sine: 0.1 Hz to 100 kHz Swept–Sine: 0.1 Hz to 100 kHz

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>LF Out Tone 2</th>
<th>LF Out Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Freq</td>
<td>Freq</td>
</tr>
</tbody>
</table>

::LFOOutput::FUNCTION[1]:FREQuency:ALTernate:AMPLitude:PERCent

Supported All models with Option UNT

[:SOURce]:LFOOutput::FUNCTION[1]:FREQuency:ALTErnate:AMPLitude
:PERCent <val><units>
[:SOURce]:LFOOutput::FUNCTION[1]:FREQuency:ALTErnate:AMPLitude
:PERCent?

This command sets the amplitude of the second tone for a dual–sine waveform as a percentage of the total LF output amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude.

For selecting the waveform type, use the ::LFOOutput::FUNCTION[1]|2:SHAPE command.

Example
Analog Commands
Low Frequency Output Subsystem ([SOURce]:LFOoutput)

:LFO:FUNC1:FREQ:ALT:AMPL:PERC 50

The preceding example sets the alternate frequency to 50% of the total output amplitude.

*RST +5.00000000E+001
Range 0 to 100 percent
Key Entry LF Out Tone 2 Ampl % of Peak

Supported All models with Option UNT

[:SOURce]:LFOoutput:FUNCTION[1]|2:SHAPe SINE|DUALsine|SWEPtsine|TRIangle |
SQUARE|RAMP|PULSe|NOISe|DC
[:SOURce]:LFOoutput:FUNCTION[1]|2:SHAPe?

This command selects the waveform type. Function Generator 1 must be the source for the dual–sine or the swept–sine waveform.

Refer to “:LFOoutput:SOURce” on page 213.

Example

:LFO:FUNC2:SHAP TRI

The preceding example selects a triangle wave for the Function Generator 2 LF output.

*RST SINE

Key Entry Sine Dual–Sine Swept–Sine Triangle Square Ramp Pulse Noise DC

:LFOoutput:FUNCTION:[1]|2:SHAPe:NOISe

Supported All models with Option UNT

[:SOURce]:LFOoutput:FUNCTION[1]|2:SHAPe:NOISe UNIFORM|GAUSSian
[:SOURce]:LFOoutput:FUNCTION[1]|2:SHAPe:NOISe?

This command selects a gaussian or uniform noise modulation for the LF output.

For selecting the waveform type, use the :LFOoutput:FUNCTION[1]|2:SHAPe command.

Example
Analog Commands
Low Frequency Output Subsystem (:SOURce:LFOutput)

:LFO:FUNC1:SHAP:NOIS GAUS

The preceding example selects a gaussian noise modulation for the Function Generator 1 LF output.

*RST UNIF

Key Entry Unifor Gaus

Supported All models with Option UNT

[:SOURce]:LFOutput:FUNCtion[1]|2:SHApe:RAMP POSitive|NEGaive
[:SOURce]:LFOutput:FUNCtion[1]|2:SHApe:RAMP?

This command selects a positive or negative slope for the ramp modulation on the LF output.

For selecting the waveform type, use the :LFOutput:FUNCtion[1]|2:SHApe command.

Example

:LFO:FUNC1:SHApe:RAMP POS

The preceding example selects a positive ramp slope modulation for the Function Generator 1 LF output.

*RST POS

Key Entry Positive Negative

:LFOutput:FUNCtion[1]:SWEep:RATE

Supported All models with Option UNT

[:SOURce]:LFOutput:FUNCtion[1]:SWEep:RATE <val><units>
[:SOURce]:LFOutput:FUNCtion[1]:SWEep:RATE?

This command sets the sweep rate for an internally generated swept-sine signal.

Example

:LFO:FUNC1:SWE:RATE 1E5

The preceding example sets the sweep rate for the swept-sine waveform to 100 kHz.

*RST +4.00000000E+002

Range 0.5 Hz to 100 kHz

Key Entry LF Out Sweep Rate
Analog Commands
Low Frequency Output Subsystem ([SOURce]:LFOoutput)

:FUNCTION[1]:SWEep:TRIGger

Supported All models with Option UNT

[:SOURce]:LFOoutput:FUNCTION[1]:SWEep:TRIGger

BUS | IMMEDIATE | EXTernal | KEY

[:SOURce]:LFOoutput:FUNCTION[1]:SWEep:TRIGger?

This command sets the trigger source for the internally generated swept–sine signal at the LF output.

- **BUS** This choice enables GPIB triggering using the *TRG* or *GET* command or LAN and RS–232 triggering using the *TRG* command.
- **IMMEDIATE** This choice enables immediate triggering of the sweep event.
- **EXTERNAL** This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.
- **KEY** This choice enables triggering through front panel interaction by pressing the **Trigger** hardkey.

For selecting the waveform type, use the :LFOoutput:FUNCTION[1]|2:SHAPE command.

Example

:LFO:FUNC1:SWE:TRIG EXT

The preceding example sets an external trigger as the trigger for the swept–sine signal.

:*RST Free Run

| Key Entry | Bus Free Run | Ext | Trigger Key |

:LFOoutput:SOURce

Supported All models with Option UNT

[:SOURce]:LFOoutput:SOURce?

This command selects the source for the LF output.

- **INT** This choice enables you to output a signal where the frequency and shape of the signal is set by internal source 1 or 2. For example, if the internal source is currently assigned to an AM path configuration and AM
Analog Commands
Low Frequency Output Subsystem ([SOURce]:LFOoutput)

is turned on, the signal output at the LF OUTPUT connector will have the frequency and shape of the amplitude modulating signal.

FUNCTION This choice enables the selection of an internal function generator.

Example

:[LFO]:SOUR FUNC1

The preceding example selects Function Generator 1 as the active LF source.

RST INT

Key Entry	Internal 1 Monitor	Internal 2 Monitor
LF Out Off On
Key Entry Internal 1 Monitor Internal 2 Monitor
Function Generator 1 0
Function Generator 2

[:SOURce]:LFOoutput:STATe

Supported All models with Option UNT

[:SOURce]:LFOoutput:STATe ON|OFF|1|0
[:SOURce]:LFOoutput:STATe?

This command enables or disables the low frequency output.

Example

:[LFO]:STAT ON

The preceding example enables the source.

RST 0

Key Entry LF Out Off On
Phase Modulation Subsystem ([:SOURce])

:PM[1]|2...

Supported

All Models

This prefix enables the selection of the ϕ_M path and associated with all SCPI commands in this subsystem. The two paths are equivalent to the $\phi_M \text{ Path 1 2}$ softkey.

- PM1 $\phi_M \text{ Path 1 2}$ with 1 selected
- PM2 $\phi_M \text{ Path 1 2}$ with 2 selected

When just PM is shown in a command, this means the command applies to path 1 only.

Each path is set up separately. When a SCPI command uses PM1, only path one is affected. Consequently, when PM2 is selected, only path two is set up. However, the deviation of the signals for the two paths can be coupled.

Deviation coupling links the deviation value of PM1 to PM2. Changing the deviation value for one path will change it for the other path. These two paths can be on at the same time provided the following conditions have been met:

- dual–sine or Sweep–Sine is not the selection for the waveform type
- each path uses a different source (Internal 1, Internal 2, Ext1, or Ext2)
- PM2 must be set to a deviation less than or equal to PM1

:PM:INTernal:FREQuency:STEP[:INCRement]

Supported

All models with Option UNT

This command sets the step value of the phase modulation internal frequency. The step value set by this command is used with the UP and DOWN choices for the :PM[1]|2:INTernal[1]:FREQuency command.

The setting enabled by this command is not affected by a signal generator power–on, preset, or *RST command.

Example

:PM:INT:FREQ:STEP 1E5

The preceding example sets the step value to 100 kHz.

- **Range** 0.5 to 1E6
- **Key Entry** Incr Set
Analog Commands
Phase Modulation Subsystem ([SOURce])

:PM[1]|2:BANDwidth|BWIDth

Supported All models with Option UNT

[:SOURce]:PM[1]|2:BANDwidth|BWIDth NORMal|HIGH
[:SOURce]:PM[1]|2:BANDwidth|BWIDth?

This command selects normal phase modulation or high bandwidth phase modulation. The command can use either the BANDwidth or BWIDth syntax.

Example

:PM1:BAND NORM

The preceding example selects normal phase modulation for \(\Phi_M \) path 1.

*RST NORM

Key Entry FM \(\Phi_M \) Normal High BW

Supported All models with Option UNT

This command sets the coupling for the phase modulation source at the selected external input connector.

AC This choice will only pass ac signal components.

DC This choice will pass both ac and dc signal components.

This command does not change the active source or switch modulation on or off. The modulating signal may be the sum of several signals, from either internal or external sources.

Example

:PM1:EXT:COUP AC

The preceding example selects AC coupling at the external input for \(\Phi_M \) path 1.

*RST DC

Key Entry Ext Coupling DC AC
Analog Commands
Phase Modulation Subsystem (:SOURce)

Supported All models with Option UNT

[:SOURce]:PM[1]|2:EXTernal[1]|2:IMPedance <50|600>

This command selects 50 ohms or 600 ohms as the input impedance for the external input signal.

Example

:PM1:EXT2:IMP 600

The preceding example sets the ΦΜ path 1, external 2 source impedance to 600 ohms.

*RST +5.00000000E+001

Key Entry Ext Impedance 50 Ohm 600 Ohm

Supported All models with Option UNT

This command sets the internal modulation frequency rate. The command sets:
– the frequency of the first tone of a dual–sine waveform
– the start frequency for a swept–sine waveform
– the frequency rate for all other waveforms

For selecting the waveform type, use the :LFOoutput:FUNCTION[1]|2:SHAPe command.

Example

:PM1:INT1:FREQ 20KHZ

The preceding example sets the ΦΜ path 1, internal source 1 frequency to 20 kHz.

*RST +4.00000000E+002

Range

- **Dual–Sine**: 0.1 Hz to 100 kHz
- **Swept–Sine**: 0.1 Hz to 100 kHz
- **All Other Waveforms**: 0.1 Hz to 20 kHz

Key Entry

<table>
<thead>
<tr>
<th>ΦM Tone 1</th>
<th>ΦM Start</th>
<th>ΦM Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analog Commands
Phase Modulation Subsystem ([SOURce])

:PM[1]|2:INternal[1]:FREQuency:ALTernate

Supported All models with Option UNT

[:SOURce]:PM[1]|2:INternal[1]:FREQuency:ALTernate <val><units>

[:SOURce]:PM[1]|2:INternal[1]:FREQuency:ALTernate?

This command sets the frequency rate for the alternate signal. The alternate frequency is the second tone of a dual-sine or the stop frequency of a swept-sine waveform.

To select the waveform, use the :PM[1]|2:INternal[1]:FUNCtion:SHAPe command.

Example

:PM1:INT1:FREQ:ALT 50KHZ

The preceding example sets the alternate frequency rate for the ΦM tone 2, ΦM path 1, source 1 to 50 kHz.

*RST +4.00000000E+002

Range

- **Dual-Sine**: 0.1 Hz to 100 kHz
- **Swept-Sine**: 0.1 Hz to 100 kHz

Key Entry

- **ΦM Stop Rate**
- **ΦM Tone 2 Rate**

Supported All models with Option UNT

This command selects a gaussian or uniform noise modulation for the selected path(s).

Example

:PM1:INT1:FUNC:NOIS GAUS

The preceding example selects a gaussian noise modulation for ΦM path 1, source 1.

*RST UNIF

Key Entry

- **Gaussian**
- **Uniform**
Analog Commands
Phase Modulation Subsystem ([SOURce])

Supported All models with Option UNT

POSitive|NEGative

This command selects a positive or negative slope for the ramp modulating waveform.

Example

:PM1:INT2:FUNC:RAMP POS

The preceding example selects a positive ramp slope for modulating the signal on FM path 1, internal source 2.

*RST POS

Key Entry Positive Negative

Supported All models with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent <val>
[:SOURce]:PM[1]|2:INTernal[1]:FREQuency:ALTernate:AMPLitude:PERCent?

This command sets the amplitude of the second tone for the dual–sine waveform as a percentage of the total amplitude. For example, if the second tone makes up 30% of the total amplitude, then the first tone is 70% of the total amplitude.

To select the waveform, use the :PM[1]|2:INTernal[1]:FUNCtion:SHApe command.

Example

The preceding example sets the alternate tone amplitude to 40% of the total amplitude.

*RST +5.00000000E+001

Range 0 to 100 percent

Key Entry FM Tone 2 Ampl Percent of Peak
Analog Commands
Phase Modulation Subsystem ([SOURce])

:PM1|2:INTernal[1]:FUNCtion:SHAPe

Supported All models with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:FUNCtion:SHAPe
SINE|TRIangle|SQUARE|RAMP|
NOIsE|DUALsine|SWEPtsine

[:SOURce]:PM[1]|2:INTernal[1]:FUNCtion:SHAPe?

This command sets the phase modulation waveform type for internal source 1.

Example

:PM1:INT:FUNC:SHAPE RAMP

The preceding example selects a ramp modulation for \(\Phi_M \) path 1, source 1.

*RST SINE

Key Entry Sine Triangle Square Ramp Noise Dual–Sine Swept–Sine

:PM1|2:INTernal2:FUNCtion:SHAPe

Supported All models with Option UNT

SINE|TRIangle|SQUARE|RAMP|NOIsE

[:SOURce]:PM[1]|2:INTernal2:FUNCtion:SHAPe?

This command sets the phase modulation waveform type for internal source 2.

Example

:PM1:INT2:FUNC:SHAPE RAMP

The preceding example selects a ramp modulation for \(\Phi_M \) path 1, source 2.

*RST SINE

Key Entry Sine Triangle Square Ramp Noise

:PM1|2:INTernal[1]:SWEep:RATE

Supported All models with Option UNT

[:SOURce]:PM[1]|2:INTernal[1]:SWEep:RATE <val><units>

[:SOURce]:PM[1]|2:INTernal[1]:SWEep:RATE?

This command sets the sweep rate for a phase–modulated, swept–sine waveform.

To select the waveform, use the :PM[1]|2:INTernal[1]:FUNCtion:SHAPe command.
Analog Commands
Phase Modulation Subsystem ([SOURce])

Example

:PM1:SOUR:SWEEP:RATE 30KHZ

The preceding example sets the sweep rate to 30 kHz.

*RST +4.00000000E+002

Range 0.5 Hz to 100 kHz

Key Entry ΦM Sweep Rate

:PM[1]|2:INTernal[1]:SWEep:TRIGger

Supported All models with Option UNT

[[:SOURce]:PM[1]|2:INTernal[1]:SWEep:TRIGger
BUS|IMMediate|EXTernal|KEY
[:SOURce]:PM[1]|2:INTernal[1]:SWEep:TRIGger?

This command sets the trigger source for the phase-modulated, swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event. This choice is equivalent to pressing the Free Run softkey.

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.

KEY This choice enables triggering through front panel interaction by pressing the Trigger hardkey.

To select the waveform, use the :PM[1]|2:INTernal[1]:FUNCTION:SHAPE command.

Example

:PM2:SOUR:SWEEP:TRIG BUS

The preceding example selects a BUS trigger as the triggering for the internal source 1 swept-sine waveform on ΦM path 2.

*RST IMM

Key Entry Bus Free Ext Trigger
 Run Key
Analog Commands
Phase Modulation Subsystem ([SOURce])

:PM[1]|2:SOURce

Supported: All models with Option UNT

[:SOURce]:PM[1]|2:SOURce?

This command selects the source used to generate the phase modulation.

INT This choice selects internal source 1 or internal source 2 to provide an ac–coupled signal.

EXT This choice selects the EXT 1 INPUT or the EXT 2 INPUT connector to provide an externally applied signal that can be ac– or dc–coupled.

The externally applied, ac–coupled input signal is tested for a voltage level and an annunciator, on the signal generator’s front panel display, will indicate a high or low condition if that voltage is > ±3% of 1 Vp.

Example

:PM2:SOUR EXT1

The preceding example selects an external signal on the EXT 1 INPUT connector as the source for ΦM path 2 modulation.

*RST INT

Key Entry Internal Internal Ext1 Ext2

1 2

:PM[1]|2:STATe

Supported: All models with Option UNT

[:SOURce]:PM[1]|2:STATe ON|OFF|1|0
[:SOURce]:PM[1]|2:STATe?

This command enables or disables the phase modulation for the selected path. The RF carrier is modulated when the instrument’s :MODulation[:STATe] command is enabled ON.

The ΦM annunciator appears on the signal generator’s front panel display whenever phase modulation is enabled. The two paths for phase modulation can be simultaneously enabled ON by the :PM[1]|2... command.
Analog Commands
Phase Modulation Subsystem ([SOURce])

Example
:PM2:STAT 1
The preceding example turns on \(\Phi M \) path 2 phase modulation.

*RST
Key Entry \(\Phi M \) Off On

:PM[1]|2[:DEViation]

Supported All models with Option UNT

This command sets the deviation of the phase modulation. The variable \(<\text{units}>\) will accept RAD (radians), PIRAD (\(\pi\)-radians), and DEG (degrees); however, the query will only return values in radians. If deviation tracking is active, a change to the deviation value on one path will apply to both.

The command, used with the UP|DOWN parameters, will change the deviation by a user-defined step value. For setting the value associated with the UP and DOWN choices, refer to the :PM[:DEViation]:STEP[:INCRement] command.

Example
:PM1 135DEG
The preceding example sets the phase modulation to 135 degrees.

*RST +0.000000000E+000

<table>
<thead>
<tr>
<th>Range</th>
<th>Frequency</th>
<th>Normal Band width</th>
<th>High Band width</th>
</tr>
</thead>
<tbody>
<tr>
<td>250KHZ–250MHz</td>
<td>0–20rad</td>
<td>0–2rad</td>
<td></td>
</tr>
<tr>
<td>> 250–500MHz</td>
<td>0–10rad</td>
<td>0–1rad</td>
<td></td>
</tr>
<tr>
<td>> 0.5–1GHZ</td>
<td>0–20rad</td>
<td>0–2rad</td>
<td></td>
</tr>
<tr>
<td>> 1–2GHZ</td>
<td>0–40rad</td>
<td>0–4rad</td>
<td></td>
</tr>
<tr>
<td>> 2–3.2GHZ</td>
<td>0–80rad</td>
<td>0–8rad</td>
<td></td>
</tr>
<tr>
<td>> 3.2–10GHZ</td>
<td>0–160rad</td>
<td>0–16rad</td>
<td></td>
</tr>
<tr>
<td>> 10.0–20GHZ</td>
<td>0–320rad</td>
<td>0–32rad</td>
<td></td>
</tr>
<tr>
<td>> 20.0–28.5GHZ</td>
<td>0–480rad</td>
<td>0–48rad</td>
<td></td>
</tr>
<tr>
<td>> 20.0–40.0GHZ</td>
<td>0–640rad</td>
<td>0–64rad</td>
<td></td>
</tr>
<tr>
<td>> 28.5–44.0GHZ</td>
<td>0–800rad</td>
<td>0–80rad</td>
<td></td>
</tr>
<tr>
<td>> 40–67.0GHZ</td>
<td>0–1280rad</td>
<td>0–128rad</td>
<td></td>
</tr>
</tbody>
</table>

Keysight E8257D/67D & E8663D PSG Signal Generators SCPI Command Reference 223
Analog Commands

Phase Modulation Subsystem ([SOURce])

Key Entry ΦM Dev

a. E8267D Only
b. Performance is not specified above 50 GHz

:PM[1]|2[:DEViation]:TRACk

Supported All models with Option UNT

[:SOURce]:PM[1]|2[:DEViation]:TRACk ON|OFF|1|0

[:SOURce]:PM[1]|2[:DEViation]:TRACk?

This command enables or disables the deviation coupling between the PM paths 1 and 2.

ON (1) This choice will link the deviation value of PM1 with PM2; PM2 will assume the PM[1] deviation value. For example, if PM1 deviation is set to 500 Hz and PM2 is set to 2 kHz, enabling the deviation tracking will cause the PM2 deviation value to change to 500 Hz. This applies regardless of the path (PM1 or PM2) selected in this command.

OFF (0) This choice disables the coupling and both paths will have independent deviation values.

This command uses exact match tracking, not offset tracking.

Example

:PM1:TRAC OFF

The preceding example disables deviation coupling.

RST 0

Key Entry ΦM Dev Couple Off On
Analog Commands
Phase Modulation Subsystem ([:SOURce])

:PM[:DEViation]:STEP[:INCRement]

Supported All models with Option UNT

[:SOURce]:PM[:DEViation]:STEP [:INCRement]<val><units>|MAXimum|MINimum|DEFault
[:SOURce]:PM[:DEViation]:STEP [:INCRement]?

This command sets the phase modulation deviation step value.

The value set by this command is used with the UP and DOWN choices for the FM deviation command.

The setting is not affected by a signal generator power–on, preset, or *RST command.

See also: “:PM[1]|2[:DEViation]” on page 223.

Example

:PM:STEP 20RAD

The preceding example sets the step value to 20 radians.

Range 0.001 to 1E3 radians
Analog Commands
Pulse Modulation Subsystem ([:SOURce])

Pulse Modulation Subsystem ([:SOURce])

:PULM:EXTernal:POLarity NORMal:INVerted

Supported All models with Option UNU or UNW

[:SOURce]:PULM:EXTernal:POLarity NORMal|INVerted
[:SOURce]:PULM:EXTernal:POLarity?

This command selects the polarity of the TTL input signal at the GATE/PULSE/TRIGGER INPUT front panel connector. The signal generator can respond to either a normal (a TTL high) or an inverted (TTL low) signal.

Example

:PULM:EXT:POL NORM

The preceding example selects normal (TTL high) polarity.

*RST Normal

Key Entry Ext Polarity Normal Inverted

:PULM:INTernal[1]:DELay

Supported All models with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:DELay <num>|<time_suffix>|UP|DOWN
[:SOURce]:PULM:INTernal[1]:DELay?

This command sets the pulse delay for the internally generated pulse modulation using the variable <num>[<time_suffix>]. The command, used with the UP|DOWN parameters, will change the delay by a user–defined step value. Refer to the :PULM:INTernal[1]:DELay:STEP command for setting the value associated with the UP and DOWN choices.

The optional variable <time_suffix> accepts nS (nanoseconds) to S (seconds).

The range value is dependent on the pulse period. Refer to the :PULM:INTernal[1]:PERiod command for pulse period settings.

Example

:PULM:INT:DEL 200E-9

The preceding example sets the internal pulse delay to 200 nanoseconds.

*RST +0.00000000E+000

Range Internal Free Run: depends on pulse period and pulse width settings

Internal Triggered & Doublet: 70 nS to (42 S - 20 nS - pulse width)

Key Entry Pulse Delay
Analog Commands
Pulse Modulation Subsystem ([:SOURce])

:PULM:INTernal[1]:DELay:STEP

Supported All models with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:DELay:STEP <num><time_suffix>
[:SOURce]:PULM:INTernal[1]:DELay:STEP?

This command sets the step increment for the pulse delay.

The step value set by this command is used with the UP and DOWN choices in
the :PULM:INTernal[1]:DELay command.

The step value set with this command is not affected by a signal generator
power–on, preset, or *RST command.

Example

:PULM:INT:DEL:STEP 10NS

The preceding example sets the pulse delay step value to 10 nanoseconds.

Range 10 nS to (pulse period – 20 nS)

:PULM:INTernal[1]:FREQuency

Supported All models with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:FREQuency <val><units>|UP|DOWN
[:SOURce]:PULM:INTernal[1]:FREQuency?

This command sets the pulse rate for the internally generated square wave
using the variable <val><units>. The command, used with the UP|DOWN
parameters, will change the frequency by a user–defined step value. Refer to
the :PULM:INTernal[1]:FREQuency:STEP command for setting the value
associated with the UP and DOWN choices.

This command is used when SQUare is the pulse modulation type. Refer to
:PULM:SOURce command for the pulse modulation type selection.

Example

:PULM:INT:FREQ 1MHZ

The preceding example sets the square wave pulse rate to 1 megahertz.

*RST +4.00000000E+002
Range 0.1 Hz to 10 MHz
Key Entry Pulse Rate
Analog Commands
Pulse Modulation Subsystem ([SOURce])

:PULM:INTernal[1]:FREQuency:STEP

Supported
All models with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:FREQuency:STEP[:INCRement]
<frequency>
[:SOURce]:PULM:INTernal[1]:FREQuency:STEP[INCRement]?

This command sets the step value for the internally generated square wave pulse rate.

This command is used when SQUare is the pulse modulation type. For the pulse modulation type selection, refer to the :PULM:SOURce command. The step value, set with this command, is used with the UP and DOWN choices in the :PULM:INTernal[1]:FREQuency command.

The step value set with this command is not affected by a power–on, preset, or *RST command.

Example

:PULM:INT:FREQ:STEP MIN

The preceding example sets the step value for the square wave pulse rate to 0.1 Hz.

Range
0.1 Hz to 10 MHz

:PULM:INTernal[1]:PERiod

Supported
All models with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:PERiod <val><units>|UP|DOWN
[:SOURce]:PULM:INTernal[1]:PERiod?

This command sets the pulse period for the internally generated pulse modulation using the variables <val><units>. The command, used with the UP|DOWN parameters, will change the pulse period by a user–defined step value. Refer to the :PULM:INTernal[1]:PERiod:STEP[:INCRement] command for setting the value associated with the UP and DOWN choices.

If the entered value for the pulse period is equal to or less than the value for the pulse width, the pulse width changes to a value that is less than the pulse period. Refer to the :PULM:INTernal[1]:PWIDth command for setting the pulse width.

Example

:PULM:INT:PER .5S

The preceding example sets the period of the internally generated pulse to 500 milliseconds.

*RST +2.00000000E−006
Analog Commands
Pulse Modulation Subsystem ([SOURce])

Range
70 nanoseconds (nS) to 42 seconds

Key Entry
Pulse Period

:**PULM:INTernal[1]:PERiod:STEP[:INCRement]**

Supported
All models with Option UNU or UNW

[[SOURce]]:PULM:INTernal[1]:PERiod:STEP[:INCRement]<val><unit>
MAXimum
MINimum
DEFAULT
[[SOURce]]:PULM:INTernal[1]:PERiod:STEP[:INCRement]?

This command sets the step value for the internal pulse period using the variable <val><units>.

The step value, set with this command, is used with the UP and DOWN choices available in the :PULM:INTernal[1]:PERiod command.

The step value set with this command is not affected by a power–on, preset, or *RST command.

Example

:PULM:INT:PER:STEP .1S

The preceding example sets the square wave pulse rate to 100 milliseconds.

*RST +1.00000000E−006

Range
10 nS to 42 seconds

:**PULM:INTernal[1]:PWIDth**

Supported
All models with Option UNU or UNW

[[SOURce]]:PULM:INTernal[1]:PWIDth <num><time_suffix>|UP|DOWN
[[SOURce]]:PULM:INTernal[1]:PWIDth?

This command sets the pulse width for the internally generated pulse signal.

This command sets the pulse width for the internally generated pulse modulation using the variables <num><time_suffix>. The command, used with the UP|DOWN parameters, will change the pulse width by a user–defined step value. Refer to the :PULM:INTernal[1]:PWIDth:STEP command for setting the value associated with the UP and DOWN choices.

If the entered value for the pulse width is equal to or greater than the value for the pulse period, the pulse width changes to a value that is less than the pulse period. For more information, refer to “:PULM:INTernal[1]:PERiod” on page 228.

A power search is recommended for signals with pulse widths less than one microsecond. Refer to “:ALC:SEARch” on page 171.
Analog Commands
Pulse Modulation Subsystem ([:SOURce])

Example
:PULM:INT:PWIDth 100MS
The preceding example sets the pulse width to 100 milliseconds.

RST

+1.00000000E−006

Range
10 nS to (pulse period - 20 nS)

Key Entry
Pulse Width

:PULM:INTernal[1]:PWIDth:STEP

Supported
All models with Option UNU or UNW

[:SOURce]:PULM:INTernal[1]:PWIDth:STEP<num><time_suffix>|MAXimum|MINimum|DEFault
[:SOURce]:PULM:INTernal[1]:PWIDth:STEP?

This command sets the step increment for the pulse width using the variable <num><time_suffix>.

The step value, set by this command, is used with the UP and DOWN choices available in the :PULM:INTernal[1]:PWIDth command.

The step value, set with this command, is not affected by a power-on, preset, or **RST** command.

Example
:PULM:INT:PWID:STEP 100NS
The preceding example sets the pulse width step to 100 nanoseconds.

RST

+1.00000000E−006

Range
10 nS to (pulse period - 20 nS)

:PULM:INTernal

Supported
All models with Option UNU or UNW

[:SOURce]:PULM:SOURce:INTernal SQUare|FRUN|TRIGgered|DOUBlet|GATEd
[:SOURce]:PULM:SOURce:INTernal?

This command selects one of the five internally generated modulation inputs. There are two external sources; Scalar and Ext Pulse, which are selected by using the :PULM:SOURce command.

Example
:PULM:SOUR:INT SQU
The preceding example selects the internally generated square wave pulse modulation format.
Analog Commands
Pulse Modulation Subsystem [:SOURce]

*RST
FRUN (Int Free–Run)

Key Entry

<table>
<thead>
<tr>
<th>Internal</th>
<th>Int</th>
<th>Int</th>
<th>Int</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>Free–Run</td>
<td>Triggered</td>
<td>Doublet</td>
<td>Gated</td>
</tr>
</tbody>
</table>

:SOURce

Supported
All models with Option UNU or UNW

[:SOURce] :PULM:SOURce INTernal|EXTernal|SCALar
[:SOURce] :PULM:SOURce?

This command sets the source for pulse modulation. The INTernal selection accesses one of the five internally generated modulation inputs while EXTernal selects an external pulse (Ext Pulse) and SCALar selects input from a scalar network analyzer.

Example

: PULM : SOUR INT

The preceding example selects the internal free–run, pulse modulation source.

*RST
FRUN (Int Free–Run)

Key Entry

<table>
<thead>
<tr>
<th>Internal</th>
<th>Int</th>
<th>Int</th>
<th>Int</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>Free–Run</td>
<td>Triggered</td>
<td>Doublet</td>
<td>Gated</td>
</tr>
</tbody>
</table>

Ext Pulse Scalar

:SOURce

Supported
All models with Option UNU or UNW

[:SOURce] :PULM :STATE ON|OFF|1|0
[:SOURce] :PULM :STATE?

This command enables or disables pulse modulation for the selected path.

When pulse modulation is enabled, the PULSE annunciator appears on the signal generator’s front panel display.

Example

: PULM : STATE ON

The preceding example enables the pulse modulation.

*RST
0

Key Entry Pulse Off On
Analog Commands
Pulse Modulation Subsystem ([:SOURce])
5 Digital Modulation Commands

In the following sections, this chapter provides SCPI descriptions for subsystems dedicated to the E8267D PSG Vector signal generator:

- “All Subsystem–Option 601 and 602 ([:SOURce])” on page 234
- “AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)” on page 235
- “AWGN Real–Time Subsystem–Option 403 ([:SOURce]:RADio:AWGN:RT)” on page 244
- “Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)” on page 245
- “Digital Modulation Subsystem ([:SOURce]:DM)” on page 274
- “Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)” on page 292
- “Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)” on page 332
- “Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)” on page 360
- “Real Time GPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:GPS)” on page 376
- “Real Time MSGPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:MSGPs)” on page 383
- “Two Tone Subsystem ([:SOURce]:RADio:TTONE:ARB)” on page 386
- “Wideband Digital Modulation Subsystem ([:SOURce]:WDM)” on page 397
All Subsystem–Option 601 and 602 ([:SOURce])

:RADio:ALL:OFF

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ALL:OFF

This command disables all digital modulation personalities on a particular baseband. This command does not affect analog modulation.
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([SOURce]:RADio:AWGN:ARB)

AWGN ARB Subsystem–Option 403 ([SOURce]:RADio:AWGN:ARB)

:BWIDth

Supported: All with Option 403

[:SOURce]:RADio:AWGN:ARB:BWIDth <val>
[:SOURce]:RADio:AWGN:ARB:BWIDth?

This command adjusts the bandwidth of the AWGN waveform.

The variable <val> is expressed in units of hertz (Hz to MHz).

*RST +1.00000000E+006
Range 5E4 to 1.5E7
Key Entry Band width

:IQ:EXTernal:FILTer

Supported: All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTer 40e6|THRough
[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTer?

This command selects the filter or through path for I/Q signals routed to the rear panel I and Q outputs. Selecting a filter setting with this command will automatically set the :IQ:EXTernal:FILTer:AUTO command to OFF.

40e6 This choice applies a 40 MHz baseband filter.
THRough This choice bypasses filtering.
*RST THR
Key Entry 40.000 MHz Through

:IQ:EXTernal:FILTer:AUTO

Supported: All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTer:AUTO ON|OFF|1|0
[:SOURce]:RADio:AWGN:ARB:IQ:EXTernal:FILTer:AUTO?

This command enables or disables the automatic selection of the filters for I/Q signals routed to the rear panel I/Q outputs.

ON(1) This choice will automatically select a digital modulation filter optimized for the current signal generator settings.
OFF(0) This choice disables the auto feature which lets you select a digital modulation filter or through path. Refer to the :IQ:EXTernal:FILTer command for selecting a filter or through path.
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

*RST ON
Key Entry I/Q Output Filter Manual Auto

:HEADer:CLEar

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:HEADer:CLEar

This command clears the header information from the header file used by this modulation format. The AWGN Off On softkey must be set to On for this command to function.

Key Entry Clear Header

:HEADer:SAVE

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:HEADer:SAVE

This command saves the header information to the header file used by this modulation format. The AWGN Off On softkey must be set to On for this command to function.

Key Entry Save Setup To Header

:IQ:MODulation:ATTen

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen <val>
[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen?

This command attenuates the I/Q signals being modulated through the signal generator's RF path.

The variable <val> is expressed in units of decibels (dB).

*RST +2.00000000E+000
Range 0 to 40
Key Entry Modulator Atten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the I/Q attenuation auto mode.
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

ON (1) This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. For setting the attenuation value, refer to the :IQ:MODulation:ATTen command.

*RST 1

Key Entry Modulator Atten Manual Auto

:IQ:MODulation:FILTer

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer 40e6|THThrough
[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter with this command will automatically set the :IQ:MODulation:ATTen:AUTO command to OFF.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THThrough This choice bypasses filtering.

*RST THR

Key Entry 40.000 MHz Through

:IQ:MODulation:FILTer:AUTO

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer:AUTO ON|OFF|1|0
[:SOURce]:RADio:AWGN:ARB:IQ:MODulation:FILTer:AUTO?

This command enables or disables the automatic selection of the filters for I/Q signals modulated onto the RF carrier.

ON(1) This choice will automatically select a digital modulation filter.

OFF(0) This choice disables the auto feature which lets you select a digital modulation filter or through path. Refer to the :IQ:MODulation:FILTer command for selecting a filter or through path.

*RST 1

Key Entry I/Q Mod Filter Manual Auto
Digital Modulation Commands

AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

:MDESTination:AAMPlitude

Supported All with Option 403

[:SOURce]:RADio:AWGN:ARB:MDESTination:AAMPlitude
NONE | M1 | M2 | M3 | M4

[:SOURce]:RADio:AWGN:ARB:MDESTination:AAMPlitude?

This command routes the selected marker to the Alternate Amplitude function.
The NONE parameter clears the marker for the Alternate Amplitude function.

*RST

Key Entry
None Marker 1 Marker 2 Marker 3 Marker 4

:MDESTination:ALCHold

Supported All with Option 403

CAUTION

Incorrect automatic level control (ALC) sampling can create a sudden un leveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:AWGN:ARB:MDESTination:ALCHold
NONE | M1 | M2 | M3 | M4

[:SOURce]:RADio:AWGN:ARB:MDESTination:ALCHold?

This command enables or disables the marker ALC hold function for the selected marker. For setting markers, see "::MARKer:[SET]" on page 306.

Use the ALC hold function when you have a waveform signal that uses idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC leveling circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see "::MPOLarity:MARKer1|2|3|4" on page 311.

NOTE

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the User’s Guide. For setting the marker points, see “[:MARKer:[SET]” on page 306.

- **NONE** This terminates the marker ALC hold function.
- **M1–M4** These are the marker choices. The ALC hold feature uses only one marker at a time.
- ***RST** NONE

Example

:RAD:AWGN:ARB:MDES:ALCH M1

The preceding example routes marker 1 to the ALC Hold function.

Key Entry None | Marker 1 | Marker 2 | Marker 3 | Marker 4

:RADIolation:PULSe

Supported All with Option 403

CAUTION
The pulse function incorporates the ALC hold. Incorrect automatic level control (ALC) sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:AWGN:ARB:MDESination:PULSe NONE|M1|M2|M3|M4

This command enables or disables the marker pulse/RF blanking function for the selected marker. The function automatically uses the ALC hold function, so there is no need to select both ALC hold and marker pulse/RF blanking functions for the same marker.

NOTE
Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 311.

NOTE
Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output. For setting the marker points, see “:MARKer:[SET]” on page 306.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE
A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, refer to the User’s Guide.

```
NONE
This terminates the marker RF blanking/pulse function.

M1–M4
These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.
```

Example

```
```

The preceding example routes marker 2 to Pulse/RF Blanking.

```
*RST
NONE
```

Key Entry

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>None</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MPOLarity:MARKer1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported
All with Option 403

```
[:SOURce]:RADio:AWGN:ARB:MPOLarity:MARKer1|2|3|4  
NEGative | POSitive
[:SOURce]:RADio:AWGN:ARB:MPOLarity:MARKer1|2|3|4?
```
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

Example

[:RAD:AWGN:ARB:MPOL:MARK3 NEG]

The preceding example sets the polarity for marker 3 to negative.

*RST

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1 Polarity</th>
<th>Marker 2 Polarity</th>
<th>Marker 3 Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neg</td>
<td>Neg</td>
<td>Neg</td>
</tr>
<tr>
<td></td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
</tr>
</tbody>
</table>

:LENgth

Supported

All with Option 403

[:SOURce]:RADio:AWGN:ARB:LENgth
1048576 | 524288 | 262144 | 131072 | 65536 |
32768 | 16384
[:SOURce]:RADio:AWGN:ARB:LENgth?

This command specifies the length (number of points) of the AWGN waveform. A longer waveform yields a statistically more correct waveform.

*RST

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>1048576</th>
<th>524288</th>
<th>262144</th>
<th>131072</th>
<th>65536</th>
<th>32768</th>
<th>16384</th>
</tr>
</thead>
</table>

Digital Modulation Commands

AWGN ARB Subsystem–Option 403 ([[:SOURce]:RADio:AWGN:ARB])

:REFerence:EXTernal:FREQuency

Supported
All with Option 403

```
[:SOURce]:RADio:AWGN:ARB:REFerence:EXTernal:FREQuency <val>
[:SOURce]:RADio:AWGN:ARB:REFerence:EXTernal:FREQuency?
```

This command allows you to enter the frequency of the applied external reference. The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear panel connector. To specify external as the ARB reference source type, refer to “[:REFerence[:SOURce]]” on page 344.

The variable `<val>` is expressed in units of hertz (Hz–MHz).

- **RST** +1.00000000E+007
- **Range** 2.5E5 to 1E8
- **Key Entry** Reference Freq

:REFerence[:SOURce]

Supported
All with Option 403

```
[:SOURce]:RADio:AWGN:ARB:REFerence[:SOURce]
[:SOURce]:RADio:AWGN:ARB:REFerence[:SOURce]?
```

This command selects either an internal or external reference for the waveform clock. If the EXTernal choice is selected, the external frequency value must be entered and the signal must be applied to the BASEBAND GEN REF IN rear panel connector. To enter the external reference frequency, refer to “[:REFerence:EXTernal:FREQuency]” on page 343.

- **RST** INT
- **Key Entry** ARB Reference Ext Int

:SCLock:RATE

Supported
All with Option 403

```
[:SOURce]:RADio:AWGN:ARB:SCLock:RATE <val>
[:SOURce]:RADio:AWGN:ARB:SCLock:RATE?
```

This command sets the sample clock rate for the AWGN modulation format. The modulation format should be active before executing this command. If this command is executed before the modulation format is active, the entered value will be overridden by a calculated factory default value. To activate the modulation format, refer to “[:BURSt:SHAPe:FALL:DELay]” on page 247.

The variable `<val>` is expressed in units of hertz.

- **RST** +1.00000000E+008
Digital Modulation Commands
AWGN ARB Subsystem–Option 403 ([:SOURce]:RADio:AWGN:ARB)

Range
1 to 1E8

Key Entry
ARB Sample Clock

`:SEED`

Supported
All with Option 403

[:SOURce]:RADio:AWGN:ARB:SEED FIXed|RANDOM

[:SOURce]:RADio:AWGN:ARB:SEED?

This command toggles the AWGN waveform noise seed value type.

FIXed This choice selects a fixed noise seed value.

RANDom This choice selects a randomly generated noise seed value.

*RST FIX

Key Entry
Noise Seed Fixed Random

`:STATe`

Supported
All with Option 403

[:SOURce]:RADio:AWGN:ARB [:STATe] ON|OFF|1|0

[:SOURce]:RADio:AWGN:ARB [:STATe]?`

This command enables or disables the AWGN generator function.

*RST 0

Key Entry
Arb AWGN Off On
Digital Modulation Commands
AWGN Real–Time Subsystem–Option 403 ([:SOURce]:RADio:AWGN:RT)

AWGN Real–Time Subsystem–Option 403
([:SOURce]:RADio:AWGN:RT)

[:BWIDth]

Supported E8267D with Option 403

[:SOURce]:RADio:AWGN:RT:BWIDth <val>
[:SOURce]:RADio:AWGN:RT:BWIDth?

This command adjusts the real–time AWGN bandwidth value.
The variable <val> is expressed in units of hertz (Hz–MHz).

*RST +1.00000000E+006
Range 5E4 to 8E7
Key Entry Band width

[:STATE]

Supported E8267D with Option 403

[:SOURce]:RADio:AWGN:RT[:STATE] ON|OFF|1|0
[:SOURce]:RADio:AWGN:RT[:STATE]?

This command enables or disables the operating state of real–time AWGN.

*RST 0
Key Entry Real–time AWGN Off On
Custom Subsystem–Option 601 and 602
([SORc]:RADio:CUSTom)

:ALPha

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:ALPHa <val>
[:SOURce]:RADio:CUSTom:ALPHa?

This command changes the Nyquist or root Nyquist filter’s alpha value. The filter alpha value can be set to a minimum level (0), a maximum level (1), or in between by using fractional numeric values (0.001–0.999). To change the current filter type, refer to “:FILTer” on page 257.

Example

:RAD: CUST: ALPH .65

The preceding example sets the filter alpha to .65.

*RST +3.50000000E−001

Range 0.000 to 1.000

Key Entry Filter Alpha

:BBCLock

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BBCLock?

This command toggles the data (bit) clock input to the baseband generator board to either internal or external. This command is independent in each mode and works for both non–burst (continuous) and burst modes. This allows for a matrix of selections between burst/non–burst, internal/external data generation, internal/external data clock, and external bit/symbol data clock.

INT [1] This choice selects the signal generator internal data clock.

EXT [1] This choice selects an external data clock input.

A data clock or continuous symbol sync input must be supplied when external mode is used. This is ignored if the external reference is set to EXTernal (Refer to “:EREFerence” on page 256).

Example

:RAD: CUST: BBCL 1

The preceding example selects the signal generator’s internal data clock.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([SOURce]:RADio:CUSTom)

*RST INT
Key Entry BBG Data Clock Ext Int

:BBT

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BBT <val>
[:SOURce]:RADio:CUSTom:BBT?

This command changes the bandwidth–multiplied–by–bit–time (BbT) filter parameter. The filter BbT value can be set to the maximum level (1) or in between the minimum level (0.100) and maximum level by using fractional numeric values (0.101–0.999). This command is effective only after choosing a Gaussian filter. It does not effect other types of filters (Refer to “:FILTer” on page 257).

Example

:RAD:CUST:BBT .300

The preceding example selects a 0.300 BbT gaussian filter.

*RST +5.00000000E−001
Range 0.100 to 1.000
Key Entry Filter BbT

:BRATe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BRATe <val>
[:SOURce]:RADio:CUSTom:BRATe?

This command sets the bit rate. The variable <val> is expressed in bits per second (bps–Mbps) and the maximum range value depends on the data source (internal or external), the modulation type, and filter.

When user–defined filters are selected using the :FILTer command, the upper symbol rate will be restricted using the following criteria:

– FIR filter length > 32 symbols: upper limit is 12.5 Msps
– FIR filter length > 16 symbols: upper limit is 25 Msps

When internal FIR filters are used, these limit restrictions always apply. For higher symbol rates, the FIR filter length will be truncated and will impact the relative timing of the modulated data, as well as the actual filter response. A change in the bit rate value effects the symbol rate value. Refer to the :SRATe command for more information.

To change the modulation type, refer to “:MODulation[:TYPE]” on page 260.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

Example

[:RAD: CUST: BRAT 10MBPS]

The preceding example sets the bit rate to 10 megabits per second.

*RST +4.86000000E+004

<table>
<thead>
<tr>
<th>Modulation Type</th>
<th>Bits per Symbol</th>
<th>Internal Data</th>
<th>External Serial Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>1</td>
<td>45 bps–50 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>FSK2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4FM</td>
<td>2</td>
<td>90 bps–100 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>FSK4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OQPSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OQPSK195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QPSK1S95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QPSK1SAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBPSK</td>
<td>3</td>
<td>135 bps–150 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>EDGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSK8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSK8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSK16</td>
<td>4</td>
<td>180 bps–200 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>PSK16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QAM16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QAM32</td>
<td>5</td>
<td>225 bps–250 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>QAM64</td>
<td>6</td>
<td>270 bps–300 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>QAM128</td>
<td>7</td>
<td>315 bps–350 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
<tr>
<td>QAM256</td>
<td>8</td>
<td>360 bps–400 Mbps</td>
<td>45 bps–50 Mbps</td>
</tr>
</tbody>
</table>

[:BURSt:SHAPe: FALL: DELay]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHAPe: FALL: DELay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe: FALL: DELay?
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

This command sets the burst shape fall delay. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command. Refer to the :SRATe command for a list of the minimum and maximum symbol rate values.

The :BURSt:SHAPe:FDElay command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

Example

The preceding example sets a 50 bit fall delay.

*RST +0.00000000E+000
Range –22.3750 to 99
Key Entry Fall Delay

:BURSt:SHAPe:FALL:TIME

Supported E8267D with Option 601 or 602

[:,:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:TIME <val>
[:,:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:TIME?

This command sets the burst shape fall time. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command. Refer to the :SRATe command for a list of the minimum and maximum symbol rate values.

The :BURSt:SHAPe:FTIMe command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

Example

:RAD:CUST:BURS:SHAPE:TIME 100

The preceding example sets a 100 bit fall delay.

*RST +1.00000000E+001
Range 0.1250 to 255.8750
Key Entry Fall Time
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([SOURce]:RADio:CUSTom)

:BURSt:SHAPe:FDELay

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FDELay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FDELay?

This command sets the burst shape fall delay. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command. Refer to :SRATe command for a list of the minimum and maximum symbol rate values.

The :BURSt:SHAPe:FALL:DELay command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the **User's Guide**.

Example

:RAD:CUST:BURS:SHAP:FDEL 45

The preceding example sets a 45 bit fall delay.

*RST +0.00000000E+000

Range –22.3750 to 99

Key Entry Fall Delay

:BURSt:SHAPe:FTIMe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FTIMe <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FTIMe?

This command sets the burst shape fall time. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command. Refer to :SRATe command for a list of the minimum and maximum symbol rate values.

The :BURSt:SHAPe:FALL:TIME command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the **User's Guide**.

Example

The preceding example sets a 20 bit fall delay.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

*RST

+0.00000000E+000

Range

0.1250 to 255.8750

Key Entry

Fall Time

:BURSt:SHAPe:RDELay

Supported
E8267D with Option 601 or 602

This command sets the burst shape rise delay. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command.
Refer to :SRATe command for a list of the minimum and maximum symbol rate values.

The :BURSt:SHApe:RISE:DELay command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

Example

:RAD:CUST:BURS:SHAPE:RDEL -10

The preceding example sets a –10 bit rise delay.

*RST

+0.00000000E+000

Range

–17.3750 to 99

Key Entry

Rise Delay

:BURSt:SHAPe:RISE:DELay

Supported
E8267D with Option 601 or 602

This command sets the burst shape rise delay. The variable <val> is expressed in bits with
1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command. For a list of the minimum and maximum symbol rate values, refer to the :SRATe command.

The :BURSt:SHApe:RDELay command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

Example

The preceding example sets a 10 bit rise delay.

*RST +0.00000000E+000
Range −17.3750 to 99
Key Entry Rise Delay

:BURSt:SHApe:RISE:TIME

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHApe:RISE:TIME <val>
[:SOURce]:RADio:CUSTom:BURSt:SHApe:RISE:TIME?

This command sets the burst shape rise time. The variable <val> is expressed in bits with 1 bit = 1/(symbol_rate*bits_per_symbol).

To change the modulation type, refer to the :MODulation[:TYPE] command. For a list of the minimum and maximum symbol rate values, refer to the :SRATe command.

The :BURSt:SHApe:RTIMe command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

Example

The preceding example sets a .5 bit rise delay.

*RST +1.00000000E+001
Range 0.1250 to 121.5000
Key Entry Rise Time

:BURSt:SHApe:RTIMe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHApe:RTIMe <val>
[:SOURce]:RADio:CUSTom:BURSt:SHApe:RTIMe?

This command sets the burst shape rise time. The variable <val> is expressed in bits with 1 bit = 1/(symbol_rate*bits_per_symbol).
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

To change the modulation type, refer to the :MODulation[:TYPE] command. For a list of the minimum and maximum symbol rate values, refer to the :SRATe command.

The :BURSt:SHAPe:RISE:TIME command performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

Example

:RAD:CUST:BURS:SHAPE:RTIM 100

The preceding example sets a 100 bit rise time.

*RST +1.00000000E+001

Range 0.1250 to 121.5000

Key Entry Rise Time

:BURSt:SHAPe[:TYPE]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:BURSt:SHAPe[:TYPE] SINE|"<file_name>"
[:SOURce]:RADio:CUSTom:BURSt:SHAPe[:TYPE]?

This command selects a user–defined or a pre–defined burst shape file.

SINE This choice selects the pre–defined Sine burst shape as the burst shape type.

"<file_name>" This variable names the user burst shape file to use. Refer to File Name Variables for information on the file name syntax.

Example

:RAD:CUST:BURS:SHAPE "Test_File"

The preceding example selects a file named Test_File from the signal generator's SHAPE directory. The directory path is implied in the command and does not need to be specified.

*RST SINE

Key Entry Sine User File

:CHANnel

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:CHANnel EVM|ACP
[:SOURce]:RADio:CUSTom:CHANnel?
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([SOURce]:RADio:CUSTom)

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

- **EVM**: This choice provides the most ideal passband.
- **ACP**: This choice improves stopband rejection.

To change the current filter type, refer to “:FILTER” on page 257.

Example

[:SOURce]:RADio:CUSTom:CHAN EVM

The preceding example uses EVM optimizing.

- **RST** EVM

Key Entry

Optimize FIR for EVM ACP

:DATAS:ALIGN

Supported

E8267D with Option 601 or 602

This command resets the signal generator’s I/Q DAC circuitry. This operation is required any time the external VCO clock signal is lost and re-acquired. This key may be used to align the DACs in multiple boxes when they share a common external clock. This key may have to be pressed a random number of times.

Example

[:SOURce]:RADio:CUSTom:DACS ALIG

The preceding example resets the I/Q DAC circuitry.

- **DATAS**

Key Entry

Align DACs

:DATA

Supported

E8267D with Option 601 or 602

This command sets the data pattern for unframed transmission. For information on the file name syntax, see “File Name Variables” on page 11.

Example

[:SOURce]:RADio:CUSTom:DATA PN9

The preceding example selects a PN9 data pattern for unframed transmission.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

*RST

PN23

Key Entry

<table>
<thead>
<tr>
<th>PN9</th>
<th>PN11</th>
<th>PN15</th>
<th>PN20</th>
<th>PN23</th>
<th>FIX4</th>
<th>User File</th>
</tr>
</thead>
</table>

| 4 1’s & | 8 1’s & | 16 1’s & | 32 1’s & |
| 4 0’s | 8 0’s | 16 0’s | 32 0’s |

64 1’s & 64 0’s PRAM FILE

:DATA:DIGItalbus

Supported E8267D with Option 601 or 602 and an N5102A

[:SOURce]:RADio:CUSTom:DATA:DIGItalbus:INPut:VRMS <level>
[:SOURce]:RADio:CUSTom:DATA:DIGItalbus:INPut:VRMS?

This command informs the instrument of the voltage level (Vrms) of the input signal on the digital bus. The input signal level is used to determine the I/Q attenuation.

This function is active when LVDS is on and the LVDS data direction is set to INPUT.

Example

:RAD:CUST:DATA:DIG:INP:VRMS 0.5V
:RAD:CUST:DATA:DIG:INP:VRMS 500mV

The preceding examples set an rms voltage of 0.5V.

*RST 0.4V

Range 0.1 to 1.414

Key Entry DIGITAL BUS Level Vrms

:DATA:FIX4

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:DATA:FIX4 <val>
[:SOURce]:RADio:CUSTom:DATA:FIX4?

This command sets the binary, 4-bit repeating sequence data pattern for unframed transmission according to the modulation type, symbol rate, filter, and burst shape selected for the custom modulation format. FIX4 must be selected as the data type.

<val> This variable is an integer value from one to 15 and represents the a four bit pattern.

Example
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:RAD:CUST:DATA:FIX4 15
The preceding example selects a FIX4 data pattern consisting of four 1’s.

*RST
#B0000
Range
#B0000 to #B1111 or 0 to 15
Key Entry
FIX4

:DATA:PRAM
Supported
E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:DATA:PRAM "<file_name>"
[:SOURce]:RADio:CUSTom:DATA:PRAM?
This command selects PRAM data as the data pattern for unframed transmission. Refer to the :DATA:PRAM:FILE:BLOCk command for information on PRAM data. For information on the file name syntax, refer to “File Name Variables” on page 11.

Example
:RAD:CUST:DATA:PRAM "Test_Data"
The preceding example selects the PRAM file, Test_Data, as the data pattern for unframed transmission.

Key Entry
PRAM File

:DENCode
Supported
E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:DENCode ON|OFF|1|0
[:SOURce]:RADio:CUSTom:DENCode?
This command enables or disables the differential data encoding function. Executing this command encodes the data bits prior to modulation; each modulated bit is 1 if the data bit is different from the previous one or 0 if the data bit is the same as the previous one.

Example
:RAD:CUST:DENC 1
The preceding example enables differential data encoding for the selected modulation.

*RST
0
Key Entry
Diff Data Encode Off On
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:EDATa:DELay

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EDATa:DELay?

This query returns the time delay (in symbols) from the external data input to the beginning of the symbol on the I OUT and Q OUT rear panel connectors and the front panel RF OUTPUT connector. When the format is turned off, the delay value is unchanged; the query will return the same delay value if the format is on or off.

:EDCLock

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EDCLock SYMBol|NORMal

[:SOURce]:RADio:CUSTom:EDCLock?

This command sets the external data clock use. In internal clock mode, neither choice has an effect. To select EXT as the data clock type, use the :BBCLock command.

SYMBol This choice specifies that a continuous symbol clock signal must be provided to the SYMBOL SYNC input connector.

NORMal This choice specifies that the DATA CLOCK input connector requires a bit clock. The SYMBOL SYNC input connector requires a (one–shot or continuous) symbol sync signal.

Example

:RAD:CUST:EDCL NORM

The preceding example selects normal mode for the external data clock type.

RST NORM

Key Entry Ext Data Clock Normal Symbol

:EREFerence

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EREFerence INTernal|EXTernal

[:SOURce]:RADio:CUSTom:EREFerence?

This command selects either an internal or external bit–clock reference for the data generator.

If the EXTernal choice is selected, the external frequency value must be applied to the BASEBAND GEN REF IN rear panel connector. To enter the external reference frequency, refer to the :EREFerence:VALue command.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

Example

:RAD:CUSt:EREF EXT

The preceding example selects an external bit–clock reference for the data generator.

*RST INT

Key Entry BBG Ref Ext Int

:EREference:VALue

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:EREference:VALue <val>
[:SOURce]:RADio:CUSTom:EREference:VALue?

This command specifies the reference frequency of the externally applied reference. The variable <val> is expressed in hertz (Hz–MHz).

The value specified by this command is valid only when an external reference is applied to the BASEBAND GEN REF IN rear panel connector. To select EXTERNAL as the bit–clock reference for the data generator, use the :EREference command.

Example

:RAD:CUSt:EREf:VAL 10E6

The preceding example uses a 10 MHz external reference for the signal generator's baseband generator.

*RST +1.30000000E+007

Range 2.5E5 to 1E8

Key Entry Ext BBG Ref Freq

:FILTer

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:FILTer
RNYQuist | NYQuist | GAUSsian | RECTangle | AC4Fm | UGGaussian | "<User_FIR>
[:SOURce]:RADio:CUSTom:FILTer?

This command selects the pre–modulation filter type.

RNYQuist This choice selects a root nyquist filter (root raised cosine).

NYQuist This choice selects a Nyquist filter (raised cosine).

GAUSsian This choice selects a gaussian filter.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

RECTangle This choice selects a one-symbol– wide rectangular filter.

AC4Fm This is a pre–defined Association of Public Safety Communications Officials (APCO) specified compatible 4–level frequency modulation (C4FM) filter.

UGGaussian This choice selects a GSM Gaussian filter with a fixed Bbt value of 0.300.

"<User_FIR>" This variable is any filter file stored in the signal generator’s catalog of FIR files. The directory path is implied in the command and does not need to be specified. For information on the file name syntax, see “File Name Variables” on page 11.

*RST RNYQ

Example

:RAD:CUST:FILT GAUS

The preceding example selects a gaussian filter as the pre–modulation filter type.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Root Nyquist</th>
<th>Nyquist</th>
<th>Gaussian</th>
<th>Rectangle</th>
<th>APCO 25</th>
<th>C4FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>GSM</td>
<td>GSM</td>
<td>GSM</td>
<td>GSM</td>
<td>GSM</td>
<td>GSM</td>
</tr>
<tr>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Gaussian</td>
</tr>
<tr>
<td>User</td>
<td>User</td>
<td>User</td>
<td>User</td>
<td>User</td>
<td>User</td>
<td>User</td>
</tr>
<tr>
<td>FIR</td>
<td>FIR</td>
<td>FIR</td>
<td>FIR</td>
<td>FIR</td>
<td>FIR</td>
<td>FIR</td>
</tr>
</tbody>
</table>

:IQ:SCALE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:IQ:SCALE <val>
[:SOURce]:RADio:CUSTom:IQ:SCALE?

This command sets the amplitude of the I/Q outputs for better adjacent channel power (ACP); lower scaling values equate to better ACP.

The variable <val> is expressed as a percentage.

Example

:RAD:CUST:IQ:SCAL 50

The preceding example sets I/Q scaling to 50%.

*RST +70
Range 1 to 200
Key Entry I/Q Scaling
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:MODulation:FSK[:DEViation]

- **Supported**: E8267D with Option 601 or 602
- **[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation] <val>**
- **[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation]?**

This command sets the maximum symmetric FSK frequency deviation value.

The variable `<val>` is a numeric expression in hertz which specifies the spacing of the two outermost FSK tones. Additional tones are evenly spaced between the two outermost tones. The maximum range value equals the current symbol rate value multiplied by four and is limited to 20 MHz.

To change the modulation type, refer to the :MODulation[:TYPE] command. For a list of the minimum and maximum symbol rate values, use the :SRATe command.

Refer to the *User's Guide* for information on setting an asymmetric FSK deviation value.

Example

`:RAD:CUST:MOD:FSK 50KHZ`

The preceding example sets the maximum frequency deviation to 50 kHz.

- **RST**: +4.00000000E+002
- **Range**: 0 to 2E7
- **Key Entry**: Freq Dev

:MODulation:MSK[:PHASe]

- **Supported**: E8267D with Option 601 or 602
- **[:SOURce]:RADio:CUSTom:MODulation:MSK[:PHASe] <val>**
- **[:SOURce]:RADio:CUSTom:MODulation:MSK[:PHASe]?**

This command sets the MSK phase deviation value. The variable `<val>` is expressed in degrees.

Example

`:RAD:CUST:MOD:MSK 40`

The preceding example sets the phase deviation to 40 degrees.

- **RST**: +9.00000000E+001
- **Range**: 0 to 100
- **Key Entry**: Phase Dev
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

:MODulation:UFSK

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation:UFSK "<file_name>"
[:SOURce]:RADio:CUSTom:MODulation:UFSK?

This command selects a user–defined FSK file from the signal generator’s catalog of FSK files. The directory path is implied in the command and does not need to be specified. For information on the file name syntax, see “File Name Variables” on page 11.

The user–defined FSK file is held in signal generator memory until the command that selects user FSK as the modulation type is sent. To change the current modulation type, use the :MODulation[:TYPE] command.

Example

:RAD:CUST:MOD:UFSK "Test_FSK"

The preceding example selects the file, Test_FSK, from the catalog of FSK files.

Key Entry
User FSK

:MODulation:UIQ

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation:UIQ "<file_name>"
[:SOURce]:RADio:CUSTom:MODulation:UIQ?

This command selects a user–defined I/Q file from the signal generator’s catalog of IQ files. The directory path is implied in the command and does not need to be specified. For information on the file name syntax, see “File Name Variables” on page 11.

The user–defined I/Q file is held in signal generator memory until the command that selects user I/Q as the modulation type is sent. To change the current modulation type, refer to :MODulation[:TYPE] command.

Example

:RAD:CUST:MOD:UIQ "Test_IQ"

The preceding example selects the file, Test_IQ, from the catalog of IQ files.

Key Entry
User I/Q

:MODulation[:TYPE]

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:MODulation[:TYPE]
ASK|BPSK|QPSK|UQPSK|IS95QPSK|GRAYQPSK|OQPSK|IS95OQPSK|P4DQPSK|FSK8|FSK16|D8PSK|HDQPSK|MSK|FSK2|FSK4|FSK8|FSK16|C4FM|HCFM|QAM4|QAM16|QAM32|QAM64|QAM128|QAM256|APSK16CR23|APSK16CR34|
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

APSK16CR45|APSK16CR56|APSK16CR89|APSK16CR910|APSK32CR34|APSK32CR45|APSK32CR56|APSK32CR89|APSK32CR910|UIQ|UFSK
[:SOURce]:RADio:CUSTom:MODulation[:TYPE]?

This command sets the modulation type for the Custom personality. For user–defined modulation; UIQ or UFSK, the file must first be specified using the “:MODulation:UFSK” or “:MODulation:UIQ” commands.

Example
:RAD:CUST:MOD BPSK

The preceding example selects binary phase shift keying (BPSK).
The preceding example selects amplitude and binary phase shift keying (APSK).

:MODulation:ASK[:DEPTh]

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:CUSTom:MODulation:ASK[:DEPTh] <0% - 100%>[:SOURce]:RADio:CUSTom:MODulation:ASK[:DEPTh]?

This command changes the depth for the amplitude shift keying (ASK) modulation. Depth is set as a percentage of the full power on level.

*RST +1.00000000E+002
Range 0 to 100
Key Entry ASK Depth 100%
Remarks The modulation is applied to the I signal, the Q value is always kept at zero.

[:SOURce]:RADio:CUSTom:MODulation:ASK[:DEPTh]?

Example

*RST P4DQPSK

Key Entry ASK BPSK QPSK UQPSK IS–95 QPSK Gray Coded OQPSK

IS–95

QPSK

\(\pi/4\) DQPSK 8PSK 16PSK D8PSK HDQPSK MSK 2–Lvl FSK

4–Lvl FSK 8–Lvl FSK 16–Lvl FSK C4FM HCPM 4QAM 16QAM 32QAM
Digital Modulation Commands

Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:POLarity[:ALL]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:POLarity[:ALL] NORMal|INVerted

[:SOURce]:RADio:CUSTom:POLarity[:ALL]?

This command sets the signal phase rotation direction.

- **NORMal** This choice selects normal clockwise phase rotation for the signal.
- **INVerted** This choice reverses the phase rotation of the signal by inverting the Q signal.

Example

:RAD:CUST:POL INV

The preceding example selects reverse phase rotation for the internal Q signal.

:*RST NORM

Key Entry Phase Polarity Normal Invert

:SRATe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:SRATe <val>

[:SOURce]:RADio:CUSTom:SRATe?

This command sets the transmission symbol rate.

The variable <val> is expressed in symbols per second (sps–Msps) and the maximum range value is dependent upon the source of data (internal or external), the modulation type, and filter.

When user–defined filters are selected using the :FILTer command, the upper symbol rate will be restricted using the following criteria:

- FIR filter length > 32 symbols: upper limit is 12.5 Msps
- FIR filter length > 16 symbols: upper limit is 25 Msps

When internal FIR filters are used, these limit restrictions always apply. For higher symbol rates, the FIR filter length will be truncated as follows:
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

- Above 12.5 Msps, the FIR length will be truncated to 32 symbols
- Above 25 Msps, the FIR length will be truncated to 16 symbols
 This will impact the relative timing of the modulated data, as well as the
 actual filter response.

A change in the symbol rate value effects the bit rate value.

To change the modulation type, refer to "MODulation[:TYPE]" on page 260.

Example

`:RAD:CUST:SRAT 10KSPS`

The preceding example sets the symbol rate to 10K symbols per second.

<table>
<thead>
<tr>
<th>Range</th>
<th>Modulation Type</th>
<th>Bits per Symbol</th>
<th>Internal Data</th>
<th>External Serial Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BPSK</td>
<td>1</td>
<td>1 sps–50 Msps</td>
<td>1 sps–50 Msps</td>
</tr>
<tr>
<td></td>
<td>FSK2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C4FM</td>
<td>2</td>
<td>1 sps–50 Msps</td>
<td>1 sps–25 Msps</td>
</tr>
<tr>
<td></td>
<td>FSK4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QPSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QPKSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QPKSK195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P4QPPSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QAM4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QPSK3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QPSKIS95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QPSKISAT</td>
<td>2</td>
<td>1 sps–50 Msps</td>
<td>1 sps–25 Msps</td>
</tr>
<tr>
<td></td>
<td>D8PSK</td>
<td>3</td>
<td>1 sps–50 Msps</td>
<td>1 sps–16.67 Msps</td>
</tr>
<tr>
<td></td>
<td>EDGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSK8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSK8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FSK16</td>
<td>4</td>
<td>1 sps–50 Msps</td>
<td>1 sps–12.5 Msps</td>
</tr>
<tr>
<td></td>
<td>PSK16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QAM16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QAM32</td>
<td>5</td>
<td>1 sps–50 Msps</td>
<td>1 sps–10 Msps</td>
</tr>
<tr>
<td></td>
<td>QAM64</td>
<td>6</td>
<td>1 sps–50 Msps</td>
<td>1 sps–8.33 Msps</td>
</tr>
<tr>
<td></td>
<td>QAM128</td>
<td>7</td>
<td>1 sps–50 Msps</td>
<td>1 sps–7.142 Msps</td>
</tr>
<tr>
<td></td>
<td>QAM256</td>
<td>8</td>
<td>1 sps–50 Msps</td>
<td>1 sps–6.25 Msps</td>
</tr>
</tbody>
</table>
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 [:SOURce]:RADio:CUSTom

Key Entry **Symbol Rate**

:STANdard:SELect

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:STANdard:SELect
NONE|AC4Fm|ACQPsk|BLUEtooth|CDPD

[:SOURce]:RADio:CUSTom:STANdard:SELect?

This command selects a pre–defined setup for Custom (with the appropriate defaults) and/or clears the selection.

Key Entry **Symbol Rate**

NONE This choice clears the current pre–defined Custom format.

AC4Fm This choice sets up an Association of Public Safety Communications Officials (APCO) compliant, compatible 4–level frequency modulation (C4FM) format.

ACQPsk This choice sets up an Association of Public Safety Communications Officials (APCO) compliant, compatible quadrature phase shift keying (CQPSK) format.

BLUEtooth® This choice sets up a Bluetooth (2–level frequency shift keying) format.

CDPD This choice sets up a minimum shift keying Cellular Digital Packet Data (CDPD) format.

Example

:RAD:CUST:STAN:SEL AC4FM

The preceding example selects the AC4FM pre–defined operating mode.

*RST NONE

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>APCO</th>
<th>APCO 25</th>
<th>Bluetooth</th>
<th>CDPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>25w/C4FM</td>
<td>w/CQPSK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:TRIGger:TYPE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger:TYPE CONTinuous|SINGLE|GATE

[:SOURce]:RADio:CUSTom:TRIGger:TYPE?

This commands sets the trigger mode (type) that controls the data transmission.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

Triggers control the data transmission by telling the PSG when to transmit the modulating signal. Depending on the trigger settings for the PSG, the data transmission can occur once, continuously, or the PSG may start and stop the transmission repeatedly (GATE mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the PSG to trigger on either state of the trigger signal. It is common to have multiple triggers, also referred to as trigger occurrences or events, occur when the signal generator requires only a single trigger. In this situation, the PSG recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the modulating signal. This is because the PSG sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the signal’s final I and Q levels determine whether you see the carrier signal or not (zero = no carrier, other values = visible carrier). At the end of most data patterns, the final I and Q points are set to a value other than zero. If you create your own data file, you can set the initial I and Q voltages to values other than zero, and set the last I and Q values to zero. Create your own file using the front panel UI (refer to the User’s Guide), or download a file you create external to the PSG (refer to the Keysight Signal Generators Programming Guide).

There are four parts to configuring the trigger:

- Choosing the trigger type, which controls the data transmission.
- Setting the data pattern’s response to triggers:
 - CONTinuous, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 266
 - SINGle, selecting the mode also sets the response (This differs from using the single mode for the ARB formats.)
 - GATE, selecting the mode also sets the response
- Selecting the trigger source using the :TRIGger[:SOURce] command, determines how the PSG receives its trigger signal, internally or externally. The GATE choice requires an external trigger.
- Setting the trigger polarity when using an external source:
 - CONTinuous and SINGle, see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 271
 - GATE, see “:TRIGger:TYPE:GATE:ACTive” on page 267

For more information on triggering, see the User’s Guide.

The following list describes the trigger type command choices:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTinuous</td>
<td>Upon triggering, the data pattern repeats continuously.</td>
</tr>
<tr>
<td>SINGle</td>
<td>Upon triggering, the data pattern plays once.</td>
</tr>
</tbody>
</table>
An external trigger signal controls the data transmission. The modulating signal waits for the first active trigger signal state to begin. After the initial trigger, the behavior is dependent on whether the signal incorporates framed or unframed data. Because the PSG provides only unframed data for real-time custom, to transmit a framed data signal you must create an external file that incorporates the framing and download it to the PSG. The following list describes the behavior differences between the two types of data transmissions:

- For unframed data, an external trigger signal repeatedly starts and stops the data transmission. The length of each transmission depends on the duty period of the trigger signal and the gate polarity selection (see ":TRIGger:TYPE:GATE:ACTive" on page 267). Data transmits during the active polarity selection state and stops during the inactive state. The active state can be set high or low.

- For framed data, an external trigger signals the PSG to start transmitting at the beginning of a frame during active states, but only stops at the end of a frame when the end occurs during the inactive states. If the end of the frame extends into the next active trigger state, the signal transmits continuously. For information on downloading files, refer to the Keysight Signal Generators Programming Guide.

Example

:RAD:CUST:TRIG:TYPE SING

The preceding example selects the single trigger mode for data transmission.

*RST CONT

Key Entry

| Continuous | Single | Gated |

:TRIGger:TYPE:CONTinuous[:TYPE]

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:CONTinuous[:TYPE]

FREE|TRIGger

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:CONTinuous[:TYPE]?
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

This command selects the data pattern’s response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see “:TRIGger:TYPE” on page 264.

The following list describes the data pattern’s response to each of the command choices:

- **FREE**
 Turning custom on immediately triggers the modulating signal. The signal repeats the data pattern until you turn the signal off, select another trigger, or choose another data pattern.

- **TRIGger**
 The modulating signal waits for a trigger before transmission begins. When the signal receives the trigger, it transmits the data continuously until you turn the signal off, select another trigger, or choose another data pattern.

Example

`:RAD:CUST:TRIG:TYPE:CONT FREE`

The preceding example selects the free–run mode for continuous data transmission.

- **Key Entry**
 - Free Run
 - Trigger & Run

`:TRIGger:TYPE:GATE:ACTive`

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:GATE:ACTive LOW|HIGH

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:GATE:ACTive?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. The PSG uses the active state to transmit the data pattern. When the inactive state occurs, the transmission stops at the last transmitted symbol, then restarts at the next symbol when the active state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 264.

The following list describes the PSG’s gating behavior for the polarity selections:

- **LOW**
 The PSG transmits the data pattern while the trigger signal is low (active state) and stops when the trigger signal goes high (inactive state).
HIGH The PSG transmits the data pattern while the trigger signal is high (active state) and stops when the trigger signal goes low (inactive state).

Example

The preceding example selects a high external signal level as the active state for the gate trigger.

*RST HIGH

Key Entry Gate Active Low High
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:TRIGger[:SOURce]

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:CUSTom:TRIGger[:SOURce] KEY|EXT|BUS
[[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]]?

This command sets the trigger source.

For more information on triggering, see ".:TRIGger:TYPE" on page 264. The following list describes the command choices:

- **KEY**
 This choice enables manual triggering by pressing the front panel Trigger hardkey.

- **EXT**
 An externally applied signal triggers the modulating signal. This is the only choice that works with gating. The following settings affect an external trigger:
 - The input connector for the trigger signal. You have a choice between the rear panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector. To make the connector selection, see ".:TRIGger[:SOURce]:EXTernal[:SOURce]" on page 271.
 - For more information on the connectors and on connecting the cables, refer to the User's Guide.
 - The trigger signal polarity:
 - gating mode, see ".:TRIGger:TYPE:GATE:ACTive" on page 267
 - continuous and single modes, see ".:TRIGger[:SOURce]:EXTernal:SLOPe" on page 271
 - Any desired delay between when the PSG receives a trigger and when the data pattern responds to the trigger. There are two parts to setting the delay:
 - setting the amount of delay, see ".:TRIGger[:SOURce]:EXTernal:DELay" on page 270
 - turning the delay on, see ".:TRIGger[:SOURce]:EXTernal:DELay:STATe" on page 270

- **BUS**
 This choice enables triggering over the GPIB using the *TRG or GET command, or the LAN and the AUXILIARY INTERFACE (RS–232) using the *TRG command.

Example
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([SOURce]:RADio:CUSTom)

`:RAD:CUST:TRIG BUS`

The preceding example selects BUS triggering.

<table>
<thead>
<tr>
<th>*RST</th>
<th>EXT</th>
</tr>
</thead>
</table>

Key Entry Trigger Key Ext Bus

`:TRIGger[:SOURce]:EXTernal:DELay`

Supported E8267D with Option 601 or 602

This command sets the number of bits to delay the PSG's response to an external trigger.

The bit delay is a delay between when the PSG receives the trigger and when it responds to the trigger. The delay uses the clocks of the bit–clock to time the delay. After the PSG receives the trigger and the set number of delay bits (clocks) occurs, the PSG transmits the data pattern.

The delay occurs after you enable the state. Refer to the `:TRIGger[:SOURce]:EXTernal:DELay:STATE` command. You can set the number of bits either before or after enabling the state.

For more information on configuring an external trigger source and to select external as the trigger source, refer to the `:TRIGger[:SOURce]` command.

Example

`:RAD:CUST:TRIG:EXT:DELay 200000`

The preceding example sets the delay for an external trigger for 200K bits.

<table>
<thead>
<tr>
<th>*RST</th>
<th>+0</th>
</tr>
</thead>
</table>

Range 0 to 1048575

Key Entry Ext Delay Bits

`:TRIGger[:SOURce]:EXTernal:DELay:STATE`

Supported E8267D with Option 601 or 602

[:SOURce] :RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay:STATE ON|OFF|1|0

This command turns the trigger delay on or off when using an external trigger source.
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

For setting the delay time, refer to the :TRIGger[:SOURce]:EXTernal:DELay command; and for more information on configuring an external source, refer to the :TRIGger[:SOURce] command.

Example
:RAD:CUST:TRIG:EXT:DEL:STAT 0

The preceding example disables the delay state for an external trigger source.

*RST
0

Key Entry Ext Delay Off On

:TRIGger[:SOURce]:EXTernal:SLOPe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:SLOPe
POSitive|NEGative
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:SLOPe?

This command sets the polarity for an external trigger signal while using the continuous or single triggering modes. To set the polarity for gating, refer to the :TRIGger:TYPE:GATE:ACTive command.

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (transmits) during the high state of the trigger signal. When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, refer to the :TRIGger[:SOURce] command.

Example
:RAD:CUST:TRIG:EXT:SLOP NEG

The preceding example selects the negative trigger as the active state for data transmission.

*RST NEG

Key Entry Ext Polarity Neg Pos

:TRIGger[:SOURce]:EXTernal[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal[:SOURce]
EPT1 | EPT2 |
EPTRIGGER1 | EPTRIGGER2
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal[:SOURce]?
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

This command selects which rear panel connector the PSG uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, refer to the :TRIGger[:SOURce] command. For more information on the rear panel connectors, refer to the User’s Guide.

The following list describes the command choices:

- **EPT1**: This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear panel connector.
- **EPT2**: This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.
- **EPTRIGGER1**: This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear panel connector.
- **EPTRIGGER2**: This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.

Example

```plaintext
:RAD:CUST:TRIG:EXT EPT2
```

The preceding example selects an external trigger from the PATTERN TRIG IN 2 rear panel connector.

[*RST **EPT1***

Key Entry

<table>
<thead>
<tr>
<th>Patt Trig In 1</th>
<th>Patt Trig In 2</th>
</tr>
</thead>
</table>

[:STATe]

Supported E8267D with Option 601 or 602

```
[:SOURce]:RADio:CUSTom[:STATe] ON|OFF|1|0
[:SOURce]:RADio:CUSTom[:STATe]?
```

This command enables or disables the Custom modulation format.

Although the Custom modulation is enabled with this command, the RF carrier is not modulated unless you activate the front panel **Mod On/Off** hardkey.

Example

```plaintext
:RAD:CUST OFF
```

The preceding example turns off the custom modulation format.

[*RST **0***

Key Entry

<table>
<thead>
<tr>
<th>Custom Off On</th>
</tr>
</thead>
</table>

[:STATe]
Digital Modulation Commands
Custom Subsystem–Option 601 and 602 ([:SOURce]:RADio:CUSTom)

:VCO:CLOCk

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:CUSTom:VCO:CLOCk?

This command enables an internal or external VCO clock. The external VCO clock is connected to the rear panel BASEBAND GEN CLK IN connector. Use the :DACS:ALIGn command after an external VCO clock is first applied to the BASEBAND GEN CLK IN connector or when the VCO signal is lost and then re-acquired.

Example

:RAD:CUST:VCO:CLOC EXT

The preceding example selects an external VCO clock.

*RST Int

Key Entry VCO Clock Ext Int

:VCO:CLOCk:RATE?

Supported E8267D with Option 601 or 602

Queries the baseband generator VCO clock rate.

Example

:RAD:CUST:VCO:CLOC:RATE?

Key Entry VCO Clock Rate

:VCO:CLOCk[:SOURce]

Supported E8267D with Option 601 or 602

This command enables an internal or external VCO clock. The external VCO clock is connected to the rear panel BASEBAND GEN CLK IN connector. If the external clock signal is not present, press the Align DACs key after the signal is applied.

Example

:RAD:CUST:VCO:CLOC EXT

The preceding example selects an external VCO clock.

*RST Int

Key Entry VCO Clock Ext Int
Digital Modulation Subsystem ([:SOURce]:DM)

:EXTernal:Filter

Supported E8267D

[:SOURce]:DM:EXTernal:FILTer 40e6 | THRough
[:SOURce]:DM:EXTernal:FILTer?

This command selects the filter or through path for I/Q signals routed to the rear panel I and Q outputs.

40e6 This choice applies a 40 MHz baseband filter.
THROugh This choice bypasses filtering.

Example

:DM:EXT:FILT 40E6

The preceding example selects the 40 MHz baseband filter.

*RST THR

Key Entry 40.000 MHz Through

:EXTernal:Filter:AUTO

Supported E8267D

[:SOURce]:DM:EXTernal:FILTer:AUTO ON | OFF | 1 | 0
[:SOURce]:DM:EXTernal:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear panel I/Q outputs.

ON(1) This choice automatically selects the 40 MHz filter optimized for the current signal generator settings.
OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to the :IQ:EXTernal:FILTer command for selecting a filter or through path.

Example

:DM:EXT:FILT:AUTO 1

The preceding example allows automatic selection of the 40 MHz I/Q filter.

*RST 1 (ON)

Key Entry I/Q Output Filter Manual Auto
:EXTernal:HCRest

Supported E8267D

```
[:SOURce]:DM:EXTernal:HCRest [STATe] ON|OFF|1|0
[:SOURce]:DM:EXTernal:HCRest [STATe]?
```

This command changes the operating condition to accommodate I/Q inputs with a high crest factor.

- **ON (1)**: This choice turns high crest mode on for externally applied signals with high crest factors. High crest mode allows the signal generator to process these signals with less distortion. For crest factors higher than 4 dB, I/Q drive levels should be reduced by 1 dB for each dB above that level. In high crest mode, the maximum output level is reduced and power level accuracy is degraded.

- **OFF (0)**: This choice disables the high crest mode.

Example

```
:DM:EXT:HCR 0
```

The preceding example disables the high crest mode.

* *RST* NORM

Key Entry High Crest Mode Off On

:EXTernal:POLarity

Supported E8267D

```
[:SOURce]:DM:EXTernal:POLarity NORMal|INVert|INVerted
[:SOURce]:DM:EXTernal:POLarity?
```

This command, for backward compatibility with older ESG E44xxB models, selects normal or inverted I/Q signal routing. In inverted mode, the Q input is routed to the I modulator and the I input is routed to the Q modulator.

Example

```
:DM:EXT:POL INV
```

The preceding example inverts I and Q signal routing.

* *RST* NORM

Key Entry Int Phase Polarity Normal Invert
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

:EXTernal:SOURce

Supported E8267D

[[:SOURce]:DM:EXTernal:SOURce
EXTernal|INTernal|BBG1|EXT600|OFF|SUM
[[:SOURce]:DM:EXTernal:SOURce?

This command selects the I/Q signal source that is routed to the rear panel I and Q output connectors.

EXTernal This choice routes a portion of the externally applied signals at the 50 ohm I and Q input connectors to the rear panel I and Q output connectors.

INTernal This choice is for backward compatibility and performs the same function as the BBG1 selection.

BBG1 This choice routes a portion of the baseband generator I/Q signals to the rear panel I and Q connectors and requires Option 602.

EXT600 This choice routes a portion of the externally applied signals at the 600 ohm I and Q input connectors to the rear panel I and Q output connectors.

OFF This choice disables the output to the rear panel I and Q output connectors.

The output is the analog component of the I and Q signals.

For selecting the I/Q source, refer to the :SOURce command.

Example

:DM:EXT:SOUR EXT

The preceding example routes the I/Q signals to the external 50 ohm rear–panel output.

*RST EXT

Key Entry Ext 50 Ohm BBG1 Ext 600 Ohm Off

:IQADjustment:DELay

Supported E8267D

[[:SOURce]:DM:IQADjustment:DELay <delay_val>
[[:SOURce]:DM:IQADjustment:DELay?

This command sets a delay for both I and Q from the baseband to the I/Q outputs and to the RF output. This will allow you to time shift the I/Q with respect to triggering and markers. The absolute phase of both I and Q will
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

change with respect to triggers and markers. A positive value advances the I
and Q phase. The range limits are dependent on the current modulation
format.

This feature is not compatible with constant envelope modulations and signals
connected to the external I/Q inputs.

The <delay_val> variable is expressed in seconds.

Example

:DM:IQAD:DEL .05SEC

The preceding example sets a 50 millisecond delay for the I and Q signals.

*RST +0.00000000E+000

Key Entry I/Q Delay

:IQADjustment:EXTernal:COFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:COFFset <units>
[:SOURce]:DM:IQADjustment:EXTernal:COFFset?

This command sets the common mode offset voltage for both the in–phase (I)
and quadrature–phase (Q) signals going to the rear panel I and Q output
connectors.

The <units> variable is expressed in volts (mV–V). This command is effective
only if the state of the I/Q adjustment function is set to ON. Refer to
“:IQADjustment[:STATe]” on page 284.

Example

:DM:IQAD:EXT:COFF -.1

The preceding example sets a negative .1 volt common mode offset voltage for
the I and Q signals.

*RST +0.00000000E+000

Range –3 to 3

Key Entry Common Mode I/Q Offset

:IQADjustment:EXTernal:DIOFfset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:DIOFfset <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:DIOFfset?

This command sets the differential offset voltage for an in–phase (I) signal
routed to the I output connectors.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to "[:IQADjustment[:STATe]]" on page 284.

Example
[:DM:IQAD:EXT:DIOf 1

The preceding example sets a 1 volt differential offset voltage for the I signal at the rear panel I output connector.

*RST +0.00000000E+000
Range −3 to 3
Key Entry Diff. Mode I Offset

[:IQADjustment:EXTernal:DQOFset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:DQOFset <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:DQOFset?

This command sets the differential offset voltage for a quadrature–phase (Q) signal routed to the Q output connectors.

The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to "[:IQADjustment[:STATe]]" on page 284.

Example
[:DM:IQAD:EXT:DQOF 1

The preceding example sets a 1 volt differential offset voltage for the Q signal at the rear panel Q connector.

*RST +0.00000000E+000
Range −3 to 3
Key Entry Diff. Mode Q Offset

[:IQADjustment:EXTernal:GAIN

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:GAIN <val><units>[::SOURce]:DM:IQADjustment:EXTernal:GAIN?
Digital Modulation Commands
Digital Modulation Subsystem ([SOURce]:DM)

This command sets the I/Q gain ratio (I/Q balance) for signals routed to the rear panel I and Q output connectors. The I signal is increased for positive values and the Q signal level increases with negative values.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 284.

Example

:DM:IQAD:EXT:GAIN 1

The preceding example increases the output gain ratio of I vs. Q by 1dB.

*RST +0.00000000E+000
Range −4 to 4
Key Entry I/Q Out Gain Balance

:IQADjustment:EXTernal:IOFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:IOFFset <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:IOFFset?

This command sets the offset voltage for a signal applied to the 600 ohm I input connector.

The variable <val> is a numeric expression. The <units> variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 284.

Example

:DM:IQAD:EXT:IOFF 200MV

The preceding example sets a 200 millivolt offset for the signal applied to the I 600 ohm input connector.

*RST +0.00000000E+000
Range −5 to 5
Key Entry Ext In 600 Ohm I Offset

:IQADjustment:EXTernal:IQATten

Supported E8267D

[:SOURce]:DM:IQADjustment:EXTernal:IQATten <val><units>
[:SOURce]:DM:IQADjustment:EXTernal:IQATten?

This command sets the I/Q output attenuation level.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

The variable `<val>` is a numeric expression. The `<units>` variable is expressed in decibels (dB).

The value set by this command is active even if the I/Q adjustment function is off.

Example

`:DM:IQAD:EXT:IQAT 10.1`

The preceding example sets the IQ attenuator level to 10.1 dB.

*:IQADjustment:EXTernal:QOFFset

Supported E8267D

[[:SOURce]:DM:IQADjustment:EXTernal:QOFFset <val><units>
[[:SOURce]:DM:IQADjustment:EXTernal:QOFFset?]

This command sets the offset voltage for a signal applied to the 600 ohm Q input connector. The variable `<val>` is a numeric expression. The `<units>` variable is expressed in volts (mV–V).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 284.

Example

`:DM:IQAD:EXT:QOFF 200MV`

The preceding example sets a 200 millivolt offset for the signal applied to the Q 600 ohm input connector.

*:IQADjustment:GAIN

Supported E8267D

[[:SOURce]:DM:IQADjustment:GAIN[1|2] <val>
[[:SOURce]:DM:IQADjustment:GAIN?]

This command sets the gain for the I signal (GAIN 1) relative to the Q signal, (GAIN 2). The gain ratio is expressed in decibels (dB).

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 284.
Digital Modulation Commands
Digital Modulation Subsystem (:SOURce:DM)

Example
:DM:IQAD:GAIN2 -3
The preceding example sets a gain of –3 dB for the Q signal relative to the I signal.

*RST +0.00000000E+000
Range –4 to 4 dB
Key Entry I/Q Gain Balance Source 1

:IQADjustment:IOFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:IOFFset <val>
[:SOURce]:DM:IQADjustment:IOFFset?

This command adjusts the I channel offset value.
The <val> variable is expressed as a percent with 100% equivalent to 500 mV DC at the input connector. The minimum resolution is 0.025 percent.

When using this command to minimize the LO feedthrough signal, optimum performance is achieved when the command is sent after all other I/Q path commands are executed, such as those that change the internal phase polarity or adjust the modulator attenuator. If other adjustments are made after minimizing is performed, the LO feedthrough signal may increase.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “:IQADjustment[:STATe]” on page 284.

Example
:DM:IQAD:IOFF -30
The preceding example sets the I channel offset to –30%.

*RST +0.00000000E+000
Range –5E1 to +5E1
Key Entry I Offset

:IQADjustment:QOFFset

Supported E8267D

[:SOURce]:DM:IQADjustment:QOFFset <val>
[:SOURce]:DM:IQADjustment:QOFFset?

This command adjusts the Q channel offset value.
The <val> variable is expressed as a percent with 100% equivalent to 500 mV DC at the input connector. The minimum resolution is 0.025 percent.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

When using this command to minimize the LO feedthrough signal, optimum performance is achieved when the command is sent after all other I/Q path commands are executed, such as those that change the internal phase polarity or adjust the modulator attenuator. If other adjustments are made after minimizing is performed, the LO feedthrough signal may increase.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “[:IQADjustment[:STATe]]” on page 284.

Example

:DM:IQAD:QOFF -30

The preceding example sets the Q channel offset to –30%.

*RST +0.00000000E+000
Range –5E1 to +5E1
Key Entry Q Offset

[:IQADjustment:QSKew

Supported E8267D

[[:SOURce]:DM:IQADjustment:QSKew <val>]
[[:SOURce]:DM:IQADjustment:QSKew?]

This command adjusts the phase angle (quadrature skew) between the I and Q vectors by increasing or decreasing the Q phase angle.

The <val> variable is expressed in degrees with a minimum resolution of 0.1.

If the signal generator is operating at frequencies greater than 3.3 GHz, quadrature skew settings greater than ±5 degrees will not be within specifications.

Positive skew increases the angle from 90 degrees while negative skew decreases the angle from 90 degrees. When the quadrature skew is zero, the phase angle between the I and Q vectors is 90 degrees.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to “[:IQADjustment[:STATe]]” on page 284.

Example

:DM:IQAD:QSKew 4.5

The preceding example increases the phase angle by 4.5 degrees.

*RST +0.00000000E+000
Range –1E1 to +1E1
Key Entry Quadrature Angle Adjustment
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

:IQADjustment:SKEW

Supported E8267D

[[:SOURce]:DM:IQADjustment:SKEW[:DElay] <val>
[[:SOURce]:DM:IQADjustment:SKEW?

This command changes the input skew which is a time delay difference between the I and Q signals. Equal and opposite skew is applied to both I and Q and affects the RF Output and I/Q output paths simultaneously. A positive value delays the I signal relative to the Q signal, and a negative value delays the Q signal relative to the I signal.

If the internal I/Q correction path is set to RF or BB the I/Q signals are already optimized and adjusting I/Q skew would add an impairment to the signals. If the internal I/Q correction path is set to Off, then adjusting the I/Q skew could improve the I/Q signals. The I/Q skew adjustment cannot be performed on the MSK, FSK, and C4FM constant envelope modulations.

I/Q skew adjustments are preserved when the instrument state is saved. I/Q skew adjustments are also preserved when instrument settings are changed. If the signal generator is calibrated, the skew adjustments are added to the calibration value used for the given signal generator state. If the signal generator is uncalibrated, the skew adjustments are re-applied directly.

Using I/Q skew while playing a user FIR file greater than 32 symbols will generate an error.

The variable <val> is expressed in seconds. Range limits are determined by the modulation configuration but is limited to a maximum of ± 2 seconds.

Example

:DM:IQAD:SKEW .5

The preceding example sets the time delay difference between the I and Q signals to 500 milliseconds.

*RST +0.00000000E+000

Key Entry I/Q Timing Skew

:IQADjustment:SKEW:PATH

Supported E8267D

[[:SOURce]:DM:IQADjustment:SKEW:PATH RF BB
[[:SOURce]:DM:IQADjustment:SKEW?

This command selects either the RF or BB (baseband) path as the path to which skew timing corrections will be applied. If there are no factory I/Q timing skew corrections data, then adjusting the I/Q timing skew for the selected path may improve the error vector magnitude (EVM) of the signal. Refer to the :IQADjustment:SKEW command for more information.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

If internal I/Q corrections are available for the RF or external I/Q output (BB) path then the I/Q signals are already optimized and adjusting I/Q skew for either path would add an impairment to the signal.

Example

:DM: IQAD:SKEW:PATH RF

The preceding example selects the RF path as the path to which skew timing adjustments will be made.

* RST +0.00000000E+000

Key Entry I/Q Timing Skew Path

:IQADjustment[:STATe]

Supported E8267D

[:SOURce]:DM: IQADjustment [:STATe] ON|OFF|1|0

[:SOURce]:DM: IQADjustment [:STATe]?

This command enables or disables the I/Q adjustments.

Example

:DM: IQAD 1

The preceding example enables I/Q adjustments.

* RST 0 (OFF)

Key Entry I/Q Adjustments Off On

:MODulation:ATTen

Supported E8267D

[:SOURce]:DM: MODulation:ATTen <val>

[:SOURce]:DM: MODulation:ATTen?

This command sets the attenuation level for the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

:DM: MOD:ATT 10

The preceding example sets the modulator attenuator to 10 dB.

* RST +2.00000000E+000

Range 0 to 40 dB

Key Entry Modulator Atten Manual Auto
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

:MODulation:ATTen:AUTO

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:AUTO ON|OFF|1|0

[:SOURce]:DM:MODulation:ATTen:AUTO?

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives a AUTO OFF or AUTO 0 command.

- **ON (1)** This choice sets the modulator attenuator to auto mode which optimizes the attenuation setting for the current signal generator settings.

- **OFF (0)** This choice sets the attenuator to manual mode and holds the attenuator at its current setting. Refer to the :MODulation:ATTen command for setting the attenuation value.

Example

:DM:MOD:ATT:AUTO OFF

The preceding example sets the modulator attenuator to manual mode.

RST 1

Key Entry Modulator Atten Manual Auto

:MODulation:ATTen:EXTernal

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:EXTernal DEFault|MANual|MEASure

[:SOURce]:DM:MODulation:ATTen:EXTernal?

This command selects the external measurement used to set the attenuator level. The modulation attenuation must be in Auto mode and is enabled by the :MODulation:ATTen:AUTO command.

- **DEFault** Use this choice to set the external I/Q input level to the default value of 500.0 mV.

- **MANual** Use this choice to manually set the external input level. The input level is set by using the :MODulation:ATTenn:EXTernal:LEVel command.

- **MEASurement** This choice uses a real–time measurement of the external input level to set the attenuator level. The measurement will be used to set the attenuator level setting and is performed by using the :MODulation:ATTenn:EXTernal:LEVel:MEASurement command.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

Example
:DM:MOD:ATT:EXT MAN
The preceding example sets manual as the method for setting the external I/Q input level.

*RST DEFault

Key Entry Ext Input Level (nnn mV) Default Man Meas

:MODulation:ATTenn:EXTernal:LEVel

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:EXTernal:LEVel <val><volt_units>
[:SOURce]:DM:MODulation:ATTen:EXTernal:LEVel?

This command sets the I/Q signal voltage level at the external I/Q inputs. The voltage level set with this command is used as the input level setting for automatic attenuation.

Example
:DM:MOD:ATT:EXT:LEV 100MV
The preceding example sets the voltage level for the I and Q inputs to 100 millivolts.

*RST +4.00000000E−001
Range .05 to 1 Volt
Key Entry I/Q Output Atten

:MODulation:ATTenn:EXTernal:LEVel:MEASurement

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:EXTernal:LEVel:MEASurement

This command measures the RMS value of the external I/Q signal. The external input level must be set to Measure.

Key Entry Do External Input Level Measurement

:MODulation:ATTen:OPTimize:BANDwidth

Supported E8267D

[:SOURce]:DM:MODulation:ATTen:OPTimize:BANDwidth <val><rate>
[:SOURce]:DM:MODulation:ATTen:OPTimize:BANDwidth?

This command sets the expected bandwidth of the external I/Q signal. The bandwidth set with this command be used by the modulator attenuator for level setting.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

The variable <val> is a number within the range limits and the variable <rate> is expressed as samples per second (sps, ksp, or msps).

Example

The preceding example measures the voltage level at the external I/Q inputs.

*RST

+1.00000000E+006

Range

1E3 to 100E6

Key Entry

Optimize for (nnn sps) Band width

:MODulation:FILTter

Supported

E8267

[:SOURce]:DM:MODulation:FILTter 40e6|THRough
[:SOURce]:DM:MODulation:FILTter?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter with this command automatically sets the :MODulation:FILTter:AUTO command to OFF.

40E6

This choice applies a 40 MHz baseband filter to the I/Q signals.

THRough

This choice uses through path filtering.

Example

:DM:MOD:FILT 40E6

The preceding example selects the 40 MHz filter for I/Q signals.

*RST

THR

Key Entry

40.000MHz

Through

:MODulation:FILTer:AUTO

Supported

E8267D

[:SOURce]:DM:MODulation:FILTer:AUTO ON|OFF|1|0
[:SOURce]:DM:MODulation:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1) This choice will automatically select the optimal filter.

OFF (0) This choice disables the automatic filter selection and allows you to select a filter or through path. Refer to the :IQ:MODulation:FILTer command for selecting a filter or through path.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

Example
:DM:MOD:FILT:AUTO 0
The preceding example disables the automatic filter selection for I/Q signals.

*RST

Key Entry I/Q Mod Filter Manual Auto

:POLarity[:ALL]

Supported E8267D

[:SOURce]:DM:POLarity[:ALL] Normal|INVert|INVerted
[:SOURce]:DM:POLarity?

This command selects normal or inverted I/Q signal routing. In inverted mode, the Q input is routed to the I modulator and the I input is routed to the Q modulator, inverting the phase polarity.

NORMal This choice selects normal routing for the I and Q signals.

INVert (ed) This choice inverts the phase polarity by routing the I signal to the Q input of the I/Q modulator and the Q signal to the I input.

Example
:DM:POL INV
The preceding example swaps the I and Q routing paths.

*RST NORM

Key Entry Int Phase Polarity Normal Invert

:SKEW:PATH

Supported E8267D

[:SOURce]:DM:SKEW:PATH RF|BB
[:SOURce]:DM:SKEW:PATH?

This command selects the signal path that will be optimized using I/Q skew corrections. The other path maybe degraded.

RF When RF is selected, the skew is optimized for the I/Q signal applied to the RF Output. The baseband (BB) output will be functional, but the I/Q skew applied will be optimized for the RF path. When using this choice, seven symbols of latency are added to the Arb based waveform. While in real–time mode, the maximum number of user symbols for the FIR is limited to 32.
Digital Modulation Commands
Digital Modulation Subsystem ([SOURce]:DM)

BB
When BB is selected, the skew is optimized for the I/Q signal outputs on the rear panel. The RF Output will be functional, but the I/Q skew applied will be optimized for the BB path. When using this choice, seven symbols of latency are added to the ARB based waveform. While in real-time mode, the maximum number of user symbols for the FIR is limited to 32.

NOTE
You must have a skew calibration to use this command. I/Q skew corrections and calibration must be performed at an Keysight factory or service center.

Example
:DM:SKEW:PATH BB
The preceding example selects the baseband path for I/Q skew and calibration.

*RST RF
Key Entry Int I/Q Skew Corrections RF BB Off

:SKew[:STATe]

Supported E8267D

[[SOURce] :DM:SKEW [:STATe] ON | OFF | 1 | 0

This command enables or disables the I/Q skew correction function.

Example
:DM:SKEW:STAT 0
The preceding example disables I/Q skew corrections.

*RST 1
Key Entry Int I/Q Skew Corrections RF BB Off

:SOURce

Supported E8267D

[[SOURce] :DM:SOURce[1] | 2 EXTernal | INTernal | BBG1 | EXT600 | OFF
[:SOURce] :DM:SOURce?

This command selects the I/Q modulator source for one of the two possible paths.

EXTernal This choice selects an external 50 ohm source as the I/Q input to I/Q modulator.
Digital Modulation Commands

Digital Modulation Subsystem ([:SOURce]:DM)

INTernal
This choice is for backward compatibility with ESG E44xxB models and performs the same function as the BBG1 selection.

BBG1
This choice selects the baseband generator as the source for the I/Q modulator.

EXT600
This choice selects a 600 ohm impedance for the I and Q input connectors and routes the applied signals to the I/Q modulator.

OFF
This choice disables the I/Q input.

Example

`:DM:SOURce1 BBG1`

The preceding example selects BBG1, the baseband generator, as the modulation source for path 1.

:SRATio

Supported
All

`:SOURce]:DM:[SRAT]io <val><units>`

`:SOURce]:DM:[SRAT]io?`

This command enables you to set the power level difference (ratio) between the source one and the source two signals when the two signals are summed together. A positive ratio value reduces the amplitude for source two while a negative ratio value reduces the amplitude for source one.

The range for the summing ratio is dependent on the modulator attenuator setting for the signal generator that is summing the signals together. The minimum range is achieved when the modulator attenuator setting is zero and the maximum range is reached when the maximum attenuator value is used. The range can be calculated using the following formula:

\[\pm \text{Range} = 50 \text{ dB} + \text{Mod Atten} \]

The variable `<val>` is expressed as a number. The variable `<units>` is expressed in decibels (dB).

For setting the modulator attenuator for real-time modulation formats, refer to the :IQ:MODulation:ATTen and :IQ:MODulation:ATTen:AUTO commands. For setting the modulator attenuator for Arb modulation formats, refer to the SCPI command subsystem for the Arb format being used and find the commands that contain the command mnemonics :IQ:MODulation:ATten.
Digital Modulation Commands
Digital Modulation Subsystem ([:SOURce]:DM)

Example

:DM:SRAT 3DB
The preceding example sets the summing ratio for source 1 and source 2 to 3 dB.

*RST +0.00000000E+000
Range Min: ± 50 dB Max: ± 90 dB
Key Entry Summing Ratio (SRC1/SRC2) x.xx dB

:STATe

Supported E8267D
[:SOURce]:DM:STATe ON|OFF|1|0
[:SOURce]:DM:STATe?
This command enables or disables the internal I/Q modulator. The signal generator I/Q annunciator is displayed when the I/Q modulator is on.
The I/Q modulator is enabled whenever a digital format is turned on.

Example

:DM:STAT OFF
The preceding example turns off the I/Q modulator.

*RST 0
Key Entry I/Q Off On
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

:BASeband:FREQuency:OFFSet

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:BASEband:FREQuency:OFFSet <value> <unit>
[:SOURce]:RADio:ARB:BASEband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the modulated carrier. This feature is useful for moving the signal such that the carrier feed-through is not in the center. When the Baseband Frequency Offset is set to a value (i.e. non-zero), a phase rotator is employed which is continually shifting the phase of the baseband signal. When the Baseband Frequency Offset is returned to 0 Hz, this phase is automatically reset to zero.

The query returns the current baseband frequency offset value.

Example

:RAD:ARB:BASE:FREQ:OFFS 20 MHz

The preceding example sets the baseband frequency offset value to 20 MHz.

Default 0 Hz

Range –20 MHz to 20 MHz

Key Entry Baseband Frequency Offset

:CLIPping

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:CLIPping
"<file_name>",IJQ|IORQ,<val>[,<val>]

This command sets the clipping level of the selected waveform segment to a percentage of its highest peak. The waveform must be selected before the clipping command is executed. For more information about clipping, refer to the User’s Guide.

The variable <val> is expressed as a percentage within a 10–100% range.

IJQ This choice clips the composite I/Q waveform.

IORQ This choice clips I and Q separately. When this choice is enabled, percentage values for both I and Q must be specified.

A value of 100 percent equates to no clipping.

For information on the file name syntax, see “File Name Variables” on page 11.

Example
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

[:RAD:ARB:CLIP "ramp_test_wfm",IJQ,50]
[:RAD:ARB:CLIP "ramp_test_wfm",IORQ,50,60]

The preceding examples clip the ramp_test_wfm waveform data file. The second example clips I and Q separately to 50% and 60% respectively.

*RST

IJQ <val>: +100

Range <val>: 10–100 (0.1% resolution)

Key Entry

Clipping

Clipping Type |I+jQ|,|I|,|Q|

Clip |I+jQ| To

Clip |I| To

Clip |Q| To

:DACS:ALIGn

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:DACS:ALIGn

This command resets the signal generator’s I/Q DAC circuitry. This operation is required any time the external VCO clock signal is lost and re-acquired. This key may be used to align the DACs in multiple boxes when they share a common external clock. This key may have to be pressed a random number of times.

Key Entry Align DACs

:FILTer:ALPHa

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:FILTer:ALPHa <val>
[:SOURce]:RADio:ARB:FILTer:ALPHa?

This command changes the Nyquist or Root Nyquist Real-Time Modulation filter alpha value.

The filter alpha value can be set to the minimum level (0), the maximum level (1), or in between by using fractional numeric values (0.001 to 0.999).

*RST +3.50000000E−001

Range 0.000 to 1.000

Key Entry Filter Alpha

Key Path Mode > Dual ARB > Arb Setup > More 2 of 2 > Real-Time Modulation Filter > Filter Alpha

Remarks To change the current filter type, refer to :FILTer:TYPE.
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 [:SOURce]:RADio:ARB

:FILTer:BBT

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:FILTer:BBT <val>
[:SOURce]:RADio:ARB:FILTer:BBT?

This command changes the bandwidth–multiplied–by–bit–time (BbT) Real-Time Modulation filter parameter.

The filter BbT value can be set to the minimum level (0.1), the maximum level (1), or in between by using fractional numeric values (0.100 to 0.999).

*RST +5.00000000E−001

Range 0.100 to 1.000

Key Entry Filter BbT

Key Path Mode > Dual ARB > Arb Setup > More 2 of 2 > Real-Time Modulation Filter > Filter BbT

Remarks This command is effective only after choosing a Gaussian filter. It does not have an effect on other types of filters.

To change the current filter type, refer to :FILTer:TYPE.

:FILTer:CHANnel

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:FILTer:CHANnel EVM|ACP
[:SOURce]:RADio:ARB:FILTer:CHANnel?

This command optimizes the Nyquist and Root Nyquist Real-Time Modulation filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

EVM This choice provides the most ideal passband.

ACP This choice improves stopband rejection.

*RST EVM

Key Entry Optimize FIR For EVM ACP

Key Path Mode > Dual ARB > Arb Setup > More 2 of 2 > Real-Time Modulation Filter > Optimize FIR For EVM ACP

Remarks To change the current filter type, refer to :FILTer:TYPE.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

:`FIlTer:TYPE`

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:FIlTer:TYPE
RNYQuist|NYQuist|GAUSsian|RECTangle|IS95|IS95_EQ|IS95_MOD|IS95_MOD_EQ|EWIDe|WCDMa|AC4Fm|EDGE|EHSR|"user FIR"

[:SOURce]:RADio:ARB:FIlTer:TYPE?

This command specifies the Real-Time Modulation filter type.

- **RNYQuist**
 This choice selects a Root Nyquist (root raised cosine) filter. This filter is adjusted using Alpha.

- **NYQuist**
 This choice selects a Nyquist (raised cosine) filter. This filter is adjusted using Alpha.

- **GAUSsian**
 This choice selects a Gaussian filter which is adjusted using Bbt values.

- **RECTangle**
 This choice selects a one symbol wide rectangular filter.

- **IS95**
 This choice selects a filter that meets the criteria of the IS–95 standard.

- **IS95_EQ**
 This choice selects a filter which is a combination of the IS–95 filter (above) and the equalizer filter described in the IS–95 standard. This filter is only used for IS–95 baseband filtering.

- **IS95_MOD**
 This choice selects a filter that meets the criteria of the IS–95 error function (for improved adjacent channel performance) with lower passband rejection than the filter specified in the IS–95 standard.

- **IS95_MOD_EQ**
 This choice selects a filter which is a combination of the equalizer filter described in the IS–95 standard and a filter that meets the criteria of the IS–95 error function (for improved adjacent channel performance), with lower passband rejection.

- **EDGE**
 This choice selects a linearized Gaussian filter as defined in GSM 05.04.

- **EWIDe**
 This choice selects an EDGE spectrally wide pulse shape filter as per 3GPP TS 45.004.

- **EDGE EHSR**
 This choice selects an EDGE high symbol rate spectrally narrow pulse shape filter as per 3GPP TS 45.004.

- **WCDMa**
 This choice selects a W–CDMA filter which is the equivalent of a Root Nyquist filter with an alpha of 0.22 optimized for ACP.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

AC4Fm This choice selects a predefined Association of Public Safety Communications Officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.

"<user FIR>" This variable is any FIR filter file that you have stored in memory. The variable needs no directory path indicating the location of the file, such as `FIR:` or `/USER/FIR`. The command assumes the FIR directory. For more information on file names, refer to “File Name Variables” on page 11.

*RST Root Nyquist

Table 5-1

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Nyquist</th>
<th>IS–95</th>
<th>EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>IS–95 Mod</td>
<td>WCDMA</td>
<td></td>
</tr>
<tr>
<td>User FIR</td>
<td>IS–95 w/EQ</td>
<td>Rectangle</td>
<td></td>
</tr>
<tr>
<td>Root Nyquist</td>
<td>IS–95 Mod w/EQ</td>
<td>EDGE Wide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APCO 25 C4FM</td>
<td></td>
<td>EDGE EHSR</td>
</tr>
</tbody>
</table>

:FILTER[:STATE]

Supported E8267D with Option 601 or 602

`[:SOURce]:RADio:ARB:FILTer[:STATE]` ON| {OFF} | 1| 0
`[:SOURce]:RADio:ARB:FILTer[:STATE]?`

This command enables or disables the Real-Time Modulation Filter. This filter is typically applied to an Arb waveform containing just the I/Q symbol decision points. The filter then defines the transitions between the symbol decision points. This means that the filter must have an oversample ratio of two or more. When this feature is active, the Sample Clock Rate is actually the Symbol Rate.

Default Off

Key Entry Modulation Filter Off On

Key Path Mode > Dual Arb > Arb Setup > More 2 of 2 > Real-Time Modulation Filter (Off) > Modulation Filter Off On
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

:GENerate:SINE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:GENerate:SINE
["<file_name>"],[<osr>],[<scale>],
[I|Q|IQ]

This command creates a sine wave waveform file and saves it in the signal generator's volatile waveform memory (WFM1).

"<file_name>" This variable names the file used to save the generated sine wave data.

<osr> This variable sets the oversample ratio, which must be a value that is \(\geq 4 \). If the specified oversample ratio is < 60 (the minimum number of samples or I/Q points), multiple periods are generated to create a waveform with at least 60 samples. The number of periods that will be created is 60 ÷ <osr> (quotient will round off to a whole number). A waveform with an oversample ratio \(\geq 60 \) has one period.

<scale> This variable sets the scale factor for the waveform. The scale factor must be between 0–1.

I|Q|IQ The sine wave data can be applied to the I, Q, or IQ paths.

Executing this command without the "<file_name>" variable will generate a factory default SINE_TEST_WFM file. When using the variable "<file_name>" for this command, the "@" or ":" characters are not allowed.

Example

The preceding example generates an IQ sine wave and saves the data to a file named Sine_Wave. The oversampling ratio is 20, the scaling is set for 50%, and the data is applied to both the I and Q paths.

Range 4 to 32 Msamples (limited to available baseband memory)

:HEADer:CLEar

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:HEADer:CLEar

This command clears the header information from the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User's Guide for information on header files.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

The dual ARB must be on for this command to function and is enabled by using the [:STATe] command.

Key Entry Clear Header

:HEADER:NOISe:RMS[:OVERride]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:HEADER:NOISe:RMS:OVERride <"filename">,
<rms:0 - 1.414213562373095>|UNSPecified
[:SOURce]:RADio:ARB:HEADER:NOISe:RMS:OVERride? <"filename">

This command sets the value of the waveform’s I and Q RMS (root mean square) for noise. The RMS is used strictly for calculating the relative power of the noise in the specified header. The RMS is specified in normalized linear units with |+1| or |–1| as full scale on I or Q, therefore the largest RMS that can be specified is the square root of 2 (1.414213562). If the value is unspecified, then the waveform file header’s RMS is used.

This value is useful if you wish to have the noise be relative to only a portion of the waveform, such as a pilot channel, or be relative to only a single carrier that is mixed with other carriers.

For setting the header’s RMS value, see “:HEADer:RMS” on page 299.

"<file_name>" This variable names the waveform file to which the RMS value will be applied. The file name variable can designate a file in the WFM1, NVWFM, or SEQ directories. For information on the file name syntax, refer to “File Name Variables” on page 11.

/value> This variable is the user-measured RMS noise value for the specified carrier.

UNSPecified Sets RMS as unspecified, which causes the general RMS value to be used for calculating the relative noise power.

Example

The preceding example sets the file header RMS noise override value for a file type WFM1, named Sine_Wave, to .835.

In the second example, the signal generator calculates the RMS, using the waveform file header’s RMS value. For setting the header’s RMS value, see “:HEADer:RMS” on page 299.
The RMS value is expressed in volts.

Key Entry

<table>
<thead>
<tr>
<th>Edit Noise RMS</th>
<th>Unspecified</th>
<th>Enter Override</th>
</tr>
</thead>
</table>

`:HEADer:RMS`

Supported

E8267D with Option 601 or 602

`[:SOURce]:RADio:ARB:HEADER:RMS <"file_name">,<val>|UNSPecified`

`[:SOURCe]:RADio:ARB:HEADER:RMS? <"file_name">`

This command sets the RMS value in the header file for the waveform designated by the `<"file_name">` variable. The RMS value is expressed in volts. The filename variable includes the directory path and can designate a file in either the WFM1, NVWFM, or SEQ directories. For information on the file name syntax, refer to File Name Variables and ARB Waveform File Directories. When a file is created with no header information then a header is automatically generated with all fields set to unspecified.

The `<val>` variable is the user-measured RMS value for the specified waveform. The UNSPecified parameter means that the signal generator will calculate the RMS value when it is needed. The signal generator calculation includes rise times and does not include consecutive zero level samples. DC offsets and noise are also included in the RMS measurement. Because the RMS calculation, done by the signal generator, is slow and may not be appropriate for your application it is recommended that the user calculate and enter in their measured RMS value for the waveform file.

The RMS value is calculated as:

$$
\sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_n^2 + d_n^2)}
$$

Where N is the number of samples.

Example

`[:SOURce]:RADio:ARB:HEADER:RMS "WFM1:Sine_Wave",.835`

`:RAD:ARB:HEADER:RMS "WFM1:Sine_Wave",UNSP`

The first example sets a user-measured RMS value for the Sine_Wave waveform file in the waveform’s header file. The second example, the signal generator will calculate the RMS value when needed.

Range

0 to 1.414213562373095
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

:HEADer:SAVE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:HEADer:SAVE

This command saves the header information to the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User's Guide for information on header files.

The dual ARB must be on for this command to function and is enabled by the [:STATe] command.

Key Entry Save Setup To Header

:IQ:EXTernal:FILT

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:IQ:EXTernal:FILT 40e6|THRough
[:SOURce]:RADio:ARB:IQ:EXTernal:FILT?

This command selects the filter or through path for I/Q signals routed to the rear–panel I and Q outputs. The filter has no effect on the modulated RF signal. Selecting a filter using this command will automatically set the :IQ:EXTernal:FILT:AUTO command to OFF.

40e6 This choice applies a 40 MHz baseband filter.
THRough This choice selects the through path.

Example

:RAD:ARB:IQ:EXT:FILT 40E6

The preceding example selects a 40 MHz filter for the I/Q signals routed to the rear panel.

*RST THR

Key Entry 40.000 MHz Through

:IQ:EXTernal:FILT:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:IQ:EXTernal:FILT:AUTO ON|OFF|1|0
[:SOURce]:RADio:ARB:IQ:EXTernal:FILT:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear panel I/Q outputs.

ON(1) This choice automatically selects the 40 MHz filter optimized for the current signal generator settings.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to the :IQ:EXTernal:FILTer command for selecting a filter or through path.

Example

The preceding example disables the automatic filter selection.

*RST 1

Key Entry I/Q Output Filter Manual Auto

:IQ:MODulation:ATTen

Supported E8267D with Option 601 or 602

`[:SOURce]:RADio:ARB:IQ:MODulation:ATTen <val><units>`

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable `<val>` is expressed in decibels (dB)

Example

`:RAD:ARB:IQ:MOD:ATT 20`

The preceding example sets the attenuator level to 20 dB.

*RST +2.00000000E+000

Range 0 to 40 dB

Key Entry Modulator Attenuation Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported E8267D with Option 601 or 602

`[:SOURce]:RADio:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0`

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO 0 command.

ON (1) This choice sets the modulator attenuator to auto mode which optimizes the attenuation setting for the current signal generator settings.

OFF (0) This choice sets the attenuator to manual mode and holds the attenuator at its current setting. Refer to the :IQ:MODulation:ATTen command for setting the attenuation value.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

Example
:RAD:ARB:IQ:MOD:ATT:_AUTO 0
The preceding example selects the modulator attenuator manual mode.

*RST 1
Key Entry Modulator Atten Manual Auto

:IQ:MODulation:FILT

<table>
<thead>
<tr>
<th>Supported</th>
<th>E8267D with Option 601 or 602</th>
</tr>
</thead>
</table>

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. This filter has no effect on the I/Q signal out the rear panel. Selecting a filter using this command will automatically set the :IQ:MODulation:FILT:_AUTO command to OFF.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THThrough This choice selects the through path.

Example
:RAD:ARB:IQ:MOD:FILT 40E6
The preceding example selects a 40 MHz filter.

*RST THR
Key Entry 40.000 MHz Through

:IQ:MODulation:FILT:_AUTO

<table>
<thead>
<tr>
<th>Supported</th>
<th>E8267D with Option 601 or 602</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:RADio:ARB:IQ:MODulation:FILT:AUTO ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
| [:SOURce]:RADio:ARB:IQ:MODulation:FILT:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

ON (1) This choice will automatically select optimized filters for the current signal generator setting.

OFF (0) This choice disables the automatic filter selection. A digital modulation filter or through path may now be selected by using the :IQ:MODulation:FILT:AUTO command.

Example
:RAD:ARB:IQ:MOD:FILT:AUTO 1
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

The preceding example allows for automatic filter selection.

*RST
Key Entry I/Q Mod Filter Manual Auto

:MARKer:CLEar

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MARKer:CLEar
"<file_name>" ,<marker>,<first_point>,
<last_point>

This command clears a single marker point or a range of marker points on a waveform segment for the selected marker (1–4). The Dual ARB mode and all of the ARB modes use this command.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when clearing marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, refer to “File Name Variables” on page 11.

<marker> This variable selects the marker number; an integer value from one to four.

<first_point> This variable defines the first point in a range of points. The number must be greater than or equal to one, and less than or equal to the total number of waveform points.

If you enter a value for either the first marker point or the last marker point that would make the first marker point occur after the last, the last marker point automatically adjusts to match the first marker point.

<last_point> This variable defines the last point in a range of points. The number must be greater than or equal to the first point, and less than or equal to the total number of waveform points.

To clear a single marker point, use the same marker point for the first and last point variables. For more information on markers and ARB files, refer to the *User’s Guide*.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([SOURce]:RADio:ARB)

Example

[:RAD:ARB:MARK:CLE] "Test_Data",1,1,300

The preceding example clears marker 1 from the first point through the 300th point in the Test_Data file.

Range

<marker>: 1 to 4

[first_Point>: 1–number of waveform points

[last_point>: <first_Point>–number of waveform points

Key Entry Set Marker Off Range Of Points Marker 1 First Mkr Last Mkr

:MARKer:CLEar:ALL

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MARKer:CLEar:ALL "<file_name>"",<marker>

This command clears all marker points on a waveform segment for the selected marker (1–4). The Dual ARB player and all of the ARB formats use this command. With all marker points cleared, the event output signal level is set low.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when clearing all marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, refer to "File Name Variables" on page 11.

<marker> This variable selects the marker number; an integer value from one to four.

Example

Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

The preceding example clears marker 1 from the all waveform points in the Test_Data file.

Range 1 to 4

Key Entry Marker 1 2 3 4 Set Marker Off All Points

:MARKer:ROTate

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MARKer:ROTate
"<file_name>",<rotate_count>

This command shifts the marker points for all markers in a waveform earlier or later by the value of the <rotate_count> variable. The Dual ARB player and all of the ARB formats use this command.

You can use a positive or negative value. When a marker point is close to the end of the waveform and the <rotate_count> value is greater than the number of remaining marker points, but less than the total number of marker points, the marker points that would move beyond the end of the waveform wrap to the beginning of the waveform. For example, if a marker point resides at sample point 195 out of 200, and the <rotate_count> value is twenty-five, the marker point wraps to the beginning of the waveform and continues out to the twentieth waveform point.

To set the marker points in a waveform, refer to “:MARKer:[SET]” on page 306.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when rotating marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, refer to “File Name Variables” on page 11.

Example

:RAD:ARB:MARK:ROT "Test_Data",100

The preceding example shifts all markers set in the Test_Data file 100 points later. If the first set point in the file is at 50, then after sending this command, the first set point will be 150 (assuming the Test_Data file has at least 150 points) and no later set points wrapped around to the beginning of the file.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

Range

– \((n - 1)\) to \((n - 1)\)

\(n = \) number of points in the waveform

:MARKer:[SET]

Supported

E8267D with Option 601 or 602

\([:SOURce]:RADio:ARB:MARKer:[SET]\)

"<file_name>" ,<marker>,<first_point>,
<last_point>,<skip_count>

This command sets a single marker point or a range of marker points on a waveform segment for the selected marker (1–4). The Dual ARB player and all of the ARB formats use this command.

The PSG provides four independent markers. Each marker routes an output signal to the rear panel event connector number (BNC—EVENT 1 and EVENT 2 or AUXILIARY I/O—EVENT 3 and EVENT 4) that corresponds to the marker number. A marker consists of marker points placed at defined sample points in a waveform segment. This means that a marker point cannot be less than one or greater than the last sample point in the waveform. Marker points are cumulative, so multiple command executions with different range values, without first clearing the existing points, places additional marker points on the waveform. Because of this cumulative behavior, it is a good practice to clear existing marker points prior to setting new points. This will eliminate unexpected marker pulses. Refer to :MARKer:CLEar and :MARKer:CLEar:ALL commands for information on clearing marker points.

For waveforms generated on the signal generator (baseband generator), the PSG automatically places a marker point at the first waveform sample for markers one and two.

You can set markers for either positive or negative polarity. The following discussions for this command assume positive marker polarity. When using negative marker polarity, the marker pulses occur during the periods of no marker points.

There are three ways to place marker points using this command:

– consecutive marker points over a range that collectively create a single marker pulse that spans the range

– equally spaced marker points over a range, so that a marker pulse occurs at each sample point that coincides with a marker point (Using this method, you can configure a clock signal by setting the <skip_count> variable to one.)

– a single marker point placed at a specific sample point in the waveform, which outputs a single pulse relative to the marker point location (To configure a single marker point, set the first and last points to the same number.)
Digital Modulation Commands
Dual ARB Subsystem--Option 601 or 602 ([:SOURce]:RADio:ARB)

For more information on markers, refer to the User’s Guide.

The following list describes the command variables:

- "<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). Use the AUTOGEN_WAVEFORM file when setting marker points for the currently active ARB format and then save the file using a different file name. The PSG automatically creates a file, using current settings, and names it AUTOGEN_WAVEFORM whenever an ARB format is turned on (except Dual ARB); the same file name is used for all ARB formats. When all ARB formats are off, this file will still be in waveform memory (WFM1) and is available for use by the Dual ARB. For information on the file name syntax, see “File Name Variables” on page 11.

- <marker> This variable selects the marker number; an integer value from one to four.

- <first_point> This variable defines the first point in the range over which the marker is placed. This number must be greater than or equal to one, and less than or equal to the total number of waveform points.

 If you enter a value for either the first marker point or the last marker point that would make the first marker point occur after the last, the last marker point is automatically adjusted to match the first marker point.

- <last_point> This variable defines the last point in the range over which the marker will be placed. This value must be greater than or equal to the first point, and less than or equal to the total number of waveform points.

- <skip_count> This variable defines the marker point pattern across the range. A zero value means the marker points occur consecutively across the range. A value greater than zero creates a repeating marker point pattern across the range, where the gap between the marker points is equal to the <skip_count> value. The gaps begin after the first marker point. Each marker point in the pattern, which is only one point wide, produces a marker pulse.

Example

:RAD:ARB:MARK "Test_Data",1,40,100,2
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

The preceding example sets marker 1 on the first point, 40, the last point, 100, and every third point (skip 2) between 40 and 100 (assuming the Test_Data file has at least 100 points).

Range <marker>: 1–4
<first_Point>: 1–number of waveform points
<last_point>: <first_Point>–number of waveform points
<skip_count>: 0–number of points in the range

Key Entry Set Marker on Range Of Points Marker 1 2 Marker 3 4 First Mkr Point Last Mkr Point # Skipped Points Apply to Waveform

:MDEStination:AAMPlitude

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:MDEStination:AAMPlitude NONE|M1|M2|M3|M4
[:SOURce]:RADio:ARB:MDEStination:AAMPlitude?

This command routes the selected marker to the Alternate Amplitude function. The NONE parameter clears the marker for the Alternate Amplitude function.

*RST NONE

Key Entry None Marker Marker Marker Marker
1 2 3 4

:MDEStination:ALCHold

Supported E8267D with Option 601 or 602

Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:ARB:MDEStination:ALCHold NONE|M1|M2|M3|M4
[:SOURce]:RADio:ARB:MDEStination:ALCHold?

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker. For setting markers, see “:MARKer:[SET]” on page 306.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([SOURce]:RADio:ARB)

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC leveling circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 311.

NOTE

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the User’s Guide. For setting the marker points, see “:MARKer:[SET]” on page 306.

- **NONE** This terminates the marker ALC hold function.
- **M1–M4** These are the marker choices. The ALC hold feature uses only one marker at a time.
- ***:RST** NONE

Example

:RAD:ARB:MDES:ALCH M1

The preceding example routes marker 1 to the ALC Hold function.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>None</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([SOURce]:RADio:ARB)

:MDEStination:PULSe

Supported E8267D with Option 601 or 602

CAUTION

The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4

[:SOURce] :RADio:ARB:MDEStination:PULSe?

This command enables or disables the marker pulse/RF blanking function for the selected marker. The function automatically uses the ALC hold function, so there is no need to select both ALC hold and marker pulse/RF blanking functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, refer to the :MPOLarity:MARKer1|2|3|4 command.

NOTE

Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output. Refer to the :MARKer:[SET] command for setting the marker points.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

A waveform file that has unspecified settings in the file header uses the previous waveform's routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, refer to the User's Guide.

NONE This terminates the marker RF blanking/pulse function.
M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example
:RAD:ARB:MDES:PULS M2
The preceding example routes marker 2 to Pulse/RF Blanking.

*RST NONE

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>None</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
</table>

:MPOLarity:MARKer1|2|3|4

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:MPOLarity:MARKer1|2|3|4
NEGative | POSitive
[:SOURce]:RADio:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

Example
:RAD:ARB:MPOL:MARK3 NEG
The preceding example sets the polarity for marker 3 to negative.

*RST POS

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1 Polarity Neg</th>
<th>Marker 2 Polarity Neg</th>
<th>Marker 3 Polarity Neg</th>
<th>Marker 4 Polarity Neg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
<td>Pos</td>
</tr>
</tbody>
</table>
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

::NOISe

Supported E8267D with Option 601 or 602 and Option 403

[::SOURce]:RADio:ARB::NOISe[:STATe] ON|OFF|1|0

[::SOURce]:RADio:ARB::NOISe[:STATe]?

This command enables or disables adding real–time, non–repeating additive white gaussian noise (AWGN) to the carrier modulated by the waveform being played by the Dual ARB waveform player. The noise bandwidth will be at least 0.8 times the sample rate, or 1.6 times the sample rate depending on the bandwidth factor. For information on the bandwidth factor, refer to the “::NOISe:BFACtor” command.

When the bandwidth factor is 2, and the sample rate is greater than 50 Msamples/sec, noise cannot be enabled. Maximum bandwidth cannot exceed 80 MHz. Any oversampling in the waveform increases the noise bandwidth by a factor equal to the oversampling.

Example

:RAD:ARB::NOIS ON

The preceding example applies real–time AWGN to the carrier.

*RST 0

Key Entry

Real–time Noise Off On

::NOISe:BFACtor

Supported E8267D with Option 601 or 602 and Option 403

[::SOURce]:RADio:ARB::NOISe:BFACtor <1 - 2>

[::SOURce]:RADio:ARB::NOISe:BFACtor?

This command sets the flat noise bandwidth for applied real time noise. The bandwidth factor will set the noise bandwidth to at least 0.8 times the sample rate when the bandwidth factor is 1 or to 1.6 times the sample rate if the bandwidth factor is 2. Maximum bandwidth cannot exceed 80 MHz.

When the bandwidth factor is 2, and the sample rate is greater than 50 megasamples/sec, noise cannot be enabled. Any oversampling in the waveform increases the noise bandwidth by a factor equal to the oversampling.

Example

:RAD:ARB::NOIS:BFAC 2

The preceding example sets the bandwidth factor to 2 and increases the flat noise bandwidth by at least 1.6 times the ARB sample clock rate.

*RST +1

Key Entry

Noise Band width Factor
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

:noiSe:CBWidth

Supported E8267D with Option 601 or 602 and Option 403

[:SOURce]:RADio:ARB:NOiSe:CBWidth <1Hz-80MHz>
[:SOURce]:RADio:ARB:NOiSe:CBWidth?

This command selects the carrier bandwidth over which the AWGN (additive white gaussian noise) is applied. The noise power will be integrated over the selected bandwidth for the purposes of calculating C/N (carrier to noise ratio). The carrier bandwidth is limited to the ARB sample rate but cannot exceed 80 MHz. For more information refer to the ":NOiSe" and :NOiSe:BFACTOR commands.

*RST +1.00000000E+000

1.0 Hz

Range 1 Hz to 80 MHz

Key Entry Carrier Bandwidth

:noiSe:CN

Supported E8267D with Option 601 or 602 and Option 403

[:SOURce]:RADio:ARB:NOiSe:CN <-100dB - 100dB>
[:SOURce]:RADio:ARB:NOiSe:CN?

This command sets the carrier to noise ratio in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to the ":NOiSe:CBWidth" command.

Example

:RAD:ARB:NOIS:CN 50DB

The preceding example sets the carrier to noise ratio to 50 dB.

*RST +0.00000000E+000

Key Entry Carrier to Noise Ratio

:noiSe:MUX

Supported E8267D with Option 601 or 602 and Option 403

[:SOURce]:RADio:ARB:NOiSe:MUX SUM|CARRier|NOiSe
[:SOURce]:RADio:ARB:NOiSe:MUX?

This command provides diagnostic control of additive noise, such that only noise, only the carrier, or the sum of both the noise and the carrier will be output from the internal baseband generator. The intended purpose of this feature is to allow direct measurement of just the carrier or noise contribution to the total power (assuming that the ALC is off). The system will still behave
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

as if both the noise and the carrier are present on the output when it comes to
determining the Auto Modulation Attenuation and the RMS level for RMS
Power Search.

The query returns the current setting of the Output Mux.

Example

[:RADio:ARB:NOISe:MUX CARR

The preceding example sets the additive noise to CARRier only.

<table>
<thead>
<tr>
<th>Default</th>
<th>Carrier+Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Output Mux</td>
</tr>
</tbody>
</table>

:REFerence:EXTernal:FREQuency

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:REFerence:EXTernal:FREQuency <val>
[:SOURce]:RADio:ARB:REFerence:EXTernal:FREQuency?

This command allows you to enter the frequency of the external reference.

The variable <val> is expressed in hertz (Hz–MHz).

The value specified by this command is effective only when you are using an
external ARB reference applied to the BASEBAND GEN REF IN rear panel
connector.

To specify external as the ARB reference frequency you must set the ARB
reference to EXTernal by using the :REFerence[:SOURce] command.

Example

[:RAD:ARB:REF:EXT:FREQ 500KHZ

The preceding example sets the external clock frequency reference to 500 kHz.

<table>
<thead>
<tr>
<th>*RST</th>
<th>+1.00000000E+007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>2.5E5 to 1E8</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Reference Freq</td>
</tr>
</tbody>
</table>

:REFerence[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:REFerence[:SOURce] INTernal|EXTernal
[:SOURce]:RADio:ARB:REFerence[:SOURce]?

This command selects either an internal or external reference for the waveform
clock.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

If the EXTernal choice is selected, the external frequency value must be entered and the signal must be applied to the BASEBAND GEN REF IN rear panel connector.

Use the :REference:EXTernal:FREQuency command to set the external reference frequency.

Example

:RAD:ARB:REF EXT

The preceding example sets the ARB reference to external.

<table>
<thead>
<tr>
<th>*RST</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>ARB Reference Ext Int</td>
</tr>
</tbody>
</table>

:RETRigger

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:ARB:RETRigger ON|OFF|IMMediate

[[:SOURce]:RADio:ARB:RETRigger?]

This command selects the signal generator’s response to a trigger signal while using the single trigger mode.

When the PSG receives multiple trigger occurrences, when only one is required, it uses the first trigger and ignores the rest. For more information on triggering and to select the single trigger mode, refer to the :TRIGger:TYPE command.

The following list describes the waveform’s response to each of the command choices:

- **ON** The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. If there is a subsequent trigger during playback, the waveform completes its current playback and then plays one more time. If there is no subsequent trigger, the waveform plays once and stops until it receives another trigger.

- **OFF** The waveform waits for a trigger before play begins and ignores triggers during playback. To restart the waveform, you must send a trigger after the playback completes.

- **IMMediate** The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. Upon receipt of the subsequent trigger, the waveform immediately resets and begins playing from the beginning of the file. For a waveform sequence, this means to the beginning of the first segment in the sequence.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

Example
:RAD:ARB:RETR IMM
The preceding example selects the immediate mode for the single mode trigger.

*RST ON
Key Entry On Off Immediate

:RSCAling
Supported E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:RSCaling <val>
[:SOURce]:RADio:ARB:RSCaling?
This command adjusts the scaling value that is applied to a waveform while it is playing. The variable <val> is expressed as a percentage. Runtime scaling does not alter the waveform data file. For more information about runtime scaling, refer to the User's Guide.

Example
:RAD:ARB:RSC 50
The preceding example applies a 50% scaling factor to the selected waveform.

*RST +7.00000000E+001
Range 1 to 100 percent
Key Entry Waveform Runtime Scaling

:SCALing
Supported E8267D with Option 601 or 602
[:SOURce]:RADio:ARB:SCALing "<file_name>",<val>
This command scales the designated "<file_name>" waveform file while it is being played by the Dual ARB player. The variable <val> is expressed as a percentage. For information on file name syntax, refer to “File Name Variables” on page 11.

Scaling is additive and permanent. You cannot scale up. If you scale a waveform file by 60% and then scale it again to 80% you will scale down the 60% waveform file. For more information about waveform file scaling, refer to the User's Guide.

Example
:RAD:ARB:SCAL "Test_Data", 50
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

The preceding example applies a 50% scaling factor to the Test_Data waveform file.

<table>
<thead>
<tr>
<th>Range</th>
<th>1 to 100 percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Scaling</td>
</tr>
<tr>
<td></td>
<td>Scale Waveform Data</td>
</tr>
</tbody>
</table>

:SCLock:RATE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:SCLock:RATE <sample_clock_rate>
[:SOURce]:RADio:ARB:SCLock:RATE?

This command sets the ARB sample clock rate. The sample_clock_rate variable can be set from 1 hertz to 100 megahertz.

Example

:RAD:ARB:SCL:RATE 1E6

The preceding example sets the ARB sample clock for 1 MHz.

*RST +1.00000000E+008

Range 1 to 1.0E8 Hz

Key Entry ARB Sample Clock

:SEQquence

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:SEQquence
"<file_name>"","<waveform1>"",<reps>,NONE|M1|M2|M3|M4|M1M2|M1M3|M1M4|M2M3|M2M4|M3M4|M1M2M3|M1M2M4|M1M3M4|M2M3M4 ALL,{"<waveform2>"",<reps>,NONE|M1|M2|M3|M4|M1M2|M1M3|M1M4|M2M3|M2M4|M3M4|M1M2M3|M1M2M4|M1M3M4|M2M3M4 ALL}
[:SOURce]:RADio:ARB:SEQquence? "<file_name>"

This command creates a waveform sequence. A waveform sequence is made up of segments and other sequences. Any number of segments, up to a segment count limit of 32768, can be used to create a sequence. The count limit is determined by the number of segments in the waveform sequence. Repeated segments are included in the count limit.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

For example, using the figure below, suppose a waveform is created using two sequences: Sequence_A and Sequence_B. Sequence_A consists of Sequence_B and Segment_Q with Sequence_B repeated four times. The total segment count for this waveform sequence would be eleven.

![Waveform Diagram]

The query returns the contents and segment settings of the waveform sequence file.

The segments and sequences play in the same order as placed into the waveform sequence by the command. Once you create the file, you cannot edit the segment settings or add further waveform segments unless you use the signal generator's front panel. Using the same waveform sequence name overwrites the existing file with that name. To use a segment’s marker settings, you must enable the segment’s markers within the segment or within the waveform sequence. A sequence is stored in the catalog of SEQ files USER/SEQ or SEQ: directory.

When you create a waveform sequence, the PSG also creates a file header for the sequence. This file header takes priority over segment or nested sequence file headers. Refer to the User's Guide for more information on file headers. To save the file header, see “:HEADer:SAVE” on page 300.

"<file_name>" This variable names the waveform sequence file. For information on the file name syntax, see “File Name Variables” on page 11.

"<waveform1>" This variable specifies the name of an existing waveform segment or sequence file. A waveform segment or the waveform segments in a specified sequence must reside in volatile memory, WFM1, before it can be played by the Dual ARB player. For more information on waveform segments, refer to the User’s Guide.

"<waveform2>" This variable specifies the name of a second existing waveform segment or sequence file. The same conditions required for waveform1 apply for this segment or sequence. Additional segments and other sequences can be inserted into the file.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

This variable sets the number of times a segment or sequence plays (repeats) before the next segment or sequence plays.

NONE
This choice disables all four markers for the waveform. Disabling markers means that the waveform sequence ignores the segment's or sequence's marker settings.

M1, M2, M3, M4
These choices, either individually or a combination of them, enable the markers for the waveform segment or sequence. Markers not specified are ignored for that segment or sequence.

ALL
This choice enables all four markers in the waveform segment or sequence.

Example

A carriage return or line feed is never included in a SCPI command. The example above contains a carriage return so that the text will fit on the page.

The preceding example creates a waveform sequence file named Test_Data. This file consists of the factory supplied waveform segments, ramp_test_wfm and sine_test_wfm. The waveform is stored in the signal generator's SEQ: directory.

- The first segment, ramp_test_wfm, has 25 repetitions with markers 1 and 4 enabled.
- The second segment, sine_test_wfm, has 100 repetitions with all four markers enabled.

Range
<nreps>: 1 to 65535

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Edit</th>
<th>Toggle</th>
<th>Toggle</th>
<th>Toggle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repetitions</td>
<td>Marker 1</td>
<td>Marker 2</td>
<td>Marker 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Toggle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Marker 4</td>
<td></td>
</tr>
</tbody>
</table>

:TRIGger:TYPE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger:TYPE
CONTinuous|SINGLE|GATE|SADVance
[:SOURce]:RADio:ARB:TRIGger:TYPE?
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

This command sets the trigger mode (type) that controls how the waveform plays.

Triggers control the playback by telling the PSG when to transmit the modulating signal (waveform). Depending on the trigger settings for the PSG, the waveform transmission can occur once, continuously, or the PSG may start and stop the transmission repeatedly (GATE mode). For waveform sequences, you can even control when each segment plays (SADVance—segment advance mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the PSG to trigger on either state. It is common to have multiple triggers occur when the signal generator requires only a single trigger. In this situation, the PSG recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the waveform. This is because the PSG sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the waveform's final I and Q levels determine whether you will see the carrier signal or not (zero = no carrier, other values = carrier visible). At the end of most files, the final I and Q points are set to a value other than zero. If desired, you can create and download an external file with the initial I and Q voltages set to values other than zero. Conversely, you can set the last I and Q points to zero. Refer to the Keysight Signal Generators Programming Guide.

There are four parts to configuring the trigger:

- Choosing the trigger type, which controls the waveform's transmission.
- Setting the waveform's response to triggers:
 - CONTinuous, see """".:TRIGger:TYPE:CONTinuous[:TYPE]" on page 322.
 - SINGle, see ":TRIGger:TYPE:CONTinuous[:TYPE]" on page 266.
 - SADVance, see """".:TRIGger:TYPE:SADVance[:TYPE]" on page 323.
 - GATE, selecting the mode also sets the response
- Selecting the trigger source using the :TRIGger[:SOURce] command, determines how the PSG receives its trigger signal, internally or externally. The GATE choice requires an external trigger.
- Setting the trigger polarity when using an external source:
 - CONTinuous, SINGle, and SADVance, see """".:TRIGger[:SOURce]:EXTer nal:SLOPe" on page 328
 - GATE, see """".:TRIGger:TYPE:GATE:ACTive" on page 322

For more information on triggering, refer to the User's Guide.

The following list describes the trigger type command choices:

- CONTinuous Upon triggering, the waveform repeats continuously.
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 [:SOURce]:RADio:ARB

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGle</td>
<td>Upon triggering, the waveform segment or sequence plays once.</td>
</tr>
<tr>
<td>GATE</td>
<td>An external trigger signal repeatedly starts and stops the waveform's playback (transmission). The length of each transmission depends on the duty period of the trigger signal and the gate polarity selection (refer to the :TRIGger:TYPE:GATE:ACTive command). The waveform plays during the inactive state and stops during the active polarity selection state. The active state can be set high or low. The gate mode works only with an external trigger source.</td>
</tr>
<tr>
<td>SADVance</td>
<td>The trigger controls the segment advance within a waveform sequence. To use this choice, a waveform sequence must be the active waveform. Ensure that all segments in the sequence reside in volatile memory.</td>
</tr>
</tbody>
</table>

NOTE

The ARB gating behavior described above is opposite to the gating behavior for real-time custom.

*RST CONT

Example

:RAD:ARB:TRIG:TYPE GATE

The preceding example selects the gated trigger mode.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

:TRIGger:TYPE:CONTinuous[:TYPE]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger:TYPE:CONTinuous[:TYPE]
FREE|TRIGger|RESet
[:SOURce]:RADio:ARB:TRIGger:TYPE:CONTinuous[:TYPE]?

This command selects the waveform’s response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see “:TRIGger:TYPE” on page 319.

The following list describes the waveform’s response to each of the command choices:

- **FREE**
 Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.

- **TRIGger**
 The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

- **RESet**
 The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example

:RAD:ARB:TRIG:TYPE:CONT TRIG

The preceding example selects the trigger continuous mode.

Example

*:RST | FREE

Key Entry Free Run Trigger & Run Reset & Run

:TRIGger:TYPE:GATE:ACTive

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger:TYPE:GATE:ACTive LOW|HIGH
[:SOURce]:RADio:ARB:TRIGger:TYPE:GATE:ACTive?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the active state occurs, the PSG stops the waveform playback at the last played sample point, then restarts the playback at the next sample point when the inactive state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 319.

The following list describes the PSG’s gating behavior for the polarity selections:

<table>
<thead>
<tr>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>The waveform playback stops when the trigger signal goes low (active state) and restarts when the trigger signal goes high (inactive state).</td>
</tr>
<tr>
<td>HIGH</td>
<td>The waveform playback stops when the trigger signal goes high (active state) and restarts when the trigger signal goes low (inactive state).</td>
</tr>
</tbody>
</table>

Example

```
```

The preceding example sets the active gate state to high.

```
*RST

HIGH

Key Entry Gate Active Low High
```

:TRIGger:TYPE:SADVance[:TYPE]

Supported E8267D with Option 601 or 602

```
[:SOURce]:RADio:ARB:TRIGger:TYPE:SADVance[:TYPE] SING|CONT

[:SOURce]:RADio:ARB:TRIGger:TYPE:SADVance[:TYPE] ?
```

This command selects the waveform’s response to a trigger signal while using the segment advance (SADVance) trigger mode.

When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest. For more information on triggering and to select segment advance as the trigger mode, see “:TRIGger:TYPE” on page 319.

The following list describes the waveform’s response to each of the command choices:

<table>
<thead>
<tr>
<th>Choice</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINGle</td>
<td>Each segment in the sequence requires a trigger to play, and a segment plays only once, ignoring a segment’s repetition value (refer to the :SEQuence command for repetition information). The following list describes a sequence’s playback behavior with this choice:</td>
</tr>
</tbody>
</table>
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

- After receiving the first trigger, the first segment plays to completion.
- When the waveform receives a trigger after a segment completes, the sequence advances to the next segment and plays that segment to completion.
- When the waveform receives a trigger during play, the current segment plays to completion. Then the sequence advances to the next segment, and it plays to completion.
- When the waveform receives a trigger either during or after the last segment in a sequence plays, the sequence resets and the first segment plays to completion.

CONTinuous Each segment in the sequence requires a trigger to play. After receiving a trigger, a segment plays continuously until the waveform receives another trigger. The following list describes a sequence’s playback behavior with this choice:

- After receiving the first trigger, the first segment plays continuously.
- A trigger during the current segment play causes the segment to play to the end of the segment file, then the sequence advances to the next segment, which plays continuously.
- When last segment in the sequence receives a trigger, the sequence resets and the first segment plays continuously.

Example
:RAD:ARB:TRIG:TYPE:SADV CONT

The preceding example selects the continuous segment advance mode.

 *RST CONT

Key Entry Single Continuous

:TRIGger[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger[:SOURce] KEY|EXT|BUS
[:SOURce]:RADio:ARB:TRIGger[:SOURce]?

This command sets the trigger source.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 ([:SOURce]:RADio:ARB)

For more information on triggering, see “:TRIGger:TYPE” on page 319. The following list describes the command choices:

KEY
This choice enables manual triggering by pressing the front panel **Trigger** hardkey.

EXT
An externally applied signal triggers the waveform. This is the only choice that works with gating. The following settings affect an external trigger:

- The input connector for the trigger signal. You have a choice between the rear panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector. To make the connector selection, see “:TRIGger[:SOURce]:EXTernal[:SOURce]” on page 326.

 For more information on the connectors and on connecting the cables, refer to the User’s Guide.

- The trigger signal polarity:
 - gating mode, see “:TRIGger:TYPE:GATE:ACTive” on page 322
 - continuous, single, and segment advance modes, see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 328

- The time delay between when the PSG receives a trigger and when the waveform responds to the trigger. There are two parts to setting the delay:
 - setting the amount of delay, see “:TRIGger[SOURce]:EXTernal:DELay” on page 326
 - turning the delay on, see “:TRIGger[:SOURce]:EXTernal:DELay:STATe” on page 327

BUS
This choice enables triggering over the GPIB using the *TRG or GET commands, or the LAN and the AUXILIARY INTERFACE (RS–232) using the *TRG command.

Example

`:RAD:ARB:TRIG KEY`

The preceding example sets the trigger source to manual, front panel key operation.

<table>
<thead>
<tr>
<th>*RST</th>
<th>EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Trigger Key</td>
</tr>
</tbody>
</table>

Keysight E8257D/67D & E8663D PSG Signal Generators SCPI Command Reference 325
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

:TRIgger[:SOURce]:EXTernal[:SOURce]

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIgger[:SOURce]:EXTernal[:SOURce]
EPT1 | EPT2 |
EPTRIGGER1 | EPTRIGGER2

[:SOURce]:RADio:ARB:TRIgger[:SOURce]:EXTernal[:SOURce]?

This command selects which PATTERN TRIG IN connection the PSG uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, refer to the :TRIgger[:SOURce] command. For more information on the rear panel connectors, refer to the User’s Guide.

The following list describes the command choices:

- **EPT1**: This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear panel connector.
- **EPT2**: This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.
- **EPTRIGGER1**: This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear panel connector.
- **EPTRIGGER2**: This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.

Example

:RAD:ARB:TRIG:EXT EPT2

The preceding example sets the trigger source to the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.

* RST EPT1

Key Entry
Patt Trig In 1
Patt Trig In 2

:TRIgger[SOURce]:EXTernal:DELay

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIgger[:SOURce]:EXTernal:DELay <val>

[:SOURce]:RADio:ARB:TRIgger[:SOURce]:EXTernal:DELay?

This command sets the amount of time to delay the PSG’s response to an external trigger.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

The delay is a path (time) delay between when the PSG receives the trigger and
when it responds to the trigger. For example, configuring a trigger delay of two
seconds, causes the PSG to wait two seconds after receipt of the trigger before
the PSG responds and transmits the waveform.

The delay does not occur until you enable it by the
:TRIgger[:SOURce]:EXTernal:DELay:STATe command. You can set the delay
value either before or after turning it on.

For more information on configuring an external trigger source and to select
external as the trigger source, see “:TRIgger[:SOURce]” on page 324.

The unit of measurement for the variable <val> is in seconds (nanoseconds to
seconds).

Example
:RAD:ARB:TRIG:EXT:DEL .2

The preceding example sets the external delay to 200 milliseconds.

*RST +1.00000000E−003
Range 1E−8 to 4E1
Key Entry Ext Delay Time

:TRIgger[:SOURce]:EXTernal:DELay:STATe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:DELay:STATe
ON|OFF|1|0|TIME|SAMPLEs
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:DELay:STATe?

This command turns the trigger delay on or off when using an external trigger
source.

For setting the delay time, use the :TRIgger[SOURce]:EXTernal:DELay
command. For more information on configuring an external source, refer to
“:TRIgger[:SOURce]” on page 324.

ON (1) This choice enables the external delay mode.
OFF (0) This choice disables the external delay mode.
TIME This choice sets the number of seconds delay for the
 external trigger.
SAMPLEs This choice sets the delay applied to the external trigger
to be in units of I/Q samples.

Example

The preceding example disables the external delay function.
Digital Modulation Commands
Dual ARB Subsystem—Option 601 or 602 ([:SOURce]:RADio:ARB)

*RST
0, 10 msec, 10 msec

Table 5-2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>10 nsec</td>
<td>40 seconds</td>
</tr>
<tr>
<td>Samples</td>
<td>10 nsec</td>
<td>40 seconds</td>
</tr>
</tbody>
</table>

Key Entry
Ext Delay Off
On
Ext Delay
Time
Ext Delay
Samples

:TRIGger[:SOURce]:EXTernal:SLOPe

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:SLOPe
POSitive|NEGative

[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:SLOPe?

This command sets the polarity for an external trigger signal while using the continuous, single, or segment advance triggering modes. To set the polarity for gating, see “:TRIGger:TYPE:GATE:ACTive” on page 322.

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger signal. When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 324.

Example

:RAD:ARB:TRIG:EXT:SLOP NEG

The preceding example sets the external trigger slope to negative.

*RST
NEG

Key Entry
Ext Polarity Neg Pos

:VCO:CLOCK

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:VCO:CLOCKk INTernal|EXTernal
[:SOURce]:RADio:ARB:VCO:CLOCKk?
Digital Modulation Commands

Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

This command selects an internal or external VCO clock. The external VCO clock is connected to the rear panel BASEBAND GEN CLK IN connector. Use the :DACS:ALIGN command after an external VCO clock is first applied to the BASEBAND GEN CLK IN connector or when the VCO signal is lost and then re-acquired.

Example

:RAD:ARB:VCO:CLOC EXT

The preceding example selects an external VCO clock.

*RST Int

Key Entry VCO Clock Ext Int

:VCO:CLOCK:RATE?

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:VCO:CLOCK:RATE?

Queries the baseband generator VCO clock rate.

Example

:RAD:CUST:VCO:CLOC:RATE?

The preceding example selects an external VCO clock.

Key Entry VCO Clock Rate

:VCO:CLOCK[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:VCO:CLOCK[:SOURce] INTernal | EXTernal

This command selects an internal or external VCO clock. The external VCO clock is connected to the rear panel BASEBAND GEN CLK IN connector. If the external clock signal is not present, press the Align DACs key after the signal is applied.

Example

:RAD:ARB:VCO:CLOC EXT

The preceding example selects an external VCO clock.

*RST Int

Key Entry VCO Clock Ext Int

:WAVEform

Supported E8267D with Option 601 or 602
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 [:SOURce]:RADio:ARB

[:SOURce]:RADio:ARB:WAVeform "WFM1:file_name"|"SEQ:filename"

This command, for the Dual ARB mode, selects a waveform file or sequence, for the Dual ARB player to play. The file must be present in volatile memory, WFM1: or in the SEQ directory. If a file is in non–volatile memory (NVWFM), use the :COPY command to copy the file to WFM1.

"WFM1:file_name" This variable names a waveform file residing in volatile memory:WFM1. For information on the file name syntax, see “File Name Variables” on page 11.

"SEQ:filename" This variable names a sequence file residing in the catalog of sequence files. For more information on the file name syntax, see “File Name Variables” on page 11.

Example
:RAD:ARB:WAV "WFM1:Test_Data"

The preceding example selects the file Test_Data from the list of files in volatile waveform memory, WFM1 and applies its header settings.

Example
:RAD:ARB:WAV:NHEA "Test_Data"

The preceding example selects the file Test_Data, without applying header settings.

Key Entry Select Waveform

:Waveform:NHEAders

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:ARB:WAVEform:NHEAders
"WFM1:file_name"|"SEQ:filename"

This command, for the Dual ARB mode, allows for a fast selection of a waveform file or sequence. No header information or settings are applied to the waveform or sequence when this command is used. This will improve the access or loading speed of the waveform file or sequence to approximately 100 mS for a single segment. The file must be in volatile waveform memory, WFM1: or in the SEQ directory. If a file is in non–volatile memory (NVWFM), use the :COPY command to copy files to WFM1.

"WFM1:file_name" This variable names a waveform file residing in volatile memory:WFM1. For information on the file name syntax, see “File Name Variables” on page 11.

"SEQ:filename" This variable names a sequence file residing in the catalog of sequence files. For more information on the file name syntax, see “File Name Variables” on page 11.

Example
:RAD:ARB:WAV:NHEA "Test_Data"

The preceding example selects the file Test_Data, without applying header settings.
Digital Modulation Commands
Dual ARB Subsystem–Option 601 or 602 (::SOURce::RADio::ARB)

[:STATe]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio::ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio::ARB[:STATe]?

This command enables or disables the operating state of the signal generator’s dual arbitrary waveform (ARB) generator.

Example

:RAD:ARB 1

The preceding example turns on the signal generator’s ARB generator personality.

*RST 0

Key Entry ARB Off On
Dmodulation Subsystem–Option 601 or 602
([:SOURce]:RADIo:DMODulation:ARB)

:IQ:EXTernal:FILTer

Supported
E8267D with Option 601 or 602

[:SOURce]:RADIo:DMODulation:ARB:IQ:EXTernal:FILTer

40e6 | THrough

[:SOURce]:RADIo:DMODulation:ARB:IQ:EXTernal:FILTer?

This command selects a 40 MHz filter or a through path for I/Q signals routed to the rear panel I and Q outputs. Selecting a filter using this command will automatically set the :IQ:EXTernal:FILTer:AUTO command to OFF.

40e6 This choice selects the 40 MHz baseband filter.
THoRough This choice selects a through path and bypasses filtering.

Example

The preceding example selects a 40 MHz filter.

*RST

Key Entry 40.000 MHz Through

:IQ:EXTernal:FILTer:AUTO

Supported
E8267D with Option 601 or 602

[:SOURce]:RADIo:DMODulation:ARB:IQ:EXTernal:FILTer:AUTO

ON | OFf | 1 | 0

[:SOURce]:RADIo:DMODulation:ARB:IQ:EXTernal:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear panel I/Q outputs.

ON(1) This choice automatically selects a filter that is optimized for the current signal generator settings.
OFF(0) This choice disables the auto feature. Select the 40 MHz filter or a through path by using the :IQ:EXTernal:FILTer command.

Example

The preceding example disables the auto mode filter selection.

*RST
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

Key Entry I/Q Output Filter Manual Auto

:FILTer

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:FILTer
RNYQuist|NYQuist|GAUSsian|
RECTangle|AC4Fm|UGGaussian|"<user_FIR>"
[:SOURce]:RADio:DMODulation:ARB:FILTer?

This command specifies the pre-modulation filter type.

RNYQuist This choice selects a Root Nyquist (root raised cosine) filter. This filter is adjusted using Alpha.
NYQuist This choice selects a Nyquist (raised cosine) filter. This filter is adjusted using Alpha.
GAUSsian This choice selects a Gaussian Filter which is adjusted using Bbt values.
RECTangle This choice selects a one symbol wide rectangular filter.
AC4Fm This choice selects a pre-defined Association of Public Safety Communications officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.
UGGAUSsian This choice selects a UN3/4 delay-compatible, GSM, 0.300 Bbt Gaussian filter. The Bbt value is not adjustable.
"<User_FIR>" This variable is any filter file that you have stored in memory. For information on the file name syntax, see “File Name Variables” on page 11.

Example

:RAD:DMOD:ARB:FILTer "FIR:FIR_Data"

The preceding example selects a file named FIR_Data, from the catalog of FIR files, as the filter type.

*RST RNYQuist

Key Entry Root Nyquist Nyquist Gaussian Rectangle APCO 25 C4FM

UN3/4 GSM User

Gaussian FIR
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

:FILTer:ALPHa

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:FILTer:ALPHa <val>
[:SOURce]:RADio:DMODulation:ARB:FILTer:ALPHa?

This command changes the Nyquist or root Nyquist filter alpha value.

The filter alpha value can be set to the minimum level (0), the maximum level (1), or in between by using numeric values (0.001 to 0.999).

To change the current filter type, refer to “:FILTer” on page 333.

Example

:RAD:DMOD:ARB:FILT:ALPH .33

The preceding example sets .33 as the filter alpha.

*RST +3.50000000E−001
Range 0.000 to 1.000

Key Entry Filter Alpha

:FILTer:BBT

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:FILTer:BBT <val>
[:SOURce]:RADio:DMODulation:ARB:FILTer:BBT?

This command changes the bandwidth-multiplied-by-bit-time (BbT) filter parameter for a Gaussian filter. It has no effect on other types of filters.

The filter BbT value can be set to the minimum level (0), the maximum level (1), or in between by using fractional numeric values (0.001 to 0.999).

To change the current filter type, refer to “:FILTer” on page 333.

Example

:RAD:DMOD:ARB:FILT:BBT .52

The preceding example sets .52 as the filter BbT.

*RST +5.00000000E−001
Range 0.000 to 1.000

Key Entry Filter BbT

:FILTer:CHANnel

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:FILTer:CHANnel EVM|ACP
[:SOURce]:RADio:DMODulation:ARB:FILTer:CHANnel?

...
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP). To change the current filter type, refer to “:FILTer” on page 333.

Example

:RAD:DMOD:ARB:FILT:CHAN ACP

The preceding example selects ACP optimization.

- **EVM**: This choice provides the most ideal passband.
- **ACP**: This choice improves stopband rejection.
- **RST**: EVM

Key Entry: Optimize FIR For EVM ACP

:HEADer:CLEar

Supported: E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:HEADer:CLEar

This command clears the header information from the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User's Guide for information on header files.

For this command to function, the Arb Waveform Generator's Digital Modulation must be enabled ON by using the [:STATe] command.

Key Entry: Clear Header

:HEADer:SAVE

Supported: E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:HEADer:SAVE

This command saves the header information to the header file for the active modulation file. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User's Guide for information on header files.

For this command to function, the Arb Waveform Generator's Digital Modulation must be enabled ON by using the [:STATe] command.

Key Entry: Save Setup To Header
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:IQ:MODulation:ATTen

Supported

E8267D with Option 601 or 602

`[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen <val><unit>`

`[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen?`

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable `<val>` is expressed in decibels (dB).

Example

The preceding example sets the modulator attenuator level to 20 dB.

Key Entry

Modulator Atten Manual Auto

Range

0 to 40 dB

:IQ:MODulation:ATTen:AUTO

Supported

E8267D with Option 601 or 602

`[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0`

`[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:ATTen:AUTO?`

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives a AUTO OFF or AUTO 0 command.

Example

The preceding example selects the modulator attenuator auto mode.

Key Entry

Modulator Atten Manual Auto
Digital Modulation Commands

Dmodulation Subsystem–Option 601 or 602 (:SOURce:RADio:DMODulation:ARB)

:IQ:MODulation:FILTTer

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILTer
40e6 | THRough

[[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILTer?]

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter using this command will automatically set the :IQ:MODulation:FILTTer:AUTO command to OFF.

- **40E6**
 This choice applies a 40 MHz baseband filter to the I/Q signals.

- **THRough**
 This choice bypasses filtering.

Example

The preceding example selects the through path and bypasses filtering.

Key Entry
40.000MHz

:IQ:MODulation:FILTer:AUTO

Supported
E8267D with Option 601 or 602

[[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILTer:AUTO
ON | OFF | 1 | 0

[[:SOURce]:RADio:DMODulation:ARB:IQ:MODulation:FILTer:AUTO?]

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

- **ON (1)**
 This choice will automatically select a filter that is optimized for the current signal generator setting.

- **OFF (0)**
 This choice disables the automatic filter selection. You may select a digital modulation filter or through path by using the :IQ:MODulation:FILTTer command.

Example

The preceding example sets the automatic filter selection function.

Key Entry
I/Q Mod Filter Manual Auto
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

`:MDEStination:ALCHold`

Supported
E8267D with Option 601 or 602

CAUTION
Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:DMODulation:ARB:MDEStination:ALCHold
NONE | M1 | M2 | M3 | M4
[:SOURce]:RADio:DMODulation:ARB:MDEStination:ALCHold?

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that uses idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 343. For more information on markers, see “:MARKer:[SET]” on page 306.

NOTE
Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE
A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the *User’s Guide*. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 303.
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For setting marker points, see “:MARKer:[SET]” on page 306.

NONE This terminates the marker ALC hold function.

M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

Example

```
:RAD:DMOD:ARB:MDES:ALCH M1
```

The preceding example routes marker 1 to the ALC Hold function.

CAUTION

The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

```
[:SOURce]:RADio:DMODulation:ARB:MDES:ALCH PULSE
```

This command disables the marker RF blanking/pulse function, or it enables the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

there are no marker points. To set a marker’s polarity, refer to the
:MOLe:MARKer1|2|3|4 command. For more information on markers, see
“:MARKer[:SET]” on page 306.

NOTE

Set marker points prior to using this function. Enabling this function
without setting marker points may create a continuous low or high marker
signal, depending on the marker polarity. This creates the condition where
there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual
ARB subsystem:

- For clearing a single marker point or a range of marker points,
 see “:MARKer:CLEar” on page 303.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For setting marker points, see “:MARKer[:SET]” on page 306.

The marker signal has a minimum of a two-sample delay in its response relative
to the waveform signal response. To compensate for the marker signal delay,
offset marker points from the waveform sample point at which you want the RF
blanking to begin.

The RF blanking setting is part of the file header information, so saving the
setting to the file header saves the current marker routing for the waveform file.

NOTE

A waveform file that has unspecified settings in the file header uses the
previous waveform’s routing settings. This could create the situation where
there is no RF output signal, because the previous waveform used RF
blanking.

For more information on the marker RF blanking function, refer to the User’s
Guide.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>None</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1–M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

The preceding example routes marker 2 to the Pulse/RF Blanking function.

*RST NONE
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:MODulation:FSK[:DEVIation]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:MODulation:FSK[:DEVIation] <val><units>
[:SOURce]:RADio:DMODulation:ARB:MODulation:FSK[:DEVIation]?

This command sets the symmetric FSK frequency deviation value.

The variable <val> is a numeric expression with a maximum range equal to the current symbol rate value multiplied by ten, limited to 20 MHz. The variable <units> is expressed in hertz.

To change the modulation type use the "MODulation[:TYPE]" command. For a list of the minimum and maximum symbol rate values use the :SRATe command.

For more information on setting an asymmetric FSK deviation value, refer to the User's Guide.

Example

The preceding example sets the maximum frequency deviation to 50 kHz.

*RST +4.00000000E+002
Range 0 to 2E7
Key Entry Freq Dev

:MODulation[:TYPE]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:MODulation[:TYPE]
ASK|BPSK|QPSK|UQPSk|IS95QPSK|GRAYQPSK|OQPSK|IS95OQPSK|P4DQPSK|FSK8|PSK16|D8PSK|HDQPSK|MSK|PSK2|PSK4|PSK8|FSK16|C4FM|HCPM
|QAM4|QAM16|QAM32|QAM64|QAM128|QAM256|APSK16CR23|APSK16CR34|APSK16CR45|APSK16CR56|APSK16CR89|APSK16CR910|APSK32CR34|APSK32CR45|APSK32CR56|APSK32CR89|APSK32CR910|UIQ|UFSK

[:SOURce]:RADio:DMODulation:ARB:MODulation[:TYPE]?

This command sets the modulation type for the Custom personality. For user–defined modulation; UIQ or UFSK, the file must first be specified using the "MODulation:UFSK" or "MODulation:UIQ" commands.

Example

The preceding example selects binary phase shift keying (BPSK).

The preceding example selects amplitude and binary phase shift keying (APSK).

:MODulation:ASK[:DEPTh]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:MODulation:ASK[:DEPTh] <0% - 100%>

[:SOURce]:RADio:DMODulation:ARB:MODulation:ASK[:DEPTh]?

This command changes the depth for the amplitude shift keying (ASK) modulation. Depth is set as a percentage of the full power on level.

* RST +1.00000000E+002

Range 0 to 100

Key Entry ASK Depth 100%

Remarks The modulation is applied to the I signal, the Q value is always kept at zero.

[:SOURce]:RADio:DMODulation:ARB:MODulation:ASK[:DEPT]?

Example

* RST P4DQPSK

Key Entry ASK BPSK QPSK UQPSK IS–95 Gray Coded OQPSK

QPSK

IS–95 QPSK π/4 DQPSK 8PSK 16PSK D8PSK HDQPSK MSK 2–Lvl FSK

2–Lvl FSK 8–Lvl FSK 16–Lvl FSK C4FM HCPM 4QAM 16QAM 32QAM

4QAM 128QAM 256QAM 16APSKCR23 16APSKCR34 16APSKCR45 16APSKCR56

16APSKCR89 16APSKCR910 32APSKCR34 32APSKCR45 32APSKCR56

32APSKCR89 32APSKCR910 User I/Q User FSK
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

:MPOLarity:MARKer1|2|3|4

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:MPOLarity:MARKer1|2|3|4
NEGative
POSitive
[:SOURce]:RADio:DMODulation:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker.

For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 303.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For information on markers and setting marker points, see “:MARKer:[SET]” on page 306.

Example

:RAD:DMOD:ARB:MPOL:MARK2 NEG

The preceding example sets the polarity for marker 2 to negative.

*RST POS

Key Entry Marker 1 Polarity Marker 2 Polarity
Neg Pos Neg Pos
Marker 3 Polarity Marker 4 Polarity
Neg Pos Neg Pos

:REFerence:EXTernal:FREQuency

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:REFerence:EXTernal:FREQuency <val>
[:SOURce]:RADio:DMODulation:ARB:REFerence:EXTernal:FREQuency ?

This command sets or retrieves the reference frequency value of an externally applied reference to the signal generator. The variable <val> is expressed in hertz (Hz–MHz).

The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear panel connector.
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

To specify EXTernal as the ARB reference source type, use the :REFeRence[:SOURce] command.

Example
The preceding example sets the external reference to 10 MHz.

*RST +1.00000000E+007
Range 2.5E5 to 1E8
Key Entry Reference Freq

:REFeRence[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:REFeRence [:SOURce] INTernal | EXTernal
[:SOURce]:RADio:DMODulation:ARB:REFeRence [:SOURce]?

This command selects either an internal or external reference for the waveform clock.

If the EXTernal choice is selected, the external frequency value must be entered and the signal must be applied to the BASEBAND GEN REF IN rear panel connector.

To enter the external reference frequency use the :REFeRence:EXTernal:FREQuency command.

Example
:RAD:DMOD:ARB:REF INT
The preceding example sets an internal clock reference.

*RST INT
Key Entry ARB Reference Ext Int

:RETRigger

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:RETRigger ON | OFF | IMMEDIATE
[:SOURce]:RADio:DMODulation:ARB:RETRigger?

This command selects the waveform's response to a trigger signal while using the single trigger mode.

When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest. For more information on triggering and to select the single trigger mode, see “:TRIGger:TYPE” on page 351.
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

The following list describes the waveform’s response to each of the command choices:

ON
The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. If there is a subsequent trigger during playback, the waveform completes its current playback and then plays one more time. If there is no subsequent trigger, the waveform plays once and stops until it receives another trigger.

OFF
The waveform waits for a trigger before play begins and ignores triggers during playback. To restart the waveform, you must send a trigger after the playback completes.

IMMediate
The waveform waits for a trigger before play begins and accepts a subsequent trigger during playback. Upon receipt of the subsequent trigger, the waveform immediately resets and begins playing from the beginning of the file. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example

`:RAD:DMOD:ARB:RETR ON`
The preceding example selects the ON mode for the single mode trigger.

Key Entry

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>On</th>
<th>Off</th>
<th>Immediate</th>
</tr>
</thead>
</table>

:SCLock:RATE

Supported
E8267D with Option 601 or 602

`[:SOURce]:RADio:DMODulation:ARB:SCLock:RATE <sample_clock_rate>`

`:SOURce]:RADio:DMODulation:ARB:SCLock:RATE?`

This command sets the sample clock rate in hertz. The modulation format should be active before executing this command. If this command is executed before the modulation format has been activated by the [:STATe] command, the entered value will be overridden by a calculated factory default value.

Example

The preceding example sets the sample clock rate to 50 MHz.

Range
1 to 1E8
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RAdio:DMODulation:ARB)

Key Entry ARB Sample Clock

:SETup

Supported E8267D with Option 601 or 602

[:SOURce]:RAdio:DMODulation:ARB:SETup

GSM|NADC|PDC|PHS|DECT|AC4Fm|
ACQPSk|CDPD|FWT|EDGE|TETRa|MCARrier|"<file_name>"

[:SOURce]:RAdio:DMODulation:ARB:SETup?

This command selects the digital modulation format type. For information on the file name syntax, see "File Name Variables" on page 11.

Example

:RAD:DMOD:ARB:SET CDPD

The preceding example selects cellular digital packet data (CDPD) as the modulation format.

*RST

NADC

Key Entry GSM NADC PDC PHS DECT APCO 25 APCO w/C4FM w/CQPSK

CDPD PWT EDGE TETRA Multicarrier Off On Select File

:SETup:MCARrier

Supported E8267D with Option 601 or 602

[:SOURce]:RAdio:DMODulation:ARB:SETup:MCARrier

(GSM|NADC|PDC|PHS|DECT|AC4Fm|ACQPSk|CDPD|FWT|EDGE|TETRa,<num_carriers>,<freq_spacing>)|
"<file_name>"

[:SOURce]:RAdio:DMODulation:ARB:SETup:MCARrier?

This command builds a table with the specified number of carriers and frequency spacing or retrieves the setup stored in the specified user file. The query returns the carrier type, number of carriers, and frequency spacing. The output format is as follows:

<carrier_type>,<num_carriers>,<freq_spacing>

If a specific file is loaded and then queried, only the file name is returned. For information on the file name syntax, see “File Name Variables” on page 11. To store a multicarrier setup refer to “:SETup:MCARrier:STORe” on page 348.

The variable <freq_spacing> is expressed in hertz (kHz–MHz).

Example

Key Entry GSM NADC PDC PHS DECT APCO 25 APCO w/C4FM w/CQPSK

CDPD PWT EDGE TETRA Multicarrier Off On Select File
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([[:SOURce]:RADio:DMODulation:ARB)

[:RAD:DMOD:ARB:SET:MCAR NADC, 2, 10MHZ
[:RAD:DMOD:ARB:SET:MCAR "<file_name>"

The preceding examples show the syntax used to select a North American Digital Cellular (NADC) modulation format with two carriers and 10 MHz frequency spacing and the syntax for selecting an existing multicarrier file.

*RST Carrier: NADC
<num carriers>: 2
<freq spacing>: +1.0000000000000E+06

Range
<num carriers>: 2 to 100
<freq spacing>: 2 + (num carriers) × 80 MHz

Key Entry
GSM NADC PDC PHS DECT APCO 25 APCO w/C4FM w/CQPSK
CDPD PWT EDGE TETRA # of Carriers Freq Spacing

Custom Digital Mod State

:SETup:MCARrier:PHASe

Supported E8267D with Option 601 or 602
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:PHASe
FIXed|RANDom
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:PHASe?

This command sets the phase difference between carriers for multicarrier digital modulation.

FIXed This choice sets the phase of all carriers to 0.
RANDom This choice sets random phase values for all of the carriers.

Example
[:RAD:DMOD:ARB:SET:MCAR:PHAS RAND

The preceding example sets the phase difference between carriers to a random value.

*RST FIX
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

Key Entry Carrier Phases Fixed Random

:SETup:MCARrier:STORe

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:STORe
"<file_name>"

This command stores the current multicarrier setup information.

The stored file contains information that includes the digital modulation format, number of carriers, frequency spacing, and power settings for the multicarrier setup.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST. For information on the file name syntax, see “File Name Variables” on page 11.

Example

:RAD:DMOD:ARB:SET:MCAR:STOR "NADC_Data"
Digital Modulation Commands
Dmmodation Subsystem–Option 601 or 602 [:SOURce]:RADio:DMODulation:ARB

The preceding example saves the multicarrier setup information to a file called NADC_Data and stores the file in the catalog of MDMOD files.

Key Entry Load/Store

:SETup:MCARrier:TABLE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLE
INIT|APPend
<carrier_num>,GSM|NADC|PDC|PHS|DECT|AC4Fm|ACQPsk|CDPD|PWT|ED GE|TETRa|
"<file_name>",{<freq_offset>,<power>
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLE? <carrier_num>

This command modifies the parameters of one of the available multicarrier digital modulation formats.

The variable <freq_offset> is expressed in units of hertz (kHz to MHz).

The variable <power> is expressed in units of decibels (dB).

The carrier type, carrier name, frequency offset, and power level are returned when a query is initiated. The output format is as follows:

<carrier_type>,<carrier_name>,<freq_offset>,<power>

INIT This choice clears the current information and creates a new one row table, allowing for further definition using additional parameters.

APPend This choice adds rows to an existing table.

<carrier_num> This variable specifies the number of the carriers in the multicarrier table that will be modified. The value of the variable <carrier_num> must be specified prior to selecting the digital modulation format.

For information on the file name syntax, see “File Name Variables” on page 11. To store a multicarrier setup refer to “:SETup:MCARrier:STORE” on page 348. When a query is initiated, carrier type, frequency offset, and power level are returned in the following format: <carrier_type>,<freq_offset>,<power>

*RST carrier type: NADC

<freq_offset>: 5.00000000E+004

<power>: +0.00000000E+000
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:SETup:MCARrier:TABLe:NCARriers

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLe:NCARriers?

This query returns the number of carriers in the current multicarrier setup.

*RST +2
Range 1 to 100
Key Entry # of Carriers

:SETup:STORe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SETup:STORe "<file_name>"

This command stores the current custom digital modulation state using the "<file_name>" file name.

The saved file contains information that includes the modulation type, filter and symbol rate for the custom modulation setup.

For information on the file name syntax, see "File Name Variables" on page 11.

Example

:RAD:DMOD:ARB:SET:STOR "Setup_Data"

The preceding example saves the modulation format setup to a file named Setup_Data and stores the file in the catalog of DMOD files.

Key Entry Store Custom Dig Mod State
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:SRA Te

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:SRA Te <val>
[:SOURce]:RADio:DMODulation:ARB:SRA Te?

This command sets the transmission symbol rate. The variable <val> is expressed in symbols per second (sps–Msps) and the maximum range value is dependent upon the source of data (internal or external), the modulation type, and filter.

When user-defined filters are selected using the :FILTER command, the upper bit rate will be restricted using the following criteria:

- FIR filter length > 32 symbols: upper limit is 12.5 Msps
- FIR filter length > 16 symbols: upper limit is 25 Msps

When internal FIR filters are used, these limit restrictions always apply. For higher symbol rates, the FIR filter length will be truncated as follows:

- Above 12.5 Msps, the FIR length is truncated to 32 symbols
- Above 25 Msps, the FIR length is truncated to 16 symbols

This impacts the relative timing of the modulated data, as well as the actual filter response.

The modulation type is changed using the "MODulation[:TYPE]" command.

Example

:RAD:DMOD:ARB:SRA T 10KSPS

The preceding example sets the symbol rate to 10K symbols per second.

*RST +2.43000000E+004
Range 1 ksps to 50 Msps
Key Entry Symbol Rate

:TRIGger:TYPE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE CONTinuous|SINGle|GATE
[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE?

This command sets the trigger mode (type) that controls the waveform’s playback.

Triggers control the playback by telling the PSG when to play the modulating signal (waveform). Depending on the trigger settings for the PSG, the waveform playback can occur once, continuously, or the PSG may start and stop playing the waveform repeatedly (GATE mode).
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURCE]:RADio:DMODulation:ARB)

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the PSG to trigger on either state of the trigger signal. It is common to have multiple triggers, also referred to as trigger occurrences or events, occur when the signal generator requires only a single trigger. In this situation, the PSG recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the waveform. This is because the PSG sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the waveform’s final I and Q levels determine whether you will see the carrier signal or not (zero = no carrier, other values = carrier visible). At the end of most files, the final I and Q points are set to a value other than zero.

There are four parts to configuring the trigger:
- Choosing the trigger type, which controls the waveform’s transmission.
- Setting the waveform’s response to triggers:
 - CONTinuous, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 353
 - SINGle, see “:RETRigger” on page 344
 - GATE, selecting the mode also sets the response
- Selecting the trigger source using the :TRIGger[:SOURCE] command, determines how the PSG receives its trigger signal, internally or externally. The GATE choice requires an external trigger.
- Setting the trigger polarity when using an external source:
 - CONTinuous and SINGle see “:TRIGger[:SOURCE]:EXTernal:SLOPe” on page 358
 - GATE, see “:TRIGger:TYPE:GATE:ACTive” on page 354

For more information on triggering, refer to the User’s Guide.

The following list describes the trigger type command choices:

- CONTinuous: Upon triggering, the waveform repeats continuously.
- SINGle: Upon triggering, the waveform segment or sequence plays once.
- GATE: An external trigger signal repeatedly starts and stops the waveform’s playback (transmission). The time duration for playback depends on the duty period of the trigger signal and the gate polarity selection (see “:TRIGger:TYPE:GATE:ACTive” on page 354). The waveform plays during the inactive state and stops...
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

during the active polarity selection state. The active state can be set high or low. The gate mode works only with an external trigger source.

NOTE
The ARB gating behavior described above is opposite to the gating behavior for real-time custom mode.

Example

`:RAD:DMOD:ARB:TRIG:TYPE GATE`

The preceding example selects the gate trigger mode.

*RST CONT

Key Entry Continuous Single Gated

`:TRIGger:TYPE:CONTinuous[:TYPE]`

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:CONTinuous[:TYPE]]?

This command selects the waveform’s response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see “`:TRIGger:TYPE`” on page 351.

The following list describes the waveform’s response to each of the command choices:

FREE Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.

TRIGger The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

RESet The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.

Example
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

The preceding example selects the continuous trigger free mode.

*RST FREE

Key Entry Free Run Trigger & Run Reset & Run

`:TRIGger:TYPE:GATE:ACTive`

Supported E8267D with Option 601 or 602

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the active state occurs, the PSG stops the waveform playback at the last played sample point, then restarts the playback at the next sample point when the inactive state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 351.

The following list describes the PSG’s gating behavior for the polarity selections:

LOW The waveform playback stops when the trigger signal goes low (active state) and restarts when the trigger signal goes high (inactive state).

HIGH The waveform playback stops when the trigger signal goes high (active state) and restarts when the trigger signal goes low (inactive state).

Example

The preceding example sets the active gate state to high.

*RST HIGH

Key Entry Gate Active Low High

`:TRIGger[:SOURce]`

Supported E8267D with Option 601 or 602

`:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce] KEY|EXT|BUS
`:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]?`

This command sets the trigger source.
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([SOURce]:RADio:DMODulation:ARB)

For more information on triggering, see “:TRIGger:TYPE” on page 351. The following list describes the command choices:

<table>
<thead>
<tr>
<th>KEY</th>
<th>This choice enables manual triggering by pressing the front panel Trigger hardkey.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>An externally applied signal triggers the waveform. This is the only choice that works with gating. The following conditions affect an external trigger:</td>
</tr>
<tr>
<td></td>
<td>— The input connector selected for the trigger signal. You have a choice between the rear panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector. To make the connector selection, see “:TRIGger[:SOURce]:EXTernal[:SOURce]” on page 356.</td>
</tr>
<tr>
<td></td>
<td>— The trigger signal polarity:</td>
</tr>
<tr>
<td></td>
<td>— gating mode, see “:TRIGger:TYPE:GATE:ACTive” on page 354</td>
</tr>
<tr>
<td></td>
<td>— continuous and single modes, see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 358</td>
</tr>
<tr>
<td></td>
<td>— The time delay between when the PSG receives a trigger and when the waveform responds to the trigger. There are two parts to setting the delay:</td>
</tr>
<tr>
<td></td>
<td>— setting the amount of delay, see “:TRIGger[:SOURce]:EXTernal:DELay” on page 356</td>
</tr>
<tr>
<td></td>
<td>— turning the delay on, see “:TRIGger[:SOURce]:EXTernal:DELay:STATe” on page 357</td>
</tr>
<tr>
<td>BUS</td>
<td>This choice enables triggering over the GPIB or LAN using the *TRG or GET commands or the AUXILIARY INTERFACE (RS-232) using the *TRG command.</td>
</tr>
</tbody>
</table>

Example

:RAD:DMOD:ARB:TRIG EXT

The preceding example sets the trigger source to external triggering mode.

RST	EXT

Key Entry | Trigger Key | Ext | Bus
Digital Modulation Commands
D_modulationSubsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

 [:TRIGger[:SOURce]:EXTernal[:SOURce]]

 Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal[:SOURce] EPT1
EPT2 EPTRIGGER1 EPTRIGGER2
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal[:SOURce]?

This command selects which PATTERN TRIG IN connection the PSG uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, refer to the :TRIGger[:SOURce] command. For more information on the rear panel connectors, refer to the User’s Guide.

The following list describes the command choices:

- **EPT1** This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear panel connector.

- **EPT2** This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.

- **EPTRIGGER1** This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear panel connector.

- **EPTRIGGER2** This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.

Example

:RAD:DMOD:ARB:TRIG:EXT EPT1

The preceding example sets the trigger source to the PATTERN TRIG IN rear panel connector.

*RST EPT1

Key Entry Patt Trig In 1 Patt Trig In 2

[:TRIGger[SOURce]:EXTernal:DELay]

 Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DELay <val>
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DELay?
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 [:SOURce]:RADio:DMODulation:ARB

This command sets the amount of time to delay the PSG’s response to an external trigger.

The delay is a path (time) delay between when the PSG receives the trigger and when it responds to the trigger. For example, configuring a trigger delay of two seconds, causes the PSG to wait two seconds after receipt of the trigger before the PSG plays the waveform.

The delay does not occur until it has been enabled on by the :TRIGger[:SOURce]:EXTernal:DELay:STATe command. The delay value may be set either before or after it has been enabled.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 354.

The unit of measurement for the variable <val> is in seconds (nsec–sec).

Example
:RAD:DMOD:ARB:TRIG:EXT:DEL 200MS
The preceding example sets the delay for an external trigger to .2 seconds.

*RST +1.00000000E−003
Range 1E−8 to 4E1
Key Entry Ext Delay Time

:TRIGger[:SOURce]:EXTernal:DELay:STATe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DE Lay:STATe ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DE Lay:STATe?

This command turns the trigger delay on or off when using an external trigger source.

For setting the delay time, use the :TRIGger[SOURce]:EXTernal:DELay command. For more information on configuring an external source, refer to “:TRIGger[SOURce]” on page 354.

Example
:RAD:DMOD:ARB:TRIG:EXT:DEL 1
The preceding example sets the delay active for an external trigger.

*RST 0
Key Entry Ext Delay Off On
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

:TRIGger[:SOURce]:EXTernal:SLOPe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal: SLOPe POSitive|NEGative
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal: SLOPe?

This command sets the polarity for an external trigger signal while using the continuous, single triggering mode. To set the polarity for gating, see “:TRIGger:TYPE:GATE:ACTive” on page 354.

The POSitive and NEGa tive selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger signal. When the PSG receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 354.

Example

The preceding example sets the polarity of the active triggering state to positive.

*RST NEG

Key Entry Ext Polarity Neg Pos
Digital Modulation Commands
Dmodulation Subsystem–Option 601 or 602 ([:SOURce]:RADio:DMODulation:ARB)

[:STATe]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:DMODulation:ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB [:STATe]?

This command enables or disables the digital modulation.

ON (1) This choice sets up the internal hardware to generate the currently selected digital modulation format. When ON is selected, the I/Q state is activated and the I/Q source is set to internal.

OFF (0) This choice disables the digital modulation capability.

Example

:RAD:DMOD:ARB ON

The preceding example turns on the arbitrary waveform generator.

*RST 0

Key Entry Digital Modulation Off On
Creating a Multitone Waveform

Use the following steps to create a multitone waveform:

1. Initialize the phase for the multitone waveform ("::SETup:TABLE:PHASe:INITialize" on page 373).
2. Assign the frequency spacing between the tones ("::SETup:TABLE:FSPacing" on page 371).
3. Define the number of tones within the waveform ("::SETup:TABLE:NTONes" on page 372).
4. Modify the power level, phase, and state of any individual tones ("::ROW" on page 374).

::HEADer:CLEar

Supported E8267D with Option 601 or 602

[::SOURce]:RADio:MTONe:ARB::HEADer:CLEar

This command clears the header information from the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User’s Guide for information on header files.

For this command to function, the multitone mode must be enabled ON by using the [:STATe] command.

Key Entry Clear Header

::HEADer:SAVE

Supported E8267D with Option 601 or 602

[::SOURce]:RADio:MTONe:ARB::HEADer:SAVE

This command saves the header information to the header file used by this modulation format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User’s Guide for information on header files.

For this command to function, the multitone must be enabled ON by using the [:STATe] command.

Key Entry Save Setup To Header
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

:IQ:EXTernal:FILTer

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:MTONe:ARB]:IQ:EXTernal:FILTer 40e6|THRough

[[:SOURce]:RADio:MTONe:ARB]:IQ:EXTernal:FILTer?

This command selects the filter or through path for I/Q signals routed to the rear panel I and Q outputs. Selecting a filter using this command will automatically set the :IQ:EXTernal:FILTer:AUTO command to OFF.

- 40e6: This choice applies a 40 MHz baseband filter.
- THThrough: This choice bypasses filtering.

Example

The preceding example selects a 40 MHz filter for the I/Q rear panel signal path.

:*RST THR

Key Entry

40.000MHz Through

:IQ:EXTernal:FILTer:AUTO

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:MTONe:ARB]:IQ:EXTernal:FILTer:AUTO ON|OFF|1|0

[[:SOURce]:RADio:MTONe:ARB]:IQ:EXTernal:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear panel I/Q outputs. The AUTO feature allows the signal generator to select the filter or through path for the signal.

- ON(1): This choice automatically selects the 40 MHz filter optimized for current signal generator settings.
- OFF(0): This choice disables the auto feature and allows you to select the 40 MHz filter or a through path. Refer to “:IQ:EXTernal:FILTer” on page 332 for selecting a filter or through path.

Example

The preceding example sets output I/Q filtering to automatic.

:*RST 1

Key Entry I/Q Output Filter Manual Auto
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

[:IQ:MODulation:ATTen]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen <val>
[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

The preceding example sets the modulator attenuator level to 20dB.

*RST +2.00000000E+000

Range 0 to 40 (.01dB resolution)

Key Entry Modulator Attenuator Manual Auto

[:IQ:MODulation:ATTen:AUTO]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the modulator attenuator auto mode. The AUTO mode allows the signal generator to select the best attenuator level for the current settings. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO 0 command.

ON (1) This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at the selected value set by the :IQ:MODulation:ATTen command.

Example

The preceding example sets the attenuator in manual mode.

*RST 1

Key Entry Modulator Attenuator Manual Auto

362 Keysight E8257D/67D & E8663D PSG Signal Generators SCPI Command Reference
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([SOURce]:RADio:MTOn:ARB)

:IQ:MODulation:FILT

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:MTOn:ARB:IQ:MODulation:FILT:40e6|THRough
[:SOURce]:RADio:MTOn:ARB:IQ:MODulation:FILT?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter using this command will automatically set the :IQ:MODulation:FILT:OFF command to OFF.

- **40E6** This choice applies a 40 MHz baseband filter to the I/Q signals.
- **THRough** This choice bypasses filtering.

Example

The preceding example selects a through path for I/Q signals routed to the rear panel outputs.

- **RST** THR

Key Entry 40.000MHz Through

:IQ:MODulation:FILT:AUTO

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:MTOn:ARB:IQ:MODulation:FILT:AUTO ON|OFF|1|0
[:SOURce]:RADio:MTOn:ARB:IQ:MODulation:FILT:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

- **ON** This choice will automatically select the 40 MHz filter optimized for the current signal generator setting.
- **OFF** This choice disables the automatic filter selection. You may select the 40 MHz filter or the through path by using the :IQ:MODulation:FILT command.

Example

The preceding example sets the automatic filter selection off.
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

:MDestination:ALCHold

Supported E8267D with Option 601 or 602

CAUTION

Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:MTONe:ARB:MDestination:ALCHold
NONE | M1 | M2 | M3 | M4
[:SOURce]:RADio:MTONe:ARB:MDestination:ALCHold?

This command enables or disables the marker ALC hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, use the :MPolarity:MARKer1|2|3|4 command. For more information on markers, refer to “.MARKer:[SET]” on page 306.

NOTE

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, refer to the *User’s Guide*. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “.MARKer:CLEar” on page 303.
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTOn:ARB)

- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For setting marker points, see “:MARKer:[SET]” on page 306.

NONE This terminates the marker ALC hold function.

M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

Example

```
:RAD:MTON:ARB:MDESTination:PULSe M1
```

The preceding example routes marker one to the ALC hold function.

CAUTION

The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

```
[:SOURce]:RADio:MTOne:ARB:MDESTination:PULSe
NONE|M1|M2|M3|M4
`:SOURce]:RADio:MTOn:ARB:MDESTination:PULSe?
```

This command disables the marker RF blanking/pulse function, or it enables the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the waveform's output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when...
Digital Modulation Commands
Multitone Subsystem—Option 601 or 602 [:SOURce]:RADio:MTONe:ARB

there are no marker points. To set a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 367. For more information on setting markers, see “:MARKer:[SET]” on page 306.

NOTE

Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This creates the condition where there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 303.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For setting marker points, see “:MARKer:[SET]” on page 306.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin.

The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, refer to the User’s Guide.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1–M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*RST

For more information on the marker RF blanking function, refer to the User’s Guide.

NONE

This terminates the marker RF blanking/pulse function.

M1–M4

These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example

:RAD:MTON:ARB:MDES:PULSE M1

The preceding example routes marker one to the Pulse/RF Blanking function.
Digital Modulation Commands
Multitone Subsystem—Option 601 or 602 [:SOURce]:RADio:MTONE:ARB

:MPOLarity:MARKer1|2|3|4

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONE:ARB:MPOLarity:MARKer1|2|3|4
NEGative|POSitive
[:SOURce]:RADio:MTONE:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker.
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 303.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For information on markers and setting marker points, see “:MARKer:[SET]” on page 306.

Example

:RAD:MTON:ARB:MPOL:MARK1 NEG

The preceding example sets the polarity for marker one to negative.

*:RST POS

Key Entry

<table>
<thead>
<tr>
<th>Marker 1 Polarity</th>
<th>Marker 2 Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg Pos</td>
<td>Neg Pos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker 3 Polarity</th>
<th>Marker 4 Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg Pos</td>
<td>Neg Pos</td>
</tr>
</tbody>
</table>

:REference:EXTernal:FREQuency

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:REFeReNce:EXTernal:FREQuency <val>
[:SOURce]:RADio:MTONe:ARB:REFeReNce:EXTernal:FREQuency?

This command allows you to enter the frequency of an external reference. The variable <val> is expressed in hertz (Hz–MHz). The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear panel connector. To specify EXTernal as the ARB reference source type, use the :REFeReNce[:SOURce] command.

Example

The preceding example sets the external reference to .5 megahertz.

*:RST +1.00000000E+007

Range

2.5E5 to 1E8

Key Entry

Reference Freq
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 [:SOURce]:RADio:MTONe:ARB

:REFerence[:SOURce]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:REFerence[:SOURce]
INTernal|EXTernal
[:SOURce]:RADio:MTONe:ARB:REFerence[:SOURce]?

This command selects either an internal or external reference for the waveform clock. If EXTernal is selected, the external frequency value must be entered and the clock signal must be applied to the BASEBAND GEN REF IN rear panel connector. The external reference frequency is entered using the :REFerence:EXTernal:FREQuency command.

Example

:RAD:MTON:ARB:REF EXT

The preceding example sets an external reference as the waveform clock.

*RST INT

Key Entry ARB Reference Ext Int

:SCLock:RATE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SCLock:RATE <sample_clock_rate>
[:SOURce]:RADio:MTONE:ARB:SCLock:RATE?

This command sets the ARB sample clock rate.

The multitone generator should be on before executing this command. If this command is executed before the multitone generator is activated by the [:STATe] command, the entered value will be overridden by a calculated factory default value.

Example

:RAD:MTON:ARB:SCL:RATE 1E6

The preceding example sets the sample clock rate to 1 megahertz:

*RST +1.00000000E+006

Range 1 to 1E8

Key Entry ARB Sample Clock

:SETup

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup "<file_name>"
[:SOURce]:RADio:MTONe:ARB:SETup?
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

This command retrieves a multitone waveform file from the signal generator's MTONE directory. The directory path is implied in the command and does not need to be specified. After the waveform file is loaded into memory you must send the command to turn on the Multitone generator. For information on the file name syntax, see “File Name Variables” on page 11.

Example

[:RAD:MTONe:ARB:SET] "Multi_Setup"

The preceding example loads the Multi_Setup waveform file into the signal generator's memory.

Key Entry Load From Selected File

:SETup:STORe

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup:STOR "<file_name>"

This command stores the current multitone waveform setup in the signal generator's MTONE directory using the "<file_name>" file name. The directory path is implied in the command and does not need to be specified.

Example

[:RAD:MTONe:ARB:SET:STOR] "Multi_Setup1"

The preceding example stores the current multitone setup to the Multi_Setup1 file and stores it in the signal generator's MTONE directory.

Key Entry Store To File

:SETup:TABLE

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE <freq_spacing>,<num_tones>,
{<phase>,<state>}
[:SOURce]:RADio:MTONe:ARB:SETup:TABLE?

This command creates and configures a multitone waveform. The frequency offset, power, phase, and state value are returned when a query is initiated. The parameter format is as follows:

<freq_spacing> Spacing is limited by the 80 MHz bandwidth of the arbitrary waveform generator and the number of tones desired. No units are specified.

<num_tones> There must be a minimum of two tones and a maximum of 64.

<phase> 0 to 359
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 [:SOURce]:RADio:MTONe:ARB

<state>
An enabled state is +1. A disabled state is 0.

NOTE
Frequency offset is related to frequency spacing. Frequency offset between tones equals the frequency spacing.

To set the frequency spacing, refer to the :SETup:TABLE:FSPacing command. To set the power level for tones refer to the :ROWcommand.

Example

:RAD:MTON:ARB:SET:TABL 1000000,3,90,1,60,0,45,1

The preceding example creates a multitone setup consisting of 3 tones with 1 megahertz tone spacing. The first tone phase is 90 degrees and the state is on. The second tone phase is 60 degrees and the state is off. The third tone phase is 45 degrees and the state is on.

Table 5-3

<table>
<thead>
<tr>
<th>*RST</th>
<th>Tone</th>
<th><frequency offset></th>
<th><power></th>
<th><phase></th>
<th><state></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tone 1</td>
<td>-35000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 2</td>
<td>-25000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 3</td>
<td>-15000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 4</td>
<td>-5000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 5</td>
<td>+5000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 6</td>
<td>+15000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 7</td>
<td>+25000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 8</td>
<td>+35000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
</tbody>
</table>

Range

- **<freq_spacing>** (2 tones): 1E4 to 8E7
- **<num_tones>**: 2 to 64
- **<freq_spacing>** (>2 tones): 1E4 to (80 MHz + (num_tones – 1))
- **<phase>**: 0 to 359

Key Entry

<table>
<thead>
<tr>
<th>Freq Spacing</th>
<th>Number Of Tones</th>
<th>Toggle State</th>
</tr>
</thead>
</table>

:**SETup:TABLE:FSPacing**

Supported

- E8267D with Option 601 or 602
 - [:SOURce]:RADio:MTONe:ARB:SETup:TABLE:FSPacing
 - [:SOURce]:RADio:MTONe:ARB:SETup:TABLE:FSPacing?

Keysight E8257D/67D & E8663D PSG Signal Generators SCPI Command Reference
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTOn:ARB)

This command sets the frequency spacing between tones. The variable <freq_spacing> is expressed in hertz (Hz–MHz) and is limited to the 80 megahertz bandwidth of the arbitrary waveform generator.

To set frequency spacing and additional parameters required to create or configure a multitone waveform, refer to :SETup:TABLE command. This command is the second step in creating a multitone waveform. The four steps required when Creating a Multitone Waveform are listed in this command.

Example

:RAD:MTON:ARB:SET:TABLE:FSP 100KHZ
The preceding example sets a 100 kHz frequency spacing between tones.

*RST +1.00000000E+004
Range <freq_spacing> (2 tones): 100 Hz to 80 MHz
 <freq_spacing> (>2 tones): 1E2 to (80 MHz + (num_tones – 1))
Key Entry Freq Spacing

:SETup:TABLE:NTONes

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTOn:ARB:SETup:TABLE:NTONes <num_tones>
[:SOURce]:RADio:MTOn:ARB:SETup:TABLE:NTONes?

This command defines the number of tones in the multitone waveform. To specify the number of tones and additional parameters required to create or configure a multitone waveform, use the :SETup:TABLE command. This is the third step in creating a multitone waveform. The four steps required when Creating a Multitone Waveform are listed in this command.

Example

:RAD:MTON:ARB:SET:TABLE:NTON 4
The preceding example sets four tones in the current multitone table.

*RST +8
Range 2 to 64
Key Entry Number Of Tones
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

:SETup:TABLE:PHASE:INITialize

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHASE:INITialize
FIXed|RANDom

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHASE:INITialize?

This command initializes the phase in the multitone waveform table.

FIXed
This choice sets the phase of all tones to the fixed value of 0 degrees.

RANDom
This choice sets the phase of all tones to random values based on the setting on the random seed generator.

To change the random number generator seed value, refer to the :SETup:TABLE:PHASE:INITialize:SEED command.

This command is the first of four steps in creating a multitone waveform (page 360).

Example

The preceding example sets the phase for the tones to a random number.

*RST

FIX

Key Entry
Initialize Phase Fixed Random

:SETup:TABLE:PHASE:INITialize:SEED

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHASE:INITialize:SEED
FIXed|RANDom

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:PHASE:INITialize:SEED?

This command initializes the random number generator seed that is used to generate phase values for the multitone waveform tones.

FIXed
This choice sets the random number generator seed to a fixed value. This selection will generate random and repeatable phase values: the same phase values will be generated with subsequent execution of the command.

RANDom
This choice sets the random number generator seed to a random value. This changes the phase value after each initialization of the phase.

Example

Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

The preceding example sets the random number generator seed to a random value.

*RST FIX

Key Entry Random Seed Fixed Random

*:ROW

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:ROW
<row_number>,<power>,
<phase>,<state>

[:SOURce]:RADio:MTONe:ARB:SETup:TABLE:ROW? <row_number>

This command modifies the indicated tone (row) of the multitone waveform.

<row_number> The number of rows for this variable is determined by the :SETup:TABLE command.

<power> The power level of the tone defined in the row number. Power levels for all tones must not exceed the power level of the signal generator. The power variable is expressed in decibels (dB)

<phase> The phase of the tone relative to the carrier. The phase variable is expressed in degrees.

<state> The state of the tone in this row can be enabled or disabled.

Frequency offset, power, phase, and state value are returned when a query is initiated. The output format is as follows:
<frequency_offset>,<power>,<phase>,<state>

The :SETup:TABLE command provides information on how to change the number of rows.

This command is the final step in creating a multitone waveform (page 360).

Example

:RAD:MTON:ARB:SET:TABLE:ROW 2,-10,40,0

The preceding example modifies row number two in the currently selected multitone table. The power is set to –10 dB, the phase is set to 40 degrees, and the state is off.

*RST frequency offset: -3.50000000E+004 <power>: +0.00000000E+000

<phase>: +0.00000000E+000 <state>: 1
Digital Modulation Commands
Multitone Subsystem–Option 601 or 602 ([:SOURce]:RADio:MTONe:ARB)

[:STATe]

Supported
E8267D with Option 601 or 602

[:SOURce]:RADio:MTONe:ARB [:STATe] ON|OFF|1|0

This command enables or disables the operating state of the multitone waveform generator.

Example

:RAD:MTON:ARB ON

The preceding example turns on the multitone generator.

*RST 0

Key Entry

Multitone Off On
Real Time GPS Subsystem–Option 409
([SOURce]:RADio[1]|2|3|4:GPS)

:DATA

Supported: E8267D with Option 409

[:SOURce]:RADio:GPS:DATA PN9|PN15|FIX4|"<user file>"
[:SOURce]:RADio:GPS:DATA?

This command sets the data type for the selected data mode.

*RST PN9

Key Entry

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>PN9</th>
<th>PN15</th>
<th>FIX4</th>
<th>User file</th>
</tr>
</thead>
</table>

Remarks

This command is effective only when the data mode is RAW or ENCODEd. To set the data mode, refer to :DMODE.

:DMODE

Supported: E8267D with Option 409

[:SOURce]:RADio:GPS:DMODE RAW|ENCODEd|TLM
[:SOURce]:RADio:GPS:DMODE?

This command sets the data mode.

RAW

This choice modulates data onto the C/A (coarse acquisition) code at 50-bits per second. No parity bits are computed by the signal generator. Every 6 seconds, 300-bits from the source data are transmitted.

ENCODEd

This choice modulates data onto the C/A (coarse acquisition) code at 50-bits per second. The signal generator computes 6 parity bits for every 24 data bits from the selected data source. Every six seconds, 240-bits of the source data are transmitted along with 60 computed parity bits.

TLM

This choice transmits a standard default navigation data transmission which includes a telemetry word (TLM), a handover word (HOW), and default navigation data. The signal generator transmits an incrementing time-of-week (TOW) as part of the HOW.
Digital Modulation Commands
Real Time GPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:GPS)

*RST | RAW

Key Entry | Data Mode Raw Enc TLM

Remarks
Since the TLM mode transmits default navigation data, there is no data selection for this mode.
For selecting the data type when RAW or ENCEoded is the selection, refer to “:DATA” on page 376.

:DSHift

Supported | E8267D with Option 409

[:SOURce]:RADio:GPS:DSHift <val>
[:SOURce]:RADio:GPS:DSHift?

This command sets the frequency and chip rate offsets to simulate a doppler shift.
The variable <val> is expressed in units of hertz (Hz to kHz).

*RST | +0.00000000E+000
Range | −125kHZ to 125kHZ

Key Entry | Doppler Shift

Remarks
The lower bound of the doppler shift is limited by the frequency set on the signal generator. For example, if the signal generator frequency is set to 100 kHZ, then the lower limit of the doppler shift would be 0.00 Hz. The doppler shift can not extend lower than the limitations of the signal generator

:FILTer

Supported | E8267D with Option 409

[:SOURce]:RADio:GPS:FILTer
RNYQuist|NYQuist|GAUssian|RECTangle|
IS95|IS95_EQ|IS95_MOD|IS95_MOD_EQ|AC4Fm|UGGaussian|"<user FIR>"
[:SOURce]:RADio:GPS:FILTer?

This command sets the pre-modulation filter type.

IS95 | This choice selects a filter that meets the criteria of the IS-95 standard.
IS95_EQ | This choice selects a filter which is a combination of the IS-95 filter (above) and the equalizer filter described in the IS-95 standard. This filter is only used for IS-95 baseband filtering.
Digital Modulation Commands
Real Time GPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:GPS)

IS95_MOD
This choice selects a filter that meets the criteria of the IS-95 error function (for improved adjacent channel performance) with lower passband rejection than the filter specified in the IS-95 standard.

IS95_MOD_EQ
This choice selects a filter which is a combination of the equalizer filter described in the IS-95 standard and a filter that meets the criteria of the IS-95 error function (for improved adjacent channel performance) with lower passband rejection.

AC4Fm
This choice selects a predefined Association of Public Safety Communications Officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.

UGGaussian
This choice selects a backwards compatible GSM Gaussian filter (Gaussian filter with a fixed BbT value of 0.300) for the ESG E44xxB Option UN3 or UN4.

"<user FIR>"
This variable is any filter file that you have stored into memory.

*RST
RECT

Key Entry Root Nyquist Gaussian Rectangle IS-95 IS-95 w/EQ

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Root</th>
<th>Nyquist</th>
<th>Gaussian</th>
<th>Rectangle</th>
<th>IS-95</th>
<th>IS-95 w/EQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-95</td>
<td>IS-95 Mod</td>
<td>APCO25</td>
<td>C4FM</td>
<td>UN3/4 GSM</td>
<td>Gaussian</td>
<td></td>
</tr>
</tbody>
</table>

User FIR

:FILTER:ALPHA

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:FILTER:ALPHA <val>

This command sets the Nyquist or root Nyquist filter’s alpha value.

The filter alpha value can be set to the minimum value (0), maximum value (1), or in between by using fractional numeric values (0.001–0.999).

*RST +2.20000000E-001

Range 0.000–1.000

Key Entry Filter Alpha

Remarks To change the current filter type, refer to “:FILTER” on page 377.
Digital Modulation Commands
Real Time GPS Subsystem–Option 409 [:SOURce]:RADio[1]|2|3|4:GPS

:FILTer:BBT

Supported
E8267D with Option 409

[:SOURce]:RADio:GPS:FILTer:BBT <val>
[:SOURce]:RADio:GPS:FILTer:BBT?

This command changes the bandwidth-multiplied-by-bit-time (BbT) filter parameters.

The filter BbT value can be set to the minimum value (0), the maximum value (1), or in between by using fractional numeric values (0.001–0.999)

*RST +5.00000000E-001

Range 0.000–1.000

Key Entry Filter BbT

Remarks
This command is effective only after choosing a Gaussian filter. It does not have an effect on other types of filters.

To change the current filter type, refer to “:FILTer” on page 377.

:FILTer:CHANnel

Supported
E8267D with Option 409

[:SOURce]:RADio:GPS:FILTer:CHANnel EVM|ACP
[:SOURce]:RADio:GPS:FILTer:CHANnel?

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

EVM This choice provides the most ideal passband.
ACP This choice improves stopband rejection.

*RST EVM

Key Entry Optimize FIR For EVM ACP

Remarks
To change the current filter type, refer to “:FILTer” on page 377.
Digital Modulation Commands
Real Time GPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:GPS)

:IQPHase

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:IQPhase NORMal|INVerted
[:SOURce]:RADio:GPS:IQPhase?

This command sets the I/Q phase for the GPS signal.

- **NORMal**: This choice selects normal phase polarity.
- **INVerted**: This choice inverts the internal Q signal.

*RST NORM

Key Entry IQ Phase Normal Invert

:PCODe

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:PCODe <val>
[:SOURce]:RADio:GPS:PCODe?

This command sets the P code power relative to the C/A code power.

- **RST** −3.00000000E+000
- **Range** −40 to 0
- **Key Entry** P Code Pwr
- **Remarks** This command is normally used when the CAP (C/A+P) ranging mode choice is selected. Refer to :RCODe for selecting the ranging mode.

:RCODe

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:RCODe CA|P|CAP
[:SOURce]:RADio:GPS:RCODe?

This command selects the ranging code for the GPS transmission.

- **CA**: This choice selects a 1023-bit pseudorandom C/A (coarse acquisition) code that is BPSK modulated onto the L1 (1575.42 MHz) carrier. The C/A code factory set chip rate is 1.023 Mcps using a 10.23 Mcps reference clock.
Digital Modulation Commands
Real Time GPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:GPS)

P This choice selects the precise (P) code which is a very long pseudorandom sequence that is BPSK modulated onto the L2 (1227.6 MHz) carrier. The P code factory set chip rate is 10.23 Mcps using a 10.23 Mcps reference clock.

CAP This choice permits both the C/A (coarse acquisition) and P (precise) codes to modulate the L1 (1575.42 MHz) carrier simultaneously by providing the P code on the Q component and the C/A code in quadrature on the I component.

*RST CA

Key Entry Ranging Code C/A P C/A+P

:REFClk

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:REFClk INT|Ext
[:SOURce]:RADio:GPS:REFClk?

This command sets the GPS reference clock to either internal or external.

INT This selection sets the signal generator to use the internal chip clock.

EXT This selection sets the signal generator to use an external chip clock which is supplied to the DATA CLOCK INPUT connector.

*RST INT

Key Entry GPS Ref Clk

:REFFreq

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:REFFreq <val><unit>
[:SOURce]:RADio:GPS:REFFreq?

This command sets the GPS reference clock frequency. If an external source is being used, its frequency must match the value set with this command.

*RST +1.02300000E+007

Range 1kCPS–12.5MCPS

Key Entry GPS Ref (f0)

Remarks Changing the GPS reference frequency will change the P and C/A code chip rates.
Digital Modulation Commands
Real Time GPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:GPS)

:SATid

Supported E8267D with Option 409

[:SOURce]:RADio:GPS:SATid <val>
[:SOURce]:RADio:GPS:SATid?

This command selects the pseudorandom number (PRN) code used for transmission.

Satellite identification numbers 1–32 are used for GPS satellites. Satellite identification numbers 33–37 are reserved for ground transmitter use in the real-world system.

RST +1
"Range" 1–37
"Key Entry" Satellite ID

[:STATe]

Supported E8267D with Option 409

[:SOURce]:RADio:GPS[:STATe] ON|OFF|1|0
[:SOURce]:RADio:GPS[:STATe]?

This command enables or disables the real-time GPS signal.

RST 0
"Key Entry" Real-time GPS Off On
Real Time MSGPS Subsystem–Option 409
([SOURce]:RADio[1]|2|3|4:MSGPs)

:IQPHase

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:IQPHase NORMal|INVerted
[:SOURce]:RADio:MSGPs:IQPHase?

This command sets the I/Q phase for the MSGPS signal.

NORMal This choice selects normal phase polarity.
INVerted This choice inverts the internal Q signal.

*RST NORM

Key Entry IQ Phase Normal Invert

:PLAYmode

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:PLAYmode RUN|PAUSE
[:SOURce]:RADio:MSGPs:PLAYmode?

This command pauses or plays the real-time MSGPS scenario.

*RST RUN

Key Entry Pause/Resume

:REFClk

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:REFClk INTernal|EXTernal
[:SOURce]:RADio:MSGPs:REFClk?

This command sets the MSGPS reference clock to either internal or external.

INTernal This selection sets the signal generator to use the internal chip clock.
EXTernal This selection sets the signal generator to use an external chip clock which is supplied to the DATA CLOCK INPUT connector.

*RST INT

Key Entry GPS Ref Clk
Digital Modulation Commands
Real Time MSGPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3:MSGPs)

::REFFreq

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:REFFreq <val><unit>
[:SOURce]:RADio:MSGPs:REFFreq?

This command sets the MSGPS reference clock frequency. If an external reference clock is being used, its frequency must match the value set with this command.

*RST +1.02300000E+007
Range 1.023Mcps ±10%
Key Entry GPS Ref (f0)
Remarks Changing the GPS reference frequency will change the C/A code chip rate.

::RESTart

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:RESTart

This command sets the real-time MSGPS scenario to the beginning.

Key Entry Restart

::SCENario

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:SCENario “<file_name>”
[:SOURce]:RADio:MSGPs:SCENario?

This command selects the real-time MSGPS scenario to play.

Key Entry Select Scenario

::SCENario:SATellites

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:SCENario:SATellites <val>
[:SOURce]:RADio:MSGPs:SCENario:SATellites?

This command sets the number of satellites in view to include in the generated MSGPS signal.

Key Entry Number of Satellites
Digital Modulation Commands
Real Time MSGPS Subsystem–Option 409 ([:SOURce]:RADio[1]|2|3|4:MSGPs)

[:SCENario:STATus]

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs:SCENario:STATus?

This query returns the following information for the currently selected scenario as a comma-separated list:

Scenario date, scenario time, scenario position, scenario length, satellite IDs

Key Entry Scenario

[:STATe]

Supported E8267D with Option 409

[:SOURce]:RADio:MSGPs[:STATe] ON|OFF|1|0

 [:SOURce]:RADio:MSGPs[:STATe]?

This command enables or disables the real-time MSGPS signal.

*RST 0

Key Entry Real-time MSGPS Off On
Digital Modulation Commands
Two Tone Subsystem ([:SOURce]:RADio:TTONe:ARB)

Two Tone Subsystem ([:SOURce]:RADio:TTONe:ARB)

:ALIGNment

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:ALIGNment LEFT|CENTER|RIGHT

[:SOURce]:RADio:TTONe:ARB:ALIGNment?

This command will align the two tones either left, center or right of the carrier frequency.

Example

:RAD:TTON:ARB:ALIG CENT

The preceding example aligns each of the two tones equidistant from the carrier frequency.

Key Entry Alignment Left Cent Right

:APPLY

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:APPLY

This command will cause the two–tone waveform to be regenerated using the current settings.

This command has no effect unless the two–tone waveform generator is enabled and a change has been made to the frequency spacing setting.

Key Entry Apply Settings

:FSSpacing

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:FSPacing <freq_spacing>

[:SOURce]:RADio:TTONe:ARB:FSPacing?

This command sets the frequency spacing between the tones.

The variable <freq_spacing> is expressed in hertz (Hz–MHz).

Example

:RAD:TTON:ARB:FSP 10MHZ

The preceding example sets a 10 megahertz frequency spacing for the two tones.

*RST +1.00000000E+004

Range 1E2 to 8E7
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

Key Entry Freq Separation

:HEADeR:CLEaR

 Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:HEADeR:CLEaR

This command clears the header information from the header file used for the
two-tone waveform format. Header information consists of signal generator
settings and marker routings associated with the waveform file. Refer to the
User's Guide for information on header files.

For this command to function, the two tone generator must be enabled ON by
the [:STATe] command.

 Key Entry Clear Header

:HEADeR:SAVE

 Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:HEADeR:SAVE

This command saves the header information to the header file used for the
two-tone waveform format. Header information consists of signal generator
settings and marker routings associated with the waveform file. Refer to the
User's Guide for information on header files.

For this command to function, the two tone generator must be enabled ON by
the [:STATe] command.

 Key Entry Save Setup To Header

:IQ:EXTernal:FILTer

 Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer 40e6|THRough
[:SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer?

This command selects the filter or through path for I/Q signals routed to the
rear panel I and Q outputs. Selecting a filter with this command automatically
sets the :IQ:EXTernal:FILTer:AUTO command to OFF.

40e6 This choice applies a 40 MHz baseband filter.

THRough This choice bypasses filtering.

Example

The preceding example sets the through path for I/Q signal.

 *RST THR

 Key Entry 40.000MHz Through
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

:IQ:EXTernal:FILTer:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer:AUTO ON|OFF|1|0

[:SOURce]:RADio:TTONe:ARB:IQ:EXTernal:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals routed to the rear panel I/Q outputs.

ON(1) This choice automatically selects the 40 MHz filter optimized for the current signal generator settings.

OFF(0) This choice disables the auto feature and allows you to select the 40 MHz filter or a through path using the :IQ:EXTernal:FILTer command.

Example

The preceding example enables the automatic filter selection.

*RST 1

Key Entry I/Q Output Filter Manual Auto

:IQ:MODulation:ATTen

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen <val><unit>
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

The preceding example sets the modulator attenuator to 20 dB.

*RST +2.00000000E+000

Range 0 to 40 dB

Key Entry Modulator Atten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen:AUTO?
Digital Modulation Commands
Two Tone Subsystem ([[:SOURce]:RADio:TTONe:ARB])

This command enables or disables the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO ON command.

ON (1) This choice enables the attenuation auto mode which allows the signal generator to select the attenuation level that optimizes performance based on the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at the selected value set by the :IQ:MODulation:ATTen command.

Example
The preceding example enables the attenuator automatic mode.

*RST 1
Key Entry Modulator Atten Manual Auto

:IQ:MODulation:FILTer

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:FILTer 40e6|THRough
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:FILTer?

This command enables you to select a filter or through path for I/Q signals modulated onto the RF carrier. Selecting a filter using this command will automatically set the :IQ:MODulation:FILTer:AUTO command to off.

40E6 This choice applies a 40 MHz baseband filter to the I/Q signals.

THRough This choice bypasses filtering.

Example
The preceding example selects the 40 MHz filter.

*RST THR
Key Entry 40.000MHz Through
Digital Modulation Commands

Two Tone Subsystem ([:SOURCE]:RADio:TTOne:ARB)

:IQ:MODulation:FILTer:AUTO

Supported

E8267D with Option 601 or 602

[:SOURCE]:RADio:TTOne:ARB:IQ:MODulation:FILTer:AUTO

ON|OFF|1|0

[:SOURCE]:RADio:TTOne:ARB:IQ:MODulation:FILTer:AUTO?

This command enables or disables the automatic filter selection for I/Q signals modulated onto the RF carrier.

- **ON (1)** This choice will automatically select the 40 MHz filter optimized for the current signal generator setting.
- **OFF (0)** This choice disables the automatic filter selection. The digital modulation filter or through path is selected by the :IQ:MODulation:FILTer command.

Example

The preceding example enables the automatic filter selection for I/Q signals.

Key Entry

I/Q Mod Filter Manual Auto

MDEstination:ALCHold

Supported

E8267D with Option 601 or 602

CAUTION

Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURCE]:RADio:TTOne:ARB:MDEstination:ALCHold

NONE|M1|M2|M3|M4

[:SOURCE]:RADio:TTOne:ARB:MDEstination:ALCHold?

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when
Two Tone Subsystem ([:SOURce]:RADio:TTONe:ARB)

there are no marker points. To set a marker’s polarity, see :
MPOLarity:MARKer1|2|3|4 command. For more information on markers, see “:MARKer:[SET]” on page 306.

NOTE

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, refer to the User’s Guide. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEAR” on page 303.
- For clearing all marker points, see “:MARKer:CLEAR:ALL” on page 304.
- For shifting marker points, see “:MARKer:ROTate” on page 305.
- For setting marker points, see “:MARKer:[SET]” on page 306.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1–M4</td>
<td>These are the marker choices. The ALC hold feature uses only one marker at a time.</td>
</tr>
<tr>
<td>NONE</td>
<td>This terminates the marker ALC hold function.</td>
</tr>
</tbody>
</table>

Example

The preceding example routes marker two to the ALC hold function.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Digital Modulation Commands
Two Tone Subsystem ([SOURce]:RADio:TT0Ne:ARB)

:MDEStination:PULSe

Supported E8267D with Option 601 or 602

CAUTION
The pulse function incorporates ALC hold. Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output, potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:TT0Ne:ARB:MDEStination:PULSe
NONE|M1|M2|M3|M4
[:SOURce]:RADio:TT0Ne:ARB:MDEStination:PULSe?

This command disables the marker RF blanking/pulse function, or it enables the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both functions for the same marker.

NOTE
Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see :MPOLarity:MARKer1|2|3|4 command. For more information on markers, see “:MARKer:[SET]” on page 306.

NOTE
Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This creates the condition where there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual ARB subsystem:

– For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 303.

– For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.

– For shifting marker points, see “:MARKer:ROTate” on page 305.

– For setting marker points, see “:MARKer:[SET]” on page 306.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin.
Digital Modulation Commands
Two Tone Subsystem ([SOURce]:RADio:TTONe:ARB)

The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform file that has unspecified settings in the file header uses the previous waveform's routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, refer to the User’s Guide.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1–M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

The preceding example routes marker three to the Pulse/RF Blanking function.

*RST

:none

Supported

E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:MPOLarity:MARKer1|2|3|4 NEGative|POSitive

[:SOURce]:RADio:TTONe:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker.

For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

– For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 303.
– For clearing all marker points, see “:MARKer:CLEar:ALL” on page 304.
– For shifting marker points, see “:MARKer:ROTate” on page 305.
– For information on markers and setting marker points, see “:MARKer:[SET]” on page 306.

Example

:RAD:TTON:ARB:MPOL:MARK1 POS
Digital Modulation Commands
Two Tone Subsystem [:SOURce]:RADio:TTONe:ARB

The preceding example sets the polarity for marker one to positive.

*RST POS

Key Entry

Marker 1 Polarity Marker 2 Polarity
Neg Pos Neg Pos

Marker 3 Polarity Marker 4 Polarity
Neg Pos Neg Pos

:REfer:EXTernal:FREQuency

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB:REfer:EXTernal:FREQuency <val>
[:SOURce]:RADio:TTONe:ARB:REfer:EXTernal:FREQuency?

This command allows you to enter the frequency of the external reference. The variable <val> is expressed in hertz (Hz–MHz). The value specified by this command is effective only when you are using an external ARB reference applied to the BASEBAND GEN REF IN rear panel connector.

To specify external as the ARB reference source type, refer to “:REfer[:SOURce]” on page 314.

Example

The preceding example sets the external reference to 1 megahertz.

*RST +1.00000000E+007

Range 2.5E5 to 1E8

Key Entry Reference Freq
Digital Modulation Commands
Two Tone Subsystem ([:SOURce]:RADio:TTOne:ARB)

:REReference[:SOURce]

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:TTOne:ARB:REReference[:SOURce]]
INTernal | EXTernal
[[:SOURce]:RADio:TTOne:ARB:REReference[:SOURce]]?

This command selects either an internal or external reference for the waveform clock. If EXTernal is selected, the external frequency value **must** be entered and the clock signal must be applied to the BASEBAND GEN REF IN rear panel connector. The external reference frequency is entered using the :REReference:EXTernal:FREQuency command.

Example

:RAD:TTON:ARB:REF EXT

The preceding example sets an external reference as the waveform clock.

*RST INT

Key Entry ARB Reference Ext Int

:SCLock:RATE

Supported E8267D with Option 601 or 602

[[:SOURce]:RADio:TTOne:ARB:SCLock:RATE <sample_clock_rate>]
[[:SOURce]:RADio:TTOne:ARB:SCLock:RATE?]

This command sets the ARB sample clock rate.

The multitone generator should be on before executing this command. If this command is executed before the multitone generator is activated by the [:STATe] command, the entered value will be overridden by a calculated factory default value.

Example

:RAD:TTON:ARB:SCL:RATE 1MHZ

The preceding example sets the ARB sample clock to 1 MHz.

*RST +1.00000000E+008

Range 1 to 1E8

Key Entry ARB Sample Clock
Digital Modulation Commands
Two Tone Subsystem ([:SOURce]:RADio:TTONe:ARB)

[:STATe]

Supported E8267D with Option 601 or 602

[:SOURce]:RADio:TTONe:ARB[:STATe] ON|OFF|1|0

[:SOURce]:RADio:TTONe:ARB[:STATe]?

This command enables or disables the on/off operational state of the two-tone waveform generator function.

Example

:RAD:TTON:ARB ON

The preceding example turns on the two-tone generator.

*RST 0

Key Entry Two Tone Off On
Digital Modulation Commands
Wideband Digital Modulation Subsystem ([SOURce]:WDM)

Wideband Digital Modulation Subsystem ([SOURce]:WDM)

:iQADjustment:IOFFset

Supported E8267D with Option 015

[:SOURce]:WDM:iQADjustment:IOFFset <val><unit>
[:SOURce]:WDM:iQADjustment:IOFFset?

This command sets the I channel offset value, as a percent of the full scale. 100% offset is equivalent to 500 mV DC at the input connector.

Example

:WDM:iQAD:IOFF 100MV

The preceding example sets an offset of 100 mV DC for the I signal.

*RST +0.00000000E+000

Range −5E1 to +5E1

Key Entry I Offset

:iQADjustment:QOFFset

Supported E8267D with Option 015

[:SOURce]:WDM:iQADjustment:QOFFset <val><unit>
[:SOURce]:WDM:iQADjustment:QOFFset?

This command sets the Q channel offset value, as a percent of the full scale. 100% offset is equivalent to 500 mV DC at the input connector.

Example

:WDM:iQAD:QOFF 100MV

The preceding example sets an offset of 100 mV DC for the Q signal.

*RST +0.00000000E+000

Range −5E1 to +5E1

Key Entry Q Offset
Digital Modulation Commands
Wideband Digital Modulation Subsystem ([:SOURce]:WDM)

:IQADjustment:QSKew

Supported E8267D with Option 601 or 602 and Option 015

[[:SOURce]:WDM:IQADjustment:QSKew <val>]
[:SOURce]:WDM:IQADjustment:QSKew?

This command adjusts the phase angle between the I and Q vectors. The variable <val> is expressed in degrees with a minimum resolution of 0.1.

Positive skew increases the angle from 90 degrees while negative skew decreases the angle from 90 degrees. When the quadrature skew is zero, the phase angle is 90 degrees. If the signal generator is operating at frequencies greater than 3.3 GHz, quadrature skew settings greater than ±5 degrees will not be within specifications.

This command is effective only if the state of the I/Q adjustment function is set to ON by the :IQADjustment[:STATe] command.

Example

+WDM:IQAD:QSK 3.1

The preceding example sets the skew value for the Q signal to 3.1 degrees.

*RST +0.0000000E+000
Range −1E1 to +1E1
Key Entry Quadrature Skew

:IQADjustment[:STATe]

Supported E8267D with Option 015

[:SOURce]:WDM:IQADjustment [:STATe] ON|OFF|1|0
[:SOURce]:WDM:IQADjustment [:STATe]?

This command enables or disables the wideband I/Q adjustments.

Example

+WDM:IQAD ON

The preceding example enables I/Q adjustments.

*RST 0
Key Entry I/Q Adjustments Off On
Digital Modulation Commands
Wideband Digital Modulation Subsystem ([SOURce]:WDM)

:SSTATe

Supported E8267D with Option 015

[:SOURce]:WDM:SSTATe ON|OFF|1|0
][:SOURce]:WDM:SSTATe?

This command enables or disables the wideband I/Q modulator. The I/Q modulator is automatically enabled whenever a digital modulation form is turned on and when active, the I/Q annunciator appears on the signal generator's display.

Example

[:WDM]:STAT ON

The preceding example enables the wideband I/Q modulator.

*RST 0

Key Entry I/Q Off On
Digital Modulation Commands
Wideband Digital Modulation Subsystem ([SOURce]:WDM)
6 Digital Signal Interface Module Commands

— “Digital Subsystem ([:SOURce])” on page 402
Digital Subsystem ([:SOURce])

:DIGital:CLOCk:CPS

Supported
E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:CLOCk:CPS 1|2|4

[:SOURce]:DIGital:CLOCk:CPS?

This command selects the number of clock cycles per sample. The command is used with parallel or parallel interleaved port configurations. If this command is executed with a serial port configuration or an IF signal type, the parameter value is changed, but it is not used by the interface module until the port configuration is changed to parallel or parallel interleaved, and the signal type is changed to IQ.

The query returns the currently set value, regardless of the port configuration, you must query all four states (clocks per sample, port configuration, data direction, and signal type) to know the interface module’s current setup

Example

:DIG:CLOC:CPS 2

The preceding example sets two clock cycles for each sample.

- **RST**
 1
- **Range**
 1, 2, or 4
- **Key Entry**
 Clocks Per Sample

:DIGital:CLOCk:PHASe

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:PHASe <val>

[:SOURce]:DIGital:CLOCk:PHASe?

This command sets the phase for the clock relative to the leading edge transition of the data. At 0 degrees the clock and leading edge of the data signal are aligned. Any phase value between 0 and 360 degrees can be used in the command, however, the signal generator rounds up or down to get 90, 180, 270 and 0 degree settings. For example 140 degrees will cause the signal generator to use the 180 degree setting.

If this command is executed when the clock rate is less than 10 MHz or greater than 200 MHz, the resolution of this setting changes to 180 degrees, and the maximum phase becomes 180 degrees.

Example

:DIG:CLOC:PHAS 90DEG
Digital Signal Interface Module Commands
Digital Subsystem (:SOURce)

The preceding example sets the clock phase to 90 degrees. The clock signal leading edge transition will be delayed by 1/4 of a clock period relative to the leading edge data transition.

*RST +0.00000000E+000
Range 0 to 360 degrees
Key Entry Clock Phase

:DIGital:CLOCk:POLarity

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:POLarity POSitive|NEGative
[:SOURce]:DIGital:CLOCk:POLarity?

This command sets the alignment for the clock signal to positive or negative. Positive selects the leading edge transition of the clock signal to align with the leading edge data transition and negative selects the falling edge transition of the clock signal to align with the leading edge of the data.

Example

:DIG:CLOC:POL NEG

The preceding example sets the clock falling edge transition to align with the leading edge data transition.

*RST POS
Key Entry Clock Polarity

:DIGital:CLOCk:RATE

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:CLOCk:RATE <val>
[:SOURce]:DIGital:CLOCk:RATE?

This command sets the clock rate. If an external clock is used, the rate set with this command must match the external clock rate. Only clock phase settings of 0 or 180 degrees are valid for a clock rate setting below 10 MHz or above 200 MHz. The variable <val> is expressed in hertz.

Example

:DIG:CLOC:RATE 200MHZ

The preceding example sets the clock rate to 200 megahertz.

*RST +1.0000000E+008
Range 1 kHz to 400 MHz
Key Entry Clock Rate
:DIG:CLK:REF:FRQ

Supported
E8267D Option 601 or 602 with Option 004

`:SOURce`:DIG:CLK:REF:FRQ <freq>

This command allows you to specify the frequency of the external reference supplied to the Freq Ref connector. This command is valid only when the clock source is set to internal.

If this command is executed when the clock source is not set to internal, the parameter value is changed, but it is not used by the signal generator until the clock source is changed to internal.

Because a query returns the currently set value, regardless of the clock source, you must query both states (reference frequency and clock source) to know the signal generator's current setup.

Example

`:DIG:CLK:REF:FRQ 50MHZ`

The preceding example specifies a 50 megahertz external reference frequency.

RST +1.0000000E+007

Range 1 to 100 MHz

Key Entry Reference Frequency

:DIG:CLK:SOUR

Supported
E8267D Option 601 or 602 with Option 003 or 004

`:SOURce`:DIG:CLK:SOUR INTernal|EXTernal|DEVice

This command selects one of three possible clock sources.

Example

`:DIG:CLK:SOUR DEV`

The preceding example uses the “Device Interface Connector” input clock.

RST INT

Key Entry Clock Source

:DIG:CLK:SKEW

Supported
E8267D Option 601 or 602 with Option 003 or 004

`:SOURce`:DIG:CLK:SKEW <val>

`:SOURce`:DIG:CLK:SKEW?
Digital Signal Interface Module Commands
Digital Subsystem ([SOURce])

This command sets the clock signal skew value. The skew is a fine-tune adjustment for the course tune clock phase function and helps to align the clock with valid data states. This is useful at high clock rates and available only for clock frequencies above 10 megahertz. The variable <val> is expressed in nanoseconds.

Example

:DIG:CLOC:SKEW 2NS

The preceding example sets the clock skew to 2 nanoseconds.

*RST +0.00000000E+000 ns
Range -5 ns to 5 ns
Key Entry Clock Skew

:DIGital:DATA:ALIGnment

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:ALIGNment MSB|LSB
[:SOURce]:DIGital:DATA:ALIGNment?

This command selects the bit alignment for words less than 16 bits in length. The MSB (most significant bit) selection maintains the MSB of the word on the same data line while the LSB (least significant bit) will move depending on the word size. The opposite effect occurs when the alignment is set to LSB.

Example

:DIG:DATA:ALIG MSB

The preceding example sets the MSB word format.

*RST LSB
Key Entry Word Alignment

:DIGital:DATA:BORDer

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:BORDER MSB|LSB
[:SOURce]:DIGital:DATA:BORD?

This command selects the bit order for data transmitted through the N5102A module. Data can be in least significant (LSB) bit first or most significant (MSB) bit first.

Example

:DIG:DATA:BORD MSB

The preceding example specifies data in MSB first format.

*RST LSB
Digital Signal Interface Module Commands
Digital Subsystem ([:SOURce])

Key Entry Bit Order

:DIGital:DATA:DIRection

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:DIRection OUTPut|INPut
[:SOURce]:DIGital:DATA:DIRection?

This command selects an input or output direction for data flow through the N5102A module.

Example

:DIG:DATA:DIR INP

The preceding example selects input as the direction of data flow.

*RST Output (unless only Option 004 is installed)

Key Entry Direction

:DIGital:DATA:IGain

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:IGain <val>
[:SOURce]:DIGital:DATA:IGain?

This command adjust the gain of the I data in the N5102A module. The adjustment does not affect the Q data. The variable <val> is a expressed as a percentage delta from 100%.

The offset is an adjustment to the analog level that is represented by the digital sample.

The analog voltage is limited to a 16-bit data sample. If the amplitude of the signal, after gain is applied, cannot be represented by 16 bits, the signal will be clipped.

Example

:DIG:DATA:IG 10

The preceding example turns off wideband amplitude modulation.

*RST +0.00000000E+000

Range −12.5 to 12.5

Key Entry I Gain
:DIgital:DATA:INEGate

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIgital:DATA:INEGate OFF|ON|0|1
[:SOURce]:DIgital:DATA:INEGate?

This command enables or disables the negation of the I data sample. Negation changes the sample by expressing it in two's complement form, multiplying by negative one, and converting back to the selected numeric format. This can be done for I samples, Q samples, or both.

The sample or word represents a quantized analog voltage level. For a 16-bit sample, the range is from 0 to 65535 in offset binary or -32768 to + 32767 in 2's complement mode.

Example

:DIg:DATA:INEG ON

The preceding example enables negation of the I data.

*RST 0

Key Entry Negate I

:DIgital:DATA:IOFFset

Supported
E8267D Option 601 or 602 with Option 003

[:SOURce]:DIgital:DATA:IOFFset <val>
[:SOURce]:DIgital:DATA:IOFFset?

This command adjusts the DC offset for I data. The command is available for the N5102A module output mode. The variable <val> is a expressed as a +/- 100% of the full scale value. Refer to the E8257D/67D, E8663D PSG Signal Generators Key Reference for more information.

Example

:DIg:DATA:IOFF 40

The preceding example sets the I offset to 40% of full scale.

*RST +0.00000000E+000

Range -100 to +100

Key Entry I Offset

:DIgital:DATA:IQSWap

Supported
E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIgital:DATA:IQSWap OFF|ON|0|1
[:SOURce]:DIgital:DATA:IQSWap?
Digital Signal Interface Module Commands
Digital Subsystem ([SOURce])

This command enables or disables swapping of the I and Q data. When enabled, the I data is sent to the N5102A's Q bus and the Q data is sent to the I bus.

Example
:DIG:DATA:IQSW ON

The preceding example enables swapping of I and Q data.

*RST
0

Key Entry: Swap IQ

:DIGital:DATA:NFORmat

Supported: E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:NFORmat OBINary|TCOMplement

[:SOURce]:DIGital:DATA:NFORmat?

This command selects the binary format used to represent the transmitted data values. The selections are offset binary or 2's complement.

Example
:DIG:DATA:NFOR OBIN

The preceding example selects the offset binary format to represent data values.

*RST
TCOM

Key Entry: Numeric Format

:DIGital:DATA:POLarity:FRAMe

Supported: E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:POLarity:FRAMe POSitive|NEGative

[:SOURce]:DIGital:DATA:POLarity:FRAMe?

This command selects the polarity of the frame marker for serial transmission. The frame marker indicates the beginning of each sample or byte of data. The command is valid for serial transmission only.

POS This choice selects a positive polarity. The frame marker is high for the first data sample.

NEG This choice selects a negative polarity. The frame marker is low for the first data sample.

Example
:DIG:DATA:POL:FRAM NEG

The preceding example selects a negative polarity for the frame marker.
Digital Signal Interface Module Commands
Digital Subsystem ([SOURce])

*RST POS
Key Entry Frame Polarity

:DIgital:DATA:POLarity:IQ

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIgital:DATA:POLarity:IQ POSitive|NEGative
[:SOURce]:DIgital:DATA:POLarity:IQ?

This command selects the logic level for I and Q data. Positive selects a high logic level at the output as a digital one and negative selects a low logic level at the output as a digital one.

<table>
<thead>
<tr>
<th>Choice</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS</td>
<td>This choice selects a logic high level as a digital one.</td>
</tr>
<tr>
<td>NEG</td>
<td>This choice selects a logic low level as a digital one.</td>
</tr>
</tbody>
</table>

Example

:DIg:DATA:POL:IQ NEG

The preceding example turns off wideband amplitude modulation.

*RST POS
Key Entry IQ Polarity

:DIgital:DATA:QGain

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIgital:DATA:QGain <val>
[:SOURce]:DIgital:DATA:QGain?

This command adjusts the gain for Q data in the N5102A module. The adjustment does not affect the I data. The variable `<val>` is expressed as a percentage delta from 100%. The offset is an adjustment to the analog level that is represented by the digital sample. The analog voltage is limited to a 16-bit data sample.

Example

:DIg:DATA:QG 10

The preceding example increases the gain for Q data by 10% above the nominal value.

*RST +0.00000000E+00
Range -12.5 to 12.5
Key Entry Q Gain
Digital Signal Interface Module Commands
Digital Subsystem ([SOURce])

:DIGital:DATA:QNEGate

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:QNEGate OFF|ON|0|1

[:SOURce]:DIGital:DATA:QNEGate?

This command enables or disables the negation of the Q data sample. Negation changes the sample by expressing it in two's complement form, multiplying by negative one, and converting back to the selected numeric format.

The sample or word represents a quantized analog voltage level. For a 16-bit sample, the range is from 0 to 65535 in offset binary or -32768 to +32767 in 2's complement mode.

Example

:DIG:DATA:QNEG ON

The preceding example enables negation of the Q data.

*RST 0

Key Entry Negate Q

:DIGital:DATA:QOFFset

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:QOFFset <val>

[:SOURce]:DIGital:DATA:QOFFset?

This command adjusts the DC offset for Q data. The command is available for the N5102A module output mode. The variable <val> is a expressed as a +/- 100% of the full scale value.

Example

:DIG:DATA:QOFF 40

The preceding example sets the Q offset to 40% of full scale.

*RST +0.00000000E+000

Range –100 to 100 percent

Key Entry Q Offset

:DIGital:DATA:ROTation

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:ROTation <val>

[:SOURce]:DIGital:DATA:ROTation?
Digital Signal Interface Module Commands
Digital Subsystem ([SOURce])

This command rotates the IQ data in the IQ plane. This command is valid for the N5102A output mode. The variable `<val>` is expressed in degrees.

Example

```
:DIG:DATA:ROT 45
```

The preceding example rotates the IQ constellation 45 degrees.

Key Entry

Rotation

:DIGital:DATA:SCALing

Supported

E8267D Option 601 or 602 with Option 003

```
[:SOURce]:DIGital:DATA:SCALing <val>
[:SOURce]:DIGital:DATA:SCALing?
```

This command enables scaling of the I and Q data to the level indicated by the `<val>` variable. This command is valid for the N5102A output mode. The variable `<val>` is expressed as a percentage.

Example

```
:DIG:DATA:SCAL 50
```

The preceding example scales the I and Q data to amplitude to 50% of the nominal value.

Key Entry

Scaling

:DIGital:DATA:SIZE

Supported

E8267D Option 601 or 602 with Option 003 or 004

```
[:SOURce]:DIGital:DATA:SIZE <val>
[:SOURce]:DIGital:DATA:SIZE?
```

This command selects the number of bits in each sample. A sample can have a maximum word length of 16 bits.

Example

```
:DIG:DATA:SIZE 8
```

The preceding example sets the sample word size to eight bits.

Key Entry

Word Size
:DIGital:DATA:STYPe

Supported E8267D Option 601 or 602 with Option 003

[:SOURce]:DIGital:DATA:STYPe IQ|IF

This command selects the output format for the IQ data. The IQ selection outputs digital I and Q data. Whereas the IF (intermediate frequency) selection modulates the I and Q data onto the IF frequency. The IF is calculated as 1/4 the clock sample rate. This command is valid only for the N5102A output mode.

IQ This choice outputs I and Q digital data.

IF This choice outputs a modulated signal.

Example

:DIG:DATA:STYP IF

The preceding example sets the output data to IF.

*RST IQ

Key Entry Signal Type

:DIGital:DATA:TYPE

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:DATA:TYPE SAMPles|PFSamples

[:SOURce]:DIGital:DATA:TYPE?

This command selects filtered baseband data or unfiltered baseband data as the transmitted data type.

If this command is executed while an ARB modulation format is active, the parameter choice is changed, but it is not used by the interface module until a real-time modulation format is turned on.

Because a query returns the current choice, regardless of whether or not an ARB format is active, you must query both states (data type and the modulation format) to know the signal generator’s current setup.

SAMPles This choice selects DAC samples at the data transmitted.

PFSamples This choice selects pre-filtered samples which are unfiltered I and Q data.

Example

:DIG:DATA:TYPE PFS

The preceding example sets the data type to pre-filtered I and Q data.

*RST SAMP

Key Entry Data Type
Digital Signal Interface Module Commands
Digital Subsystem ([:SOURce])

:DIGital:DIAGnostic:LOOPback

Supported
E8267D Option 601 or 602 with Option 003 or 004

`:SOURCE[:DIGital:DIAGnostic:LOOPback`
DIGBus|CABLE|N5102A|DEVice
`:SOURCE[:DIGital:DIAGnostic:LOOPback?`

This command selects a loop back test that validates the integrity of digital data. Refer to the E8257D/67D, E8663D PSG Signal Generators Key Reference for more information.

- **DIGBus** This choice selects a loop back test using the Digital Bus Loop Back Fixture test board.
- **CABLE** This choice selects a loop back test on the PSG Digital Bus connector at the signal generator side.
- **N5102A** This choice selects a loop back test for the N5102A module.
- **DEVice** This choice selects a loop back test using the LOOP BACK TEST SINGLE ENDED IO DUAL 40 PIN board.

Example

```
:DIG:DIAG:LOOP?
```

The preceding example runs the diagnostic test for device and returns a pass or fail state.

- **:*RST** Device Intfc
- **Key Entry** Loop Back Test Type

:DIGital:LOGic[:TYPE]

Supported
E8267D Option 601 or 602 with Option 003 or 004

`:SOURCE[:DIGital:LOGic[:TYPE]]`
LVDS|LVTT1|CMOS15|CMOS18|CMOS25|CMOS33
`:SOURCE[:DIGital:LOGic[:TYPE]?`

This command selects the logic data type used by the device being tested.

- **LVDS** This choice selects low voltage differential signaling as the logic data type.
- **LVTT1** This choice selects a low voltage TTL signal as the logic data type.
- **CMOS15** This choice selects a 1.5 volt CMOS signal as the logic data type.
- **CMOS18** This choice selects a 1.8 volt CMOS signal as the logic data type.
Digital Signal Interface Module Commands
Digital Subsystem ([SOURce])

CMOS25 This choice selects a 2.5 volt CMOS signal as the logic data type.
CMOS33 This choice selects a 3.3 volt CMOS signal as the logic data type.

Example

:DIG:LOG CMOS15
The preceding example selects 1.5 volt CMOS as the logic data type.

*RST CMOS33
Key Entry Logic Type

:DIG:PCONfig

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIG:PCONfig PARallel|SERial|PINTIQ|PINTI
[:SOURce]:DIG:PCONfig?
This command selects the data transmission type used for communication between the N5102A module and the device under test. Refer to the E8257D/67D, E8663D PSG Signal Generators Key Reference for more information.

PARallel This choice selects parallel data transmission.
SERial This choice selects serial data transmission.
PINTIQ This choice selects parallel interleaving data transmission. The I data is transmitted on the rising clock edge and the Q data on the falling edge.
PINTI This choice selects parallel interleaving data transmission. The Q data is transmitted on the rising clock edge and the I data on the falling edge.

Example

:DIG:PCON PINTI
The preceding example selects parallel interleaving using the QI format

*RST PAR
Key Entry Port Config
Digital Signal Interface Module Commands
Digital Subsystem [:SOURce]}

:DIGital:PRESet:PTHRough

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital:PRESet:PTHRough

This command sets up the preset condition for the N5102A module and allows transmission of data through the module with no modifications. The command is valid only when a modulation format is active.

Example

:DIG:PRES:PTHR

The preceding example sets the N5102A module to a preset condition and allows data to pass through unmodified.

Key Entry Pass Through Preset

:DIGital[:STATe]

Supported E8267D Option 601 or 602 with Option 003 or 004

[:SOURce]:DIGital[:STATe] 0|1|OFF|ON

[:SOURce]:DIGital[:STATe]?

This command enables or disables the operating state of the N5102A module.

Example

:DIG ON

The preceding example turns on the N5102A module.

*RST OFF

Key Entry N5102A Off On
Digital Signal Interface Module Commands
Digital Subsystem ([:SOURce])
This chapter provides a compatibility listing of SCPI commands. Many commands unique to other Keysight signal generator models are also supported by the PSG Signal Generator:

- “:SYSTem:IDN” on page 418
- “E8257D/67D Compatible Commands” on page 419
- “E8241A/44A/51A/54A and the E8247C/57C/67C PSG Compatible SCPI Commands” on page 421
- “8340B/41B and 8757D Compatible Commands” on page 422
- “836xxB/L Compatible SCPI Commands” on page 435
- “8373xB and 8371xB Compatible SCPI Commands” on page 450
- “8375xB Compatible SCPI Commands” on page 459
- “8662A/63A Compatible Commands” on page 470
:SYSTem:IDN

Supported All

:SYSTem:IDN "<string>"

This command modifies the identification string that the *IDN? query returns. Sending an empty string returns the query output to its factory shipped setting. The maximum string length is 72 characters.

Modification of the *IDN? query output enables the PSG to identify itself as another signal generator when it is used as a backward compatible replacement.

The display diagnostic information, shown by pressing the Diagnostic Info softkey, is not affected by this command.

Example

:SYSTem:IDN "Keysight Technologies, Exxx, US4000000, c.00.00.1234"

The preceding example changes and sets the identification string for the signal generator.
E8257D/67D Compatible Commands

The following commands are compatible with the E8257D, E8267D, and E8663D signal generators. These commands were documented in earlier versions of firmware but are now deprecated and may be removed from future firmware versions.

`:DATA:PRAM?`

Supported E8267D with Option 601 or 602

`:MEMory:DATA:PRAM?`

This query determines whether there is a user–defined pattern in the pattern RAM (PRAM). This command is not compatible with the “`:DATA:PRAM:FILE:BLOCk`” or “`:DATA:PRAM:FILE:LIST`” commands.

*:RST 0

`:DATA:PRAM:BLOCk`

Supported E8267D with Option 601 or 602

`:MEMory:DATA:PRAM:BLOCk <data_block>`

This command downloads the block–formatted data directly into pattern RAM. This command is still valid for backward compatibility; however, it has been replaced by the “`:DATA:PRAM:FILE:BLOCk`” command.

`:DATA:PRAM:LIST`

Supported E8267D Option 601 or 602

`:MEMory:DATA:PRAM:LIST <uint8>[,<uint8>,<...>]

This command downloads the list–formatted data directly into pattern RAM. This command is still valid for backward compatibility; however, it has been replaced by the “`:DATA:PRAM:FILE:LIST`” command.

<uint8> This variable is any of the valid 8–bit, unsigned integer values between 0 and 255.

[,<uint8>,<...>] This variable identifies the value of the second and subsequent 8–bit unsigned integer variables.

Range 0 to 255
SCPI Command Compatibility
E8257D/67D Compatible Commands

:DELete:WFM1

Supported E8267D with Option 601 or 602

:MMEMory:DELete:WFM1

This command clears the memory file system of all volatile arbitrary waveform (WFM1) files. It performs the same function as `DELete:WFM` command. Refer to “:DELete:WFM” on page 71.

Key Entry Delete All WFM1 Files
E8241A/44A/51A/54A and the E8247C/57C/67C PSG Compatible SCPI Commands

All commands are fully supported. To use the commands, select SCPI as the remote language. See “:LANGUAGE” on page 105 for selecting the language type.
8340B/41B and 8757D Compatible Commands

The tables in this section provide the following:

Table 7-1 on page 436: a comprehensive list of 8340B/41B and 8757D programming codes, listed in alphabetical order. The equivalent SCPI command sequence for each supported code is provided; codes that are not supported by the PSG family are indicated as such in the command column.

Table 7-2 on page 450: a list of the implemented 8340B/41B and 8757D programming codes that set the active function. This table also indicates which codes are compatible with the RB command (knob), and lists the operation active (OA) query, the operation prior (OP) query, and the increment (up), and the decrement (down) SCPI commands.

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Internal leveling mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:SOURce INTernal</td>
</tr>
<tr>
<td>A2</td>
<td>External leveling mode with diode detector</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:SOURce DIODe [:SOURce]:POWer:ALC:SOURce:EXTernal:COU Pling <val> dB</td>
</tr>
<tr>
<td>A3</td>
<td>External leveling mode with power meter</td>
<td>Y</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>AK0</td>
<td>Amplitude markers off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer:AMPLitude OFF</td>
</tr>
<tr>
<td>AK1</td>
<td>Amplitude markers on</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer:AMPLitude ON</td>
</tr>
<tr>
<td>AL0</td>
<td>Alternate sweep mode off</td>
<td>Y</td>
<td>Y</td>
<td>:SYSTem:ALTerminate:STATe OFF</td>
</tr>
</tbody>
</table>

Compatibility is provided for GPIB only; RS–232 and LAN are not supported.

When using the programming codes in this section, you can:

- set the PSG system language to 8340 or 8757 for the current session:
 Utility > GPIB/RS–232 LAN > Remote Language > 8340B (or 8757D)
 or send the command:
 :SYST:LANG "8340" (or "8757")
- set the PSG system language to 8340 or 8757 so that it does not reset with either preset, instrument power cycle or *RST command:
 Utility > Power On/Preset > Remote Language > 8340B (or 8757D)
 or send the command:
 :SYST:PRESET:LANG "8340" (or "8757")
- set the *IDN? response to any 8340–like response you prefer. Refer to the :SYSTem:*IDN command on page 418.
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL1</td>
<td>Alternate sweep mode on</td>
<td>Y</td>
<td>Y</td>
<td>:SYSTem:ALTernate:STATE ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>:SYSTem:ALTernate n</td>
</tr>
<tr>
<td>AM0</td>
<td>Amplitude modulation off</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:AM1:STATe OFF 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:AM2:STATe OFF 0</td>
</tr>
<tr>
<td>AM1</td>
<td>Amplitude modulation on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:AM1:STATe OFF 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:AM2:SOURce EXT 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:AM2:EXTernal[1]:COUPling DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:AM2:DEPTH 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:AM2:EXTernal[1]:IMPedance 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:AM2:STATe ON</td>
</tr>
<tr>
<td>AS0</td>
<td>Alternate state selection: select current front panel</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>AS1</td>
<td>Alternate state selection: select recalled state</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>AT</td>
<td>Set attenuator</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWER:ATTenuation <val><unit></td>
</tr>
<tr>
<td>AU</td>
<td>Auto-coupled mode to obtain shortest possible sweep time</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:SWEep:TIME:AUTO ON 1</td>
</tr>
<tr>
<td>BC</td>
<td>Advance to next frequency bandcrossing</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>C1</td>
<td>1 MHz crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C2</td>
<td>10 MHz crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C3</td>
<td>50 MHz crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>C4</td>
<td>External crystal marker frequency</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CA0</td>
<td>Amplitude crystal markers off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CA1</td>
<td>Amplitude crystal markers on</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CF</td>
<td>Center frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:MODE SWEep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:CENTer <val><unit></td>
</tr>
<tr>
<td>CLO</td>
<td>Intensity crystal markers off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CL1</td>
<td>Intensity crystal markers on</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>CS</td>
<td>Clear both status bytes</td>
<td>Y</td>
<td>Y</td>
<td>*CLS</td>
</tr>
<tr>
<td>CW</td>
<td>Set CW frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:MODE CW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:[CW] <val><unit></td>
</tr>
<tr>
<td>DB</td>
<td>dB(m) terminator</td>
<td>Y</td>
<td>Y</td>
<td>DB</td>
</tr>
<tr>
<td>DF</td>
<td>Delta frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:MODE SWEep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:SPAN <val> <unit></td>
</tr>
<tr>
<td>DM</td>
<td>dB(m) terminator</td>
<td>Y</td>
<td>Y</td>
<td>DB</td>
</tr>
<tr>
<td>DN</td>
<td>Step down (decrements active function by step value)</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 234</td>
</tr>
<tr>
<td>DP0</td>
<td>Display blanking off</td>
<td>N</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] ON 1</td>
</tr>
<tr>
<td>Cmd</td>
<td>Description</td>
<td>8340</td>
<td>8757</td>
<td>Equivalent SCPI Command Sequence</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>DP1</td>
<td>Display blanking on</td>
<td>N</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] OFF</td>
</tr>
<tr>
<td>DU0</td>
<td>Display update off</td>
<td>Y</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] OFF</td>
</tr>
<tr>
<td>DU1</td>
<td>Display update on</td>
<td>Y</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] ON</td>
</tr>
<tr>
<td>EF</td>
<td>Entry display off</td>
<td>Y</td>
<td>Y</td>
<td>DISPLAY[:WINDow][:STATe] ON</td>
</tr>
<tr>
<td>EK</td>
<td>Enable knob</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>EM0</td>
<td>Extended marker mode off</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>EM1</td>
<td>Extended marker mode on</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>F1</td>
<td>20 MHz/V FM sensitivity</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>F2</td>
<td>6 MHz/V FM sensitivity</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>FA</td>
<td>Start frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:SWEep:MODE AUTO [:SOURCE]:FREQuency:MODE SWEep [:SOURCE]:FREQuency:START <val><unit></td>
</tr>
<tr>
<td>FB</td>
<td>Stop frequency (step sweep)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:SWEep:MODE AUTO [:SOURCE]:FREQuency:MODE SWEep [:SOURCE]:FREQuency:STOP <val><unit></td>
</tr>
<tr>
<td>FL0</td>
<td>CW filter off</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>FL1</td>
<td>CW filter on</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>FM0</td>
<td>Frequency modulation off</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:FM1:STATe OFF</td>
</tr>
<tr>
<td>FM1</td>
<td>Frequency modulation on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:FM1:STATe OFF</td>
</tr>
<tr>
<td>FM1</td>
<td>Frequency modulation sensitivity</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:FM2[:DEViation] <val><unit></td>
</tr>
<tr>
<td>FP</td>
<td>Fast phaselock</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>GZ</td>
<td>GHz terminator</td>
<td>Y</td>
<td>Y</td>
<td>GHZ</td>
</tr>
<tr>
<td>HZ</td>
<td>Hz terminator</td>
<td>Y</td>
<td>Y</td>
<td>HZ</td>
</tr>
<tr>
<td>IF</td>
<td>Increment frequency</td>
<td>Y</td>
<td>N</td>
<td>TRIGger[:SEQUence][:IMMediate] or [:SOURCE]:FREQuency[:CW] UP</td>
</tr>
<tr>
<td>IL</td>
<td>Input learn string</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>Cmd</td>
<td>Description</td>
<td>8340</td>
<td>8757</td>
<td>Equivalent SCPI Command Sequence</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>------</td>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>IP</td>
<td>Instrument preset</td>
<td>Y</td>
<td>N</td>
<td>SYSTem:PRESet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency[:CW]:STEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:INCrement] 1 GHZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:MUltiplier</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><saved multiplier></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:MODE SWEep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:START 2 GHZ or MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:STOP MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer[:LEVel][[:IMMediate]]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:AMPLitude] 0 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTput[:STATe] ON</td>
</tr>
<tr>
<td>IP</td>
<td>Instrument preset</td>
<td>N</td>
<td>Y</td>
<td>SYSTem:PRESet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYSTem:LANGuage "8757"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:SWEep:MODE AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:MODE SWEep</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:START 2 GHZ or MIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:FREQuency:STOP MAX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer[:LEVel][[:IMMediate]]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:AMPLitude] 0 dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTput[:STATe] ON</td>
</tr>
<tr>
<td>IX</td>
<td>Input micro learn string</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>KR</td>
<td>Key release</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>KZ</td>
<td>kHz terminator</td>
<td>Y</td>
<td>Y</td>
<td>KHZ</td>
</tr>
<tr>
<td>M0</td>
<td>Frequency marker off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer[n]:[STATe] OFF</td>
</tr>
<tr>
<td>M0</td>
<td>Frequency marker off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer0:[:STATe] ON</td>
</tr>
<tr>
<td>MA</td>
<td>Turn on and set frequency marker 0</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer0:FREQuency <val><unit></td>
</tr>
<tr>
<td>M1</td>
<td>Turn on and set frequency marker 1</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer1:[:STATe] ON</td>
</tr>
<tr>
<td>M2</td>
<td>Turn on and set frequency marker 2</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer2:[:STATe] ON</td>
</tr>
<tr>
<td>M3</td>
<td>Turn on and set frequency marker 3</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer3:[:STATe] ON</td>
</tr>
<tr>
<td>M4</td>
<td>Turn on and set frequency marker 4</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer4:[:STATe] ON</td>
</tr>
<tr>
<td>M5</td>
<td>Turn on and set frequency marker 5</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer5:[:STATe] ON</td>
</tr>
<tr>
<td>M6</td>
<td>Turn on and set frequency marker 6</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer6:[:STATe] ON</td>
</tr>
<tr>
<td>M7</td>
<td>Turn on and set frequency marker 7</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer7:[:STATe] ON</td>
</tr>
<tr>
<td>M8</td>
<td>Turn on and set frequency marker 8</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer8:[:STATe] ON</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>M9</td>
<td>Turn on and set frequency marker 9</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer9:STATe ON</td>
</tr>
<tr>
<td>MC</td>
<td>Active marker to center frequency</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>MD</td>
<td>Marker delta</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>MP0</td>
<td>Marker 1-2 sweep off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>MP1</td>
<td>Marker 1-2 sweep on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>MS</td>
<td>Milliseconds terminator</td>
<td>Y</td>
<td>Y</td>
<td>not supported</td>
</tr>
<tr>
<td>MZ</td>
<td>MHz terminator</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>NA</td>
<td>Network analyzer mode</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>NT</td>
<td>Network analyzer trigger</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OA</td>
<td>Output active parameter</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 234</td>
</tr>
<tr>
<td>OB</td>
<td>Output next bandcross frequency</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OC</td>
<td>Output coupled parameters (start frequency, center frequency, sweep time)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:START?</td>
</tr>
<tr>
<td>OD</td>
<td>Output diagnostic values</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OE</td>
<td>Output when executed</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OF</td>
<td>Output fault</td>
<td>Y</td>
<td>N</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OI</td>
<td>Output identification</td>
<td>Y</td>
<td>Y</td>
<td>*IDN?</td>
</tr>
<tr>
<td>OK</td>
<td>Output last lock frequency</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OL</td>
<td>Output learn string</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OM</td>
<td>Output mode string</td>
<td>N</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OP</td>
<td>Output interrogated parameter</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 234</td>
</tr>
<tr>
<td>OPA2</td>
<td>Output external detector coupling factor</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:ALC:SOURce:EXTernal:COU Pling?</td>
</tr>
<tr>
<td>OPAT</td>
<td>Output attenuator</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td>OPCF</td>
<td>Output center frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:CENTer?</td>
</tr>
<tr>
<td>OPCW</td>
<td>Output CW frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:CW?</td>
</tr>
<tr>
<td>OPDF</td>
<td>Output delta frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:SPAN?</td>
</tr>
<tr>
<td>OPGA</td>
<td>Output start frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:START?</td>
</tr>
<tr>
<td>OPFB</td>
<td>Output stop frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:STOP?</td>
</tr>
<tr>
<td>OFFM1</td>
<td>Output FM sensitivity</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:FM2[:DEViation]?</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPMA</td>
<td>Output marker 0 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer0:FREQuency?</td>
</tr>
<tr>
<td>OPM1</td>
<td>Output marker 1 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer1:FREQuency?</td>
</tr>
<tr>
<td>OPM2</td>
<td>Output marker 2 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer2:FREQuency?</td>
</tr>
<tr>
<td>OPM3</td>
<td>Output marker 3 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer3:FREQuency?</td>
</tr>
<tr>
<td>OPM4</td>
<td>Output marker 4 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer4:FREQuency?</td>
</tr>
<tr>
<td>OPM5</td>
<td>Output marker 5 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer5:FREQuency?</td>
</tr>
<tr>
<td>OPM6</td>
<td>Output marker 6 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer6:FREQuency?</td>
</tr>
<tr>
<td>OPM7</td>
<td>Output marker 7 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer7:FREQuency?</td>
</tr>
<tr>
<td>OPM8</td>
<td>Output marker 8 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer8:FREQuency?</td>
</tr>
<tr>
<td>OPM9</td>
<td>Output marker 9 frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:MARKer9:FREQuency?</td>
</tr>
<tr>
<td>OPPL</td>
<td>Output power level</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:POWer[:LEVEL][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td>OPPS</td>
<td>Output power sweep span</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:POWer:SPAN?</td>
</tr>
<tr>
<td>OPSB</td>
<td>Output # of sweep buckets</td>
<td>N</td>
<td>N</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OPSF</td>
<td>Output frequency step size</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency[:CW]:STEP[:INCrement]?</td>
</tr>
<tr>
<td>OPSH1</td>
<td>Output power level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer[:LEVEL][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td>OPSH2</td>
<td>Output ALC level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>OPSH3</td>
<td>Output ALC level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>OPSH4</td>
<td>Output ALC level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>OPSHCF</td>
<td>Output frequency step size</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:FREQuency[:CW]:STEP[:INCrement]?</td>
</tr>
<tr>
<td>OPSHW</td>
<td>Output swept CW frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency:START? or [:SOURCE]:FREQuency:STOP?</td>
</tr>
<tr>
<td>OPSHF1</td>
<td>Output frequency multiplier</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency:MULTiplier?</td>
</tr>
<tr>
<td>OPSHF2</td>
<td>Output frequency offset</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency:OFFSet?</td>
</tr>
<tr>
<td>OPSHPL</td>
<td>Output power step size</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer[:LEVEL][:IMMediate][:AMPLitude]:STEP[:INCrement]?</td>
</tr>
<tr>
<td>OPSHPS</td>
<td>Output ALC level</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>OPSHRF</td>
<td>Output power level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer[:LEVEL][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td>OPSHSL</td>
<td>Output attenuator</td>
<td>Y</td>
<td>N</td>
<td>[:SOURCE]:POWer:ATTenuation?</td>
</tr>
<tr>
<td>OPSHSN</td>
<td>Output sweep step points</td>
<td>N</td>
<td>Y</td>
<td>[:SOURCE]:SWEep:POINts?</td>
</tr>
<tr>
<td>OPSL</td>
<td>Output power slope</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:POWer:SLOPe?</td>
</tr>
<tr>
<td>OPSM</td>
<td>Output manual frequency</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURCE]:FREQuency:MANual?</td>
</tr>
<tr>
<td>Cmd</td>
<td>Description</td>
<td>8340</td>
<td>8757</td>
<td>Equivalent SCPI Command Sequence</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>OPSN</td>
<td>Output sweep step points</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:POINts?</td>
</tr>
<tr>
<td>OPSP</td>
<td>Output power step size</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer[:LEVe1][:IMMediate][:AMPLitude]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>OPST</td>
<td>Output sweep time</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:TIME?</td>
</tr>
<tr>
<td>OPTL</td>
<td>Output sweep time limit</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:TIME:LLIMIt?</td>
</tr>
<tr>
<td>OR</td>
<td>Output internally measured power level</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>OS</td>
<td>Output status bytes</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>OX</td>
<td>Output micro learn string</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
</tbody>
</table>
| PL | Set power level | Y | Y | [:SOURce]:POWer:ATTenuation:AUTO ON|1
| | | | | [:SOURce]:POWer[:LEVe1][:IMMediate][:AMPLitude] <val><unit> |
| PM0 | Pulse modulation off | Y | Y | [:SOURce]:PULM:STATe OFF|0 |
| PM1 | Pulse modulation on | Y | N | [:SOURce]:PULM:SOURce EXTERNAL
| | | | | [:SOURce]:PULM:STATe ON|1 |
| PM1 | 27.8 KHz square wave pulse modulation on | N | Y | [:SOURce]:PULM:SOURce SCALar
| | | | | [:SOURce]:PULM:STATe ON|1 |
| PS0 | Power sweep off | Y | Y | [:SOURce]:POWer:MODE FIXed |
| PS1 | Power sweep on | Y | Y | [:SOURce]:POWer:MODE SWEep [:SOURce]:POWer:SPAN <val> dB |
| R2 | Extended status byte #2 mask | N | Y | supported, but has no effect on PSG |
| RB | Control knob remotely | Y | Y | supported, but no equivalent SCPI command sequence |
| RC | Recall state | Y | Y | *RCL <reg_num>[,<seq_num>] |
| RE | Extended status byte mask | Y | Y | supported, but no equivalent SCPI command sequence |
| RF0 | RF output off | Y | Y | OUTPUT[:STATe] OFF|0 |
| RF1 | RF output on | Y | Y | OUTPUT[:STATe] ON|1 |
| RM | Status byte mask | Y | Y | *SRE <mask> |
| RPO | RF peaking off | Y | N | supported, but no effect on PSG |
| RPO | RF blanking off | N | Y | supported, but no effect on PSG |
| RP0 | RF peaking on | Y | N | supported, but no effect on PSG |
| RP0 | RF blanking on | N | Y | supported, but no effect on PSG |
| RS | Reset sweep | Y | Y | supported, but no equivalent SCPI command sequence |
| S1 | Continuous sweep mode | Y | Y | [:SOURce]:SWEep:MODE AUTO
| | | | | [:SOURce]:SWEep:GENERation ANALog :TRIGger[:SEQuence]:SOURce IMMEDIATE
<p>| | | | | :INITiate:CONTinuous[:ALL] OFF |</p>
<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| S2 | Single sweep mode | Y | Y | [:SOURCE]:SWEep:MODE AUTO
[:SOURCE]:SWEep:GENeration ANALog
[:TRIGger]:SEQUence]:SOURce IMMEDIATE
:INITiate:CONTinuous[:ALL] OFF |
| S3 | Manual frequency sweep mode | Y | Y | [:SOURCE]:SWEep:MODE MANUAL
[:SOURCE]:SWEep:GENeration ANALog
[:TRIGger]:SEQUence]:SOURce IMMEDIATE
:INITiate:CONTinuous[:ALL] OFF |
| SB | Number of sweep buckets | N | Y | supported, but no equivalent SCPI command sequence |
| SC | Seconds terminator | Y | Y | S |
| SF | Frequency step size | Y | Y | [:SOURCE]:FREQuency:[CW]:STEP[:INCrement] <val><unit> |
| SG | Single sweep mode | Y | Y | [:SOURCE]:SWEep:MODE AUTO
[:SOURCE]:SWEep:GENeration ANALog
[:TRIGger]:SEQUence]:SOURce IMMEDIATE
:INITiate:CONTinuous[:ALL] OFF |
| SH | Shift prefix | Y | Y | supported, but no equivalent SCPI command sequence |
| SH01 | Blank display | N | Y | DISPLAY[:WINDOW]:[STATE] OFF|0 |
| SHA1 | Disable ALC and set power level | Y | N | [:SOURCE]:POWer:ALC[:STATe] OFF|0
[:SOURCE]:POWer[:LEVel][:IMMediate] [:AMPLitude] <val><unit> |
| SHA2 | External leveling mode with millimeter head module | Y | N | [:SOURCE]:POWer:ALC[:STATe] MMMHead
[:SOURCE]:POWer[:LEVel] <val>dB |
| SHA3 | Directly control linear modulator circuit (bypassing ALC) | Y | N | [:SOURCE]:POWer:ATTenuation:AUTO OFF|0
[:SOURCE]:POWer[:ALC][:STATe] OFF|0
[:SOURCE]:POWer[:LEVel] <val>dB |
| SHAK | Immediate YTF peak | Y | N | supported, but has no effect on PSG |
| SHAL | Retain multiplication factor on power on/off and preset | Y | Y | supported, but no equivalent SCPI command sequence |
| SHAM | Pulse modulation enhancement | Y | N | supported, but has no effect on PSG |
| SHAZ | External leveling mode with millimeter head module | Y | N | [:SOURCE]:POWer:ALC:SOURce MMMHead
[:SOURCE]:POWer[:LEVel] <val>dB |
| SHCF | Frequency step size | Y | N | [:SOURCE]:FREQuency:[CW]:STEP[:INCrement] <val><unit> |
| SHCF | Coarse CW resolution | N | Y | supported, but has no effect on PSG |
| SHCW | Swept CW | N | Y | [:SOURCE]:SWEep:MODE AUTO
[:SOURCE]:FREQuency[:MODE] SWEep
[:SOURCE]:FREQuency:START <val><unit>
[:SOURCE]:FREQuency:STOP <val><unit> |
<p>| SHDF | Fine CW resolution | N | Y | supported, but has no effect on PSG |</p>
<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEF</td>
<td>Restore cal. const. access function</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHFA</td>
<td>Frequency multiplier</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:MULTiplier <val></td>
</tr>
<tr>
<td>SHFB</td>
<td>Frequency offset</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FREQuency:OFFSET <val><unit></td>
</tr>
<tr>
<td>SHIP</td>
<td>Reset multiplication factor to 1 and preset instrument</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHM0</td>
<td>All frequency markers off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:MARKer:AOFF</td>
</tr>
<tr>
<td>SHM1</td>
<td>Turn on and set marker delta</td>
<td>N</td>
<td>Y</td>
<td>[:SOURce]:MARKer:MODE DELTa</td>
</tr>
<tr>
<td>SHM2</td>
<td>Enable counter interface</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHM3</td>
<td>Disable counter interface</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHM4</td>
<td>Diagnostics: test/display results</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHM0</td>
<td>All frequency markers off</td>
<td>N</td>
<td>Y</td>
<td>[:SOURce]:MARKer:AOFF</td>
</tr>
<tr>
<td>SHMP</td>
<td>Set start frequency to marker 1 and set stop frequency to marker 2</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MARKer:XFER</td>
</tr>
<tr>
<td>SHPL</td>
<td>Power step size</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer[:LEVEL]][:IMMediate][:AMPLitude]:STEP[:INCReement] <val></td>
</tr>
<tr>
<td>SHPM</td>
<td>27.8 KHz square wave pulse modulation on</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:FULM:SOURCe SCALar</td>
</tr>
<tr>
<td>SHPS</td>
<td>Decouple attenuator and ALC (control ALC independently)</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer[:ATTenuation]:AUTO OFF</td>
</tr>
<tr>
<td>SHRC</td>
<td>Unlock save/recall</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHRF</td>
<td>Disable ALC and set power level</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer[:ALEvEl]:OFF</td>
</tr>
<tr>
<td>SHRP</td>
<td>Auto track</td>
<td>Y</td>
<td>N</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>SHS10</td>
<td>Disable display update</td>
<td>Y</td>
<td>N</td>
<td>DISPlay[:WINDow][:STATE] OFF</td>
</tr>
<tr>
<td>SHS11</td>
<td>Re-enable display update</td>
<td>Y</td>
<td>N</td>
<td>DISPlay[:WINDow][:STATE] ON</td>
</tr>
<tr>
<td>SHS3</td>
<td>Display fault diagnostic</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHSL</td>
<td>Set attenuator from front panel</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEp:MODE ATTenuation <val><unit></td>
</tr>
<tr>
<td>SHSS</td>
<td>Reset step sizes to default values</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHST</td>
<td>Zoom function</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHSV</td>
<td>Lock save/recall</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SHT1</td>
<td>Test displays</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHT2</td>
<td>Bandcrossing penlift</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHT3</td>
<td>Display unlock indicators</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHGZ</td>
<td>IO Channel</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHMZ</td>
<td>IO Subchannel</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHKZ</td>
<td>Write to IO</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHTZ</td>
<td>Read from IO</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SHVR</td>
<td>Frequency offset</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SL0</td>
<td>Power slope off</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:SLOPe:STATe OFF</td>
</tr>
<tr>
<td>SL1</td>
<td>Power slope on</td>
<td>Y</td>
<td>N</td>
<td>[:SOURce]:POWer:SLOPe:STATe ON</td>
</tr>
<tr>
<td>SL1</td>
<td>Power slope on</td>
<td>N</td>
<td>Y</td>
<td>[:SOURce]:POWer:SLOPe:STATe ON</td>
</tr>
<tr>
<td>SM</td>
<td>Manual frequency sweep mode</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE MANual [:SOURce]:FREQuency:MANual <val><unit></td>
</tr>
<tr>
<td>SN</td>
<td>Number of points in a stepped sweep</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO [:SOURce]:SWEep:GENeration STEpped [:SOURce]:LIST:TYPE STEP [:SOURce]:LIST:TRIGger:SOURce BUS:TRIGger[:SEQuence]:SOURce IMMEDIATE:INITiate:CONTinuous[:ALL] ON [:SOURce]:SWEep:POINts <val></td>
</tr>
<tr>
<td>SP</td>
<td>Power step size</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:POWer:[LEVel][:IMMediate] [:AMPlitude]:STEP[:INCRement] <val></td>
</tr>
<tr>
<td>ST</td>
<td>Sweep time</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:MODE AUTO [:SOURce]:SWEep:TIME <val> <unit></td>
</tr>
<tr>
<td>SV</td>
<td>Save state</td>
<td>Y</td>
<td>Y</td>
<td>*SAV <reg_num>[,<seq_num>]</td>
</tr>
<tr>
<td>SW0</td>
<td>Swap network analyzer channels</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SW1</td>
<td>Swap network analyzer channels</td>
<td>Y</td>
<td>Y</td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SX</td>
<td>External sweep type</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
<tr>
<td>T1</td>
<td>Free run sweep trigger mode</td>
<td>Y</td>
<td>Y</td>
<td>:TRIGger[:SEQUence]:SOURce IMMEDIATE:INITiate:CONTinuous[:ALL] ON</td>
</tr>
<tr>
<td>T2</td>
<td>Line sweep trigger mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>T3</td>
<td>External sweep trigger mode</td>
<td>Y</td>
<td>Y</td>
<td>:TRIGger[:SEQUence]:SOURce EXternal:INITiate:CONTinuous[:ALL] ON</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description</th>
<th>8340</th>
<th>8757</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>Single sweep trigger mode</td>
<td>N</td>
<td>Y</td>
<td>:INITiate[:IMMediate][:ALL]</td>
</tr>
<tr>
<td>TL</td>
<td>Sweep time limit</td>
<td>Y</td>
<td>Y</td>
<td>[:SOURce]:SWEep:TIME:LLIMit <val> <unit></td>
</tr>
<tr>
<td>TS</td>
<td>Take sweep</td>
<td>Y</td>
<td>Y</td>
<td>:TSWeep</td>
</tr>
<tr>
<td>UP</td>
<td>Step up (increments active function by step value)</td>
<td>Y</td>
<td>Y</td>
<td>supported, see Table 6-2 on page 234</td>
</tr>
<tr>
<td>VR</td>
<td>CW vernier</td>
<td>N</td>
<td>Y</td>
<td>supported, but has no effect on PSG</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Code</th>
<th>Active Function</th>
<th>Comp. with OA/O P</th>
<th>Comp. with UP/D N</th>
<th>Comp. with RB (Knob)</th>
<th>Equivalent SCPI Commands for OA/OP query and UP/DN command</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ALC:SOURce:EXTernal:COUpling?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>AT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>CF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:CENTer?</td>
</tr>
<tr>
<td>CW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency[:CW]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency[:CW] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency[:CW] DOWN</td>
</tr>
<tr>
<td>DF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:SPAN?</td>
</tr>
<tr>
<td>FA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:START?</td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency:STOP?</td>
</tr>
<tr>
<td>FM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FM2[:DEViation]?</td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer0:FREQuency?</td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer1:FREQuency?</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer2:FREQuency?</td>
</tr>
<tr>
<td>MY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer3:FREQuency?</td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer4:FREQuency?</td>
</tr>
<tr>
<td>M5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer5:FREQuency?</td>
</tr>
<tr>
<td>M6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer6:FREQuency?</td>
</tr>
<tr>
<td>M7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer7:FREQuency?</td>
</tr>
<tr>
<td>M8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer8:FREQuency?</td>
</tr>
<tr>
<td>M9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:MARKer9:FREQuency?</td>
</tr>
<tr>
<td>PL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] DOWN</td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:SPAN?</td>
</tr>
<tr>
<td>RC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>none</td>
</tr>
<tr>
<td>SB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>supported, but no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:FREQuency[:CW]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>SHA1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] DOWN</td>
</tr>
<tr>
<td>SHA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURce]:POWer:ALC:LEVel?</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8340B/41B and 8757D Compatible Commands

<table>
<thead>
<tr>
<th>Code</th>
<th>Sets Active Function</th>
<th>Comp. with OA/O P</th>
<th>Comp. with UP/D N</th>
<th>Comp. with RB (Knob)</th>
<th>Equivalent SCPI Commands for OA/O P query and UP/DN command</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHA3</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>SHAZ</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td>SHCF</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:FREQuency[:CW]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>SHC W</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:FREQuency:START?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>or [:SOURCE]:FREQuency:STOP?</td>
</tr>
<tr>
<td>SHFA</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:FREQuency:MULTiplier?</td>
</tr>
<tr>
<td>SHFB</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:FREQuency:OFFSET?</td>
</tr>
<tr>
<td>SHPL</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCRement]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>SHPS</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer:ALC:LEVel?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer:ATTenuation UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer:ATTenuation DOWN</td>
</tr>
<tr>
<td>SHRF</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer[:LEVel][:IMMediate][:AMPLitude]?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer[:LEVel][:IMMediate][:AMPLitude]:UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[:SOURCE]:POWer[:LEVel][:IMMediate][:AMPLitude] DOWN</td>
</tr>
<tr>
<td>SHSL</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer:ATTenuation?</td>
</tr>
<tr>
<td>SHSN</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:SWEep:POINts?</td>
</tr>
<tr>
<td>SL</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer:SLOPe?</td>
</tr>
<tr>
<td>SM</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:FREQuency:MANual?</td>
</tr>
<tr>
<td>SN</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:SWEep:POINts?</td>
</tr>
<tr>
<td>SP</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:POWer[:LEVel][:IMMediate][:AMPLitude]:STEP[:INCRement]?</td>
</tr>
<tr>
<td>ST</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:SWEep:TIME?</td>
</tr>
<tr>
<td>SV</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>none</td>
</tr>
<tr>
<td>TL</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>· · ·</td>
<td>[:SOURCE]:SWEep:TIME:LLIMit?</td>
</tr>
</tbody>
</table>
836xxB/L Compatible SCPI Commands

Table 7-1 is a comprehensive list of 836xxB/L SCPI commands arranged by subsystem. Commands that are supported by the PSG are identified, in addition to commands that are unsupported. Use the legend within the table to determine command compatibility.

The preset state of the PSG differs from that of the 836xxB/L. The RF output and sweep are turned off in the PSG, while in the 836xxB/L, these parameters are turned on. To optimize the benefit of using 836xxB/L compatible commands with a PSG, set up a user–defined preset state, emulating the preset state of the 836xxB/L.

To use the commands, select 8360 as the remote language. See ":LANGuage" on page 105 for selecting the language type.

When using the programming codes in this section, you can:

- set the PSG system language to 8360 Series for the current session:

 Utility > GPIB/RS–232 LAN > Remote Language > 8360 Series

 or send the command:

 :SYST:LANG "8360"

- set the PSG system language to 8360 so that it does not reset with either preset, instrument power cycle or *RST command:

 Utility > Power On/Preset > Preset Language > 8360 Series

 or send the command:

 :SYST:PRESET:LANG "8360"

- set the *IDN? response to any 8360–like response you prefer. Refer to the :SYSTem:*IDN command on page 418.

Some of the PSG supported commands are a subset of the 836xxB/L commands. When this occurs, the syntax supported by the PSG is shown in addition to the syntax that is not supported.
Table 7-1 836xxB/L SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Common Commands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*CLS</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*ESE <data></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*ESE?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*ESR?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*IDN?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*LRN?</td>
<td>N</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*OPC</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*OPC?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*OPT?</td>
<td>N</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*RST</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*SRE <data></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*TRG</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Abort Subsystem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ABORT</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Amplitude Modulation Subsystem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM[:DEPTh] <num>[PCT]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td><num>DB</td>
<td>Y</td>
</tr>
<tr>
<td>:AM[:DEPTh]? [MAXimum</td>
<td>MINimum]</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:AM:INTernal:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:AM:INTernal:FUNction</td>
<td>SINusoid</td>
<td>SQUare</td>
<td>TRIangle</td>
<td>RAMP</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:AM:INTernal:FUNCTION?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:SOURce INTernal</td>
<td>EXTernal</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:AM:SOURce?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:MODE DEEP</td>
<td>NORMal</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:AM:MODE?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:STATe ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:AM:STATe?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:AM:TYPE LINear</td>
<td>EXPonential</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:AM:TYPE?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calibration Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CALibration:AM:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:CALibration:AM:AUTO?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:AM[:EXECute]</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CALibration:PEAKing:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:CALibration:PEAKing:AUTO?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CALibration:PEAKing[:EXECute]</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:DETector:INITiate? IDETector</td>
<td>DIODe</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PMETer:DETector:NEXT? <num>[<lvl suffix>]</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:INITiate? USER</td>
<td>DIODe</td>
<td>PMETER</td>
<td>MMHead</td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:NEXT? <value>[<lvl suffix>]</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CALibration:SPAN:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:CALibration:SPAN:AUTO?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CALibration:SPAN[:EXECute]</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CALibration:TRACk</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Correction Subsystem
SCPI Command Compatibility
836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CORRection:ARRay[i] {<value>[DB]}</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:ARRay[i]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:FLATness {<num>[freq suffix],[<num>[DB]]}</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:FLATness?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:CORRection:SOURce[i] ARRray</td>
<td>FLATness</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:SOURce[i]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:CORRection[:STATe]?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Diagnostics Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostics:ABUS? <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:ABUS:AVERage <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:ABUS:AVERage?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:ABUS:STATus?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PMETer:ADDRess <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PMETer:ADDRess?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PRINter:ADDRess <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:INSTrument:PRINter:ADDRess?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:IORW <value>,<value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:IORW? <value></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:OUTPut:FAULt?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:RESult?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:CONTinue</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:DATA:DESC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:DATA:MAXimum?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:DATA:MINimum?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:DATA:VALue?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:DISable {<num>}1*?</td>
<td>ALL</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 7-1 836xxB/L SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIAGnostics:TEST:ENABLE {<num>}</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST[:EXECute] <value></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:LOG:SOURce ALL</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:LOG:SOURce?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:LOG[:STATe]?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:LOOP ON</td>
<td>N</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:LOOP?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:NAMe? [{<value}></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:POINts?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TEST:RESult? [<value>]</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostics:TINT? <value></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Display Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DISPlay[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:DISPlay[:STATe]?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Frequency Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM:COUPling AC</td>
<td>DC</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FM:COUPling?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FM[:DEViation] <val><unit></td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
<tr>
<td>:FM[:DEViation]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FM:FILTer:HPASs <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>N</td>
</tr>
<tr>
<td>:FM:FILTer:HPASs? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:FM:INTernal:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
</tr>
<tr>
<td>:FM:INTernal:FUNCtion SINusoid</td>
<td>SQUare</td>
<td>TRIangle</td>
<td>RAMP</td>
</tr>
<tr>
<td>:FM:INTernal:FUNCtion?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FM:SOURce INTernal</td>
<td>EXTernal</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

Frequency Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM:SOURce?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:FM:SENsitivity <val><freq suffix/V></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FM:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FM:STATe?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:CENTer <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:CENTer? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency[:CW]:FIXed <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency[:CW]:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency[:CW]:AUTO?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency[:FIXed]:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency[:FIXed]:AUTO?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency:MANual <num>[freq suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:MANual? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency:MODE FIXed</td>
<td>CW</td>
<td>SWEep</td>
</tr>
<tr>
<td>:FREQuency:MODE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier <num></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATe?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency:OFFSet <num></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:FREQuency:OFFSet? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:OFFSet:STATe ON</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATe?</td>
</tr>
<tr>
<td>:FREQuency:SPAN <num>[<freq suffix>]</td>
</tr>
<tr>
<td>:FREQuency:SPAN? [MAXimum</td>
</tr>
<tr>
<td>:FREQuency:START <num>[<freq suffix>]</td>
</tr>
<tr>
<td>:FREQuency:START? [MAXimum</td>
</tr>
<tr>
<td>:FREQuency:STEP:AUTO ON</td>
</tr>
<tr>
<td>:FREQuency:STEP:AUTO?</td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCRement] <num>[<freq suffix>]</td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCRement]?</td>
</tr>
<tr>
<td>:FREQuency:STOP <num>[<freq suffix>]</td>
</tr>
<tr>
<td>:FREQuency:STOP? [MAXimum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initiate Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>:INITiate:CONTinuous ON</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
</tr>
<tr>
<td>:INITiate[:IIMMediate]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>:LIST:DWELL {<num>[<time suffix>]</td>
</tr>
<tr>
<td>:LIST:DWELL? [MAXimum</td>
</tr>
<tr>
<td>:LIST:DWELL:POINts? [MAXimum</td>
</tr>
<tr>
<td>:LIST:FREQuency {<value>[<freq suffix>]</td>
</tr>
<tr>
<td>:LIST:FREQuency?</td>
</tr>
<tr>
<td>:LIST:FREQuency:POINts? [MAXimum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>N= Not supported by PSG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Table 7-1 836xxB/L SCPI Commands (Continued)
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:LIST:MANual <num></td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:LIST:MANual?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:LIST:MODE AUTO</td>
<td>MANual</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:MODE?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:LIST[[:POWer]:CORRection {<value>[DB]</td>
<td>MAXimum</td>
<td>MINimum}</td>
<td>N</td>
</tr>
<tr>
<td>:LIST[[:POWer]:CORRection?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:LIST[[:POWer]:CORRection:POINts? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:LIST:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
<td>EXTERNAL</td>
<td>Y</td>
</tr>
<tr>
<td>:LIST:TRIGger:SOURce?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Marker Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MARKer[n]:AMPLitude[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:MARKer[n]:AMPLitude[:STATe]?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:AMPLitude:VALue <value>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:AMPLitude:VALue? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:AOFF</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:DELTa? <value>,<value></td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:FREQuency <value><freq suffix></td>
<td>MAXimum</td>
<td>MINimum</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:FREQuency? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:MODE FREQuency</td>
<td>DELTa</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:MODE?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:REFERENCE <n></td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n]:REFERENCE?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MARKer[n] [:STATe] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:MARKer[n] [:STATe]?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Measure Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEASURE:AM?</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 7-1 836xxB/L SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEASure:FM?</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MODulation:OUTPut:SOURce AM</td>
<td>FM</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:MODulation:OUTPut:SOURce?</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:MODulation:OUTPut:STATE ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:MODulation:OUTPut:STATE?</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:MODulation:STATE?</td>
<td></td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Power Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:ALC:BANDwidth</td>
<td>:BWIDth <value>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:ALC:BANDwidth</td>
<td>:BWIDth:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:ALC:BANDwidth</td>
<td>:BWIDth:AUTO?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC:CFACtor <value>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>UP</td>
</tr>
<tr>
<td>:POWer:ALC:CFACtor? [MINimum</td>
<td>MAXimum]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce PMETer</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce INTernal</td>
<td>DIODe</td>
<td>MMHead</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC:SOURce?</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ALC[:STATE] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:POWer:ALC[:STATE]?</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE?</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE: AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:POWer:AMPLifier:STATE:AUTO?</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:ATTenuation <num>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>UP</td>
</tr>
<tr>
<td>:POWer:ATTenuation? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:POWer:ATTenuation:AUTO?</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility
836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:CENTer <num>[<lvl suffix>]</td>
<td>Power Center</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:CENTer?</td>
<td>Power Center?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer[:LEVel] <num>[<lvl suffix>]</td>
<td>Power Level</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer[:LEVel]?</td>
<td>Power Level?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:MODE FIXed</td>
<td>Power Mode</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:MODE?</td>
<td>Power Mode?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:OFFSet <num>[DB]</td>
<td>Power Offset</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:OFFSet?</td>
<td>Power Offset?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe ON</td>
<td>Power Offset State On</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:OFFSet:STATe OFF</td>
<td>Power Offset State Off</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:RANGe <value>[<lvl suffix>]</td>
<td>Power Range</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:RANGe?</td>
<td>Power Range?</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:SEARch ON</td>
<td>Power Search On</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SEARch?</td>
<td>Power Search?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SLOPe <value>[DB/<freq suffix>]</td>
<td>Power Slope</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SLOPe?</td>
<td>Power Slope?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SLOPe:STATe ON</td>
<td>Power Slope State On</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SLOPe:STATe OFF</td>
<td>Power Slope State Off</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SPAN <value>[DB]</td>
<td>Power Span</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:SPAN?</td>
<td>Power Span?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:STARt <val><unit></td>
<td>Power Start</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:STARt?</td>
<td>Power Start?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:STATe ON</td>
<td>Power State On</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:STATe OFF</td>
<td>Power State Off</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>:POWer:STATe?</td>
<td>Power State?</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

*Y= Supported by PSG
N= Not supported by PSG*
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:STEP:AUto ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWer:STEP:AUto?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STEP[:INCRement] <num>[DB]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:STEP[:INCRement]? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:POWer:STOP <val><unit></td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:POWer:STOP? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
</tbody>
</table>

Pulse Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULM:EXTernal:DELay <value>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULM:EXTernal:POLarity NORMal</td>
<td>INVerted</td>
<td>Y</td>
</tr>
<tr>
<td>:PULM:EXTernal:POLarity?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULM:INTernal:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULM:INTernal:GATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:PULM:INTernal:GATE?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:PULM:INTernal:PERiod <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULM:INTernal:TRIGger:SOURce INTernal</td>
<td>EXternal</td>
<td>Y</td>
</tr>
<tr>
<td>:PULM:INTernal:WIDTh <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULM:SLEW <value>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULM:SLEW? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:PULM:SLEW:AUto ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:PULM:SLEW:AUto?</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULM:SOURce SCALar</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>:PULM:SOURce INTernal</td>
<td>EXTernal</td>
<td></td>
</tr>
<tr>
<td>:PULM:SOURce?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:PULM:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:PULM:STATe?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Pulse Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULSe:FREQuency <num>[<freq suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULSe:FREQuency? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:PERiod <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULSe:PERiod? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
<tr>
<td>:PULSe:WIDTH <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:PULSe:WIDTH? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
</tr>
</tbody>
</table>

Reference Oscillator Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ROSCillator:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURce INTernal</td>
<td>EXTernal</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Status Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:CONDITION?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation[:EVENT]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:PRESet</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:CONDITION?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE <value></td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:QUESTIONable:ENABle?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTIONable[:EVENt]?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTIONable:NTRansition <value></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTIONable:NTRansition?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTIONable:PTRansition <value></td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTIONable:PTRansition?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Sweep Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:CONTrol:STATE ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:CONTrol:STATE?</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE MASTer</td>
<td>SLAVe</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE?</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:DWELL <num>[<time suffix>]</td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELL? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELL:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:DWELL:AUTO?</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:GENeration STEPped</td>
<td>ANALog</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SWEep:GENeration?</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT <num></td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative] <value></td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative]?</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATE ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATE?</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:XFER</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MODE AUTO</td>
<td>MANual</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:SWEep:MODE?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts <num></td>
<td>MAXimum</td>
<td>MINimum</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts? [MAXimum</td>
<td>MINimum]</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B</th>
<th>83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:STEP <value> [<freq suffix>]</td>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SWEep:STEP?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME <value> [<time suffix>]</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO ON</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMit <value> [<time suffix>]</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMit?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TRIGger:SOURce IMMEDIATE</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TRIGger:SOURce?</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

System Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83620B</th>
<th>83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYStem:ALTerdate <value></td>
<td></td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:SYStem:ALTerdate?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:ALTerdate:STATe ON</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:ALTerdate:STATe?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:COMMunicate:GPIB:ADDRess <number></td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:DUMP:PRINter?</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:ERRor?</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:LANGuage CIIL</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:LANGuage SCPI</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:MMHead:SELECT:AUTO ON</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:MMHead:SELECT:AUTO?</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:MMHead:SELECT FRONT</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:MMHead:SELECT REAR</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:MMHead:SELECT?</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet[:EXECute]</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet:SAVE</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet:TYPE FACTory</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet:TYPE?</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

836xxB/L Compatible SCPI Commands

Table 7-1 **836xxB/L SCPI Commands (Continued)**

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:SECurity:COUNT <value></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:SECurity[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:SYSTem:SECurity[:STATe]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:VERSion?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Trigger Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger[:IMMediate]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:TRIGger:ODELay <value>[time suffix]</td>
<td>MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>:TRIGger:ODELay? [MAXimum</td>
<td>MINimum]</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
<td>EXTERNAL</td>
</tr>
<tr>
<td>:TRIGger:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Tsweep Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TSWeep</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Unit Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83620B & 83640B</th>
<th>83620L & 83640L</th>
</tr>
</thead>
<tbody>
<tr>
<td>:UNIT:AM DB</td>
<td>PCT</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:AM?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:UNIT:POWer {<lvl suffix>}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes:

a. The identification information can be modified for the PSG to reflect the signal generator that is being replaced. Refer to “"SYSTem:IDN” on page 418 for more information.
b. A multiplier of zero is not allowed.
c. The PSG will accept this command, but it has no effect.
d. This command resets the power offset level to 0dBm. It does not turn off or disable the power offset feature.
e. Since the PSG does not have a front panel millimeter head (source module) interface connector, the “FRONT” suffix defaults to the rear connector.
f. Flash memory allows only a limited number of “writes and erasures”, excessive use of this command will reduce the memory lifetime.
g. This command can take several hours to execute because the PSG memory size is much larger than the HP 836xx memory.
8373xB and 8371xB Compatible SCPI Commands

Table is a comprehensive list of 8373xB and 8371xB SCPI commands arranged by subsystem. Commands that are supported by the PSG are identified, in addition to commands that are unsupported. Use the legend within the table to determine command compatibility.

To use the commands, select 8371xB or 8373xB as the remote language. See ":*LANGuage" on page 105 for selecting the language type.

When using the programming codes in this section, you can:

- set the PSG system language to 8371xB or 8373xB for the current session:

 Utility > GPIB/RS–232 LAN > Remote Language > 8371xB or 8373xB

 or send the command:

 :SYST:LANG "83712" or "83732"

- set the PSG system language to 8360 so that it does not reset with either preset, instrument power cycle or *RST command:

 Utility > Power On/Preset > Preset Language > 8360 Series

 or send the command:

 :SYST:PRESET:LANG "83712" or "83732"

- set the *IDN? response to any 8373xB– or 8371xB–like response you prefer. Refer to the :SYSTem:*IDN command on page 418.

Some of the PSG supported commands are subsets of the 8373xB and 8371xB commands. When this occurs, the syntax supported by the PSG is shown in addition to the syntax that is not supported.

Table 7-2 8373xB and 8371xB SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>*DMC</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*EMC</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*EMC?</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*ESE <data></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*ESE?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*ESR?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

NOTE

Some of the PSG supported commands are subsets of the 8373xB and 8371xB commands. When this occurs, the syntax supported by the PSG is shown in addition to the syntax that is not supported.
Table 7-2 8373xB and 8371xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>*GMC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*IDN?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*LMC?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*LRN?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*OPC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*OPT?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*PMC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*PSC</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*PSC?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*RMC</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>*RST</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE <data></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Abort Subsystem

:ABORt Y

Amplitude Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:AM[:DEPTh] <val> <unit></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:AM[:DEPTh] <num> [<PCT>]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:AM[:DEPTh]:STEP[:INCRcrement] incr</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>[:SOURce]:AM:INTernal:FREQuency <num> [<freq suffix>] incr</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>[:SOURce]:AM:INTernal:FREQuency:STEP[:INCRcrement]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:AM:INTernal:FUNCTION SINusoid</td>
<td>SQUare</td>
<td>TRIangle</td>
</tr>
</tbody>
</table>
8373xB and 8371xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:AM:SOURce FEED</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:SOURce INTernal</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:AM:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:STATe ON</td>
<td>OFF</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:STATe?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:TYPE LINear</td>
<td>EXponential</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:AM:TYPE?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:DISPlay[:WINDow]:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DISPlay[:WINDow]:STATe?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:INITiate:CONTinuous ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:FLATness[:DATA] <freq>,<corr.>,...</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:FLATness:POINts <points></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection[:STATe] ON</td>
<td>OFF</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:CORRection[:STATe]?</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET[:SELect] tableno</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET[:SELect]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>[:SOURce]:CORRection:CSET:STATe?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:FM:COUPling AC</td>
<td>DC</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FM:COUPling?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FM[:DEViation] <val><unit></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FM[:DEViation]:STEP[:INCRement] <val> [freq suffix]</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FM:INTernal:FREQuency <num>[freq suffix]</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Table 7-2 8373xB and 8371xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command Description</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:FM:INTernal:FREQuency:STEP[:INCRement] incr</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFault</td>
</tr>
<tr>
<td>[:SOURce]:FM:INTernal:FUNCtion SINusoid</td>
<td>SQUAre</td>
<td>TRIAngle</td>
</tr>
<tr>
<td>[:SOURce]:FM:SENSitivity?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:FM:SOURce FEED</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FM:SOURce INTernal</td>
<td>EXTernal</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:FM:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>[:SOURce]:FM:STATe?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Frequency Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:FREQuency[:CW</td>
<td>:FIXed] <num>[<freq suffix>]</td>
<td>UP</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency[:CW</td>
<td>:FIXed] [MAXimum</td>
<td>MINimum</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency[:CW</td>
<td>:FIXed]:STEP <val><unit></td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency[:CW</td>
<td>:FIXed]:STEP?</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency:MULTiplier <val></td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency:MULTiplier?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency:MULTiplier:STEP[:INCRement] incr</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency:MULTiplier:STEP[:INCRement]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Memory Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:MEMORY:CATalog[:ALL]?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:MEMORY:CATalog:TABLE?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMORY:CATalog:MACRo</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMORY:RAM:INITialize</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMORY:TABLE:FREQuency freq,...freq</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:MEMORY:TABLE:FREQuency? MINimum</td>
<td>MAXimum</td>
<td></td>
</tr>
<tr>
<td>:MEMORY:TABLE:FREQuency? POINTs?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMORY:TABLE:LOSS [:MAGNitude] cf,...cf</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:MEMORY:TABLE:LOSS [:MAGNitude]?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMORY:TABLE:LOSS [:MAGNitude]:POINTs?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:MEMORY:TABLE:SELECT tableno</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

Table 7-2 8373xB and 8371xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEMory:TABLE:SELect?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Modulation Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:MODulation:AOFF</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:MODulation:STATe ON</td>
<td>OFF</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:MODulation:STATe?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:OUTPut:IMPedance?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:OUTPut:PROTection[:STATe] ON</td>
<td>OFF</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:OUTPut:PROTection[:STATe]?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:OUTPut[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:OUTPut[:STATe]?</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Phase Modulation Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:COUPling AC</td>
<td>DC</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM[:DEViation] <val><unit></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM[:DEViation]:STEP[:INCRement]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INTernal:FREQuency <val><unit></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INTernal:FREQuency:STEP[:INCRement]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PM:INTernal:FUNCtion SINusoid</td>
<td>SQUare</td>
<td>TRIAngle</td>
<td>RAMP</td>
</tr>
<tr>
<td>[:SOURce]:PM:RANGE AUTO</td>
<td>LOW</td>
<td>HIGH</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:PM:Sensitivity sens</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>[:SOURce]:PM:SOURce INTernal</td>
<td>FEED</td>
<td>EXTERNAL</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:PM:STATe ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Power Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:POWer:ALC:PMETer pmeter</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>[:SOURce]:POWer:ALC:PMETer?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:POWer:ALC:PMETer:STEP incr</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFAULT</td>
</tr>
<tr>
<td>[:SOURce]:POWer:ALC:PMETer:STEP?</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:POWer:ALC:SOURce PMETer</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:POWer:ALC:SOURce INTernal</td>
<td>DIODe</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8373xB and 8371xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:POWer:ALC:SOURce?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer:ATTenuation:AUTO ONCE</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer:ATTenuation:AUTO ON</td>
<td>OFF</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer:ATTenuation:AUTO?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer[:LEVel] ampl</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>[:SOURce]:POWer[:LEVel]?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer[:LEVel]:STEP incr</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>DEFAult</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer[:LEVel]:STEP?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer:PROTection:STATe ON</td>
<td>OFF</td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:POWer:PROTection:STATe?</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Pulse Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:PULM:EXTernal:POLarity NORMal</td>
<td>INVerted</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULM:EXTernal:POLarity?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULM:SOURce INTERNAL</td>
<td>EXTERNAL</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULM:SOURce?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULM:STATe ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:PULM:STATe?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:PULSe:DELay delay</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DELay?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DELay:STEP <num>[<time suffix>][DEFAult]</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DELay:STEP? [DEFAult]</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DOUBLE[:STATE] ON</td>
<td>OFF</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:DOUBLE[:STATE]?</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FREQuency freq</td>
<td>MINimum</td>
<td>MAXimum</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FREQuency?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FREQuency:STEP freq</td>
<td>DEFAult</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:FREQuency:STEP? [MIN</td>
<td>MAX</td>
<td>DEFAult]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:PERiod <num>[<time suffix>]</td>
<td>UP</td>
<td>DOWN</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

Table 7-2 8373xB and 8371xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:PULse:PERiod?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULse:PERiod:STEP <num>[<time suffix>]</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULse:PERiod:STEP?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULse:TRANSition[:LEADing] SLOW</td>
<td>MEdium</td>
<td>FAST</td>
</tr>
<tr>
<td>[:SOURce]:PULse:TRANSition[:LEADing]?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULse:TRANSition:STATe ON</td>
<td>OFF</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:PULse:TRANSition:STATe?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh MAXimum</td>
<td>MINimum</td>
<td>UP</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh? [MAXimum</td>
<td>MINimum</td>
<td>DEFault]</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh:STEP <num>[<time suffix>]</td>
<td>DEFault</td>
<td>Y</td>
</tr>
<tr>
<td>[:SOURce]:PULSe:WIDTh:STEP? [MINimum</td>
<td>MAXimum</td>
<td>DEFault]</td>
</tr>
</tbody>
</table>

Reference Oscillator Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:ROSCillator:SOURce?</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8373xB and 8371xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>83731B & 83732B</th>
<th>83711B & 83712B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:QUEstionable:PTRansition?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>System Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:GPIB:ADDRess <number></td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:ADDRess</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:ERRor?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:KEY keycode</td>
<td>MINimum</td>
<td>MAXimum</td>
</tr>
<tr>
<td>:SYSTem:KEY?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:LANGuage "COMP=8673"</td>
<td>"COMPatibility=8673"</td>
<td>N</td>
</tr>
<tr>
<td>:SYSTem:LANGuage "SCPI"</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:LANGuage?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:PRESet</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:VERSion?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Trigger Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:TRIGger[:SEQuence</td>
<td>:STARt]:SOURce IMMEDIATE</td>
<td>EXTERNAL</td>
</tr>
<tr>
<td>:TRIGger[:SEQuence</td>
<td>:STARt]:SOURce?</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SEQuence2:STOP:SOURce IMMEDIATE</td>
<td>EXTERNAL</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SEQuence2:STOP:SOURce?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:TRIGger:SEQuence2:SLOPe</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Unit Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:UNIT:FREQuency {<freq suffix>}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:FREQuency?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:POWer {<lvl suffix>}</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>:UNIT:TIME</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:TIME?</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:VOLTage {<lvl suffix>}</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>:UNIT:VOLTage?</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

a. The identification information can be modified for the PSG to reflect the signal generator that is being replaced. Refer to ":SYSTem:IDN" on page 418 for more information.
SCPI Command Compatibility
8373xB and 8371xB Compatible SCPI Commands

b. In linear mode, % cannot be used to select percent as the unit. Use PCT to specify percent as the unit.
c. A multiplier of zero is not allowed.
d. If FEED is selected, the query returns INT. FEED and INTernal are synonymous.
8375xB Compatible SCPI Commands

Table 7-3 is a comprehensive list of 83751B and 83752B SCPI commands, arranged by subsystem. Commands that are supported by the PSG are identified, in addition to commands that are unsupported. Use the legend within the table to determine command compatibility.

To use the commands, select 8375xB as the remote language. See “:*LANGuage*” on page 105 for selecting the language type.
When using the programming codes in this section, you can:

- set the PSG system language to 8375xB for the current session:

 Utility > GPIB/RS–232 LAN > Remote Language > 8375xB

 or send the command:

 :SYST:LANG "83752"

- set the PSG system language to 8375xB so that it does not reset with either preset, instrument power cycle or *RST command:

 Utility > Power On/Preset > Preset Language > 8375xB

 or send the command:

 :SYST:PRESET:LANG "83752"

- set the *IDN? response to any 8375xB–like response you prefer. Refer to the :SYSTem:IDNcommand on page 418.

 Some supported commands require the installation of hardware or firmware options.

Table 7-3 8375xB SCPI Commands

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Common Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*CLS</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*DMC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*EMC</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*EMC?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*ESE <value></td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*ESE?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*ESR?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*GMC? <label></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*IDN?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*LMC?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*LRN?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>*OPC</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>*OPC?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>*OPT?</td>
<td>N</td>
</tr>
<tr>
<td>*PMC</td>
<td>N</td>
</tr>
<tr>
<td>*PSC ON</td>
<td>OFF</td>
</tr>
<tr>
<td>*PSC?</td>
<td>Y</td>
</tr>
<tr>
<td>*RCL <reg_num></td>
<td>Y</td>
</tr>
<tr>
<td>*RMC <label></td>
<td>N</td>
</tr>
<tr>
<td>*RST</td>
<td>Y</td>
</tr>
<tr>
<td>*SAV <reg_num></td>
<td>Y</td>
</tr>
<tr>
<td>*SRE <value></td>
<td>Y</td>
</tr>
<tr>
<td>*SRE?</td>
<td>Y</td>
</tr>
<tr>
<td>*STB?</td>
<td>Y</td>
</tr>
<tr>
<td>*TRG</td>
<td>Y</td>
</tr>
<tr>
<td>*TST?</td>
<td>Y</td>
</tr>
<tr>
<td>*WAI</td>
<td>Y</td>
</tr>
</tbody>
</table>

Abort Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ABORt</td>
<td>Y</td>
</tr>
</tbody>
</table>

Amplitude Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>:AM:SOURce1 INTernal</td>
<td>EXTernal</td>
</tr>
<tr>
<td>:AM:SOURce INTernal</td>
<td>EXTernal</td>
</tr>
<tr>
<td>:AM:SOURce1?</td>
<td>N</td>
</tr>
<tr>
<td>:AM:SOURce?</td>
<td>Y</td>
</tr>
<tr>
<td>:AM:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:AM:STATe?</td>
<td>Y</td>
</tr>
</tbody>
</table>

Calibration Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CALibration:PEAKing[:EXECute]</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PEAKing[:EXECute]? <dac_va></td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:PMETer:FLATness:INITiate? USER</td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:SECurity:CODE <old> <new></td>
<td>N</td>
</tr>
<tr>
<td>:CALibration:SECurity:PASSword <passwd></td>
<td>N</td>
</tr>
</tbody>
</table>
Table 7-3 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CALibration:TRACK</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Correction Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:AMPL <value>[DB],<value>[DB]...</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:AMPL?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:FLATness:FREQ <value>[<freqsuffix>],<value>[<freqsuffix>]...</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:CORRection:FLATness:FREQ?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:FLATness:POINts? MAXimum</td>
<td>MINimum</td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:VOLTs:OFFSet</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:VOLTs:OFFSet?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:VOLTs:SCALe</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:CORRection:VOLTs:SCALe?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:CORRection[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:CORRection[:STATe]?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Diagnostics Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DIAG:LRNS?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:FULLtest:REPort?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:DIAGnostic:TEST:FULLtest?</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Display Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:DISPlay[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:DISPlay[:STATe]?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Frequency Modulation Subsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:FM:COUPling AC</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>:FM:COUPling?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SENSitivit <value><freqsuffix/V></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SENSitivit?</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>:FM:SOURce1 EXternal</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>:FM:SOURce EXternal</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>
Table 7-3 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM:SOURce1?</td>
<td>N</td>
</tr>
<tr>
<td>:FM:SOURce?</td>
<td>Y</td>
</tr>
<tr>
<td>:FM:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:FM:STATe?</td>
<td>N</td>
</tr>
</tbody>
</table>

Frequency Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:CENTer <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:CENTer?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MANual <value><unit></td>
<td>UP</td>
</tr>
<tr>
<td>[:SOURce[1]]:FREQuency:MANual?</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:FREQuency:MANual?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MODE FIXed</td>
<td>CW</td>
</tr>
<tr>
<td>:FREQuency:MODE?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier <value></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier:STATe?</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency:MULTiplier?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:OFFSet <value></td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:FREQuency:OFFSet:STATe?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:OFFSet?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:SPAN <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:SPAN?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:START <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:START?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCRement] <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:STEP[:INCRement]?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:STOP <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency:STOP?</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency[:CW]:FIXed <value>[<freqsuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:FREQuency[:CW]:FIXed:AUTO ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>
Table 7-3 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>:FREQuency[:CW[:FIXed]:AUTO?</td>
<td>N</td>
</tr>
<tr>
<td>:FREQuency[:CW[:FIXed]?</td>
<td>Y</td>
</tr>
<tr>
<td>Initiate Subsystem</td>
<td></td>
</tr>
<tr>
<td>:INITiate:CONTinuous ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:INITiate:CONTinuous?</td>
<td>Y</td>
</tr>
<tr>
<td>:INITiate[:IMMediate]</td>
<td>Y</td>
</tr>
<tr>
<td>Marker Subsystem</td>
<td></td>
</tr>
<tr>
<td>[:SOURce[1]]:MARKer[n]:AMPLitude[:STATE] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>[:SOURce]:MARKer[n]:AMPLitude[:STATE] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>[:SOURce[1]]:MARKer[n]:AMPLitude[:STATE]?</td>
<td>N</td>
</tr>
<tr>
<td>[:SOURce]:MARKer[n]:AMPLitude[:STATE]?</td>
<td>Y</td>
</tr>
<tr>
<td>:MARKer[n]:AOFF</td>
<td>Y</td>
</tr>
<tr>
<td>:MARKer[n]:FREQuency <value><unit></td>
<td>Y</td>
</tr>
<tr>
<td>:MARKer[n]:FREQuency?</td>
<td>N</td>
</tr>
<tr>
<td>:MARKer[n]:MODE FREQuency</td>
<td>DELTa</td>
</tr>
<tr>
<td>:MARKer[n]:MODE?</td>
<td>Y</td>
</tr>
<tr>
<td>:MARKer[n]:REFerence <n></td>
<td>Y</td>
</tr>
<tr>
<td>:MARKer[n]:REFerence?</td>
<td>Y</td>
</tr>
<tr>
<td>:MARKer[n][:STATe] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:MARKer[n][:STATe]?</td>
<td>Y</td>
</tr>
<tr>
<td>Memory Subsystem</td>
<td></td>
</tr>
<tr>
<td>:MEMory:RAM:INITialize[:ALL]</td>
<td>N</td>
</tr>
<tr>
<td>Output Subsystem</td>
<td></td>
</tr>
<tr>
<td>:OUTPut:IMPedance?</td>
<td>N</td>
</tr>
<tr>
<td>:OUTPut[:STATe] ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:OUTPut[:STATe]?</td>
<td>Y</td>
</tr>
<tr>
<td>Power Subsystem</td>
<td></td>
</tr>
<tr>
<td>:POWer:ALC:CFACtor <value>[DB]</td>
<td>UP</td>
</tr>
<tr>
<td>:POWer:ALC:CFACtor?</td>
<td>Y</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Supported in 83751B</th>
<th>Supported in 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWER:ALC:SOURce1 INTernal</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:POWER:ALC:SOURce INTernal</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:POWER:ALC:SOURce1?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:POWER:ALC:SOURce?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:ALC[:STATe] ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWER:ALC[:STATe]?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:ATTenuation <value>[DB]</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>:POWER:ATTenuation:AUTO ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWER:ATTenuation:AUTO?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:ATTenuation?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:CENTer <value>[<lvlsuffix>]</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>:POWER:CENTer?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:MODE FIXed</td>
<td>SWEp</td>
<td>Y</td>
</tr>
<tr>
<td>:POWER:MODE?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:OFFSet <value>[DB]</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>:POWER:OFFSet:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWER:OFFSet:STATe?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:OFFSet?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:SLOPe <value>[DB/freqsuffix]</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>:POWER:SLOPe:STATe ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWER:SLOPe:STATe?</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>:POWER:SLOPe?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:SPAN <value>[DB]</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>:POWER:SPAN?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:START <value>[<lvlsuffix>]</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>:POWER:START?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:STATE ON</td>
<td>OFF</td>
<td>1</td>
</tr>
<tr>
<td>:POWER:STATE?</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>:POWER:STEP[:INCRement]?</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:POWer:STOP <value>[<lvlsuffix>]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer:STOP?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer[:LEVel1] <value>[<lvlsuffix>]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:POWer[:LEVel1]?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse Modulation Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULM:SOURce1 INTernal</td>
<td>EXTernal</td>
<td>SCALar</td>
<td>SQ1K</td>
</tr>
<tr>
<td>:PULM:SOURce INTernal</td>
<td>EXTernal</td>
<td>SCALar</td>
<td>SQ1K</td>
</tr>
<tr>
<td>:PULM:SOURce1?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULM:SOURce?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULM:STATe ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:PULM:STATe?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:PULSe:FREQuency <value>[<freqsuffix>]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe:FREQuency?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe:PERiod <value>[<timesuffix>]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe:PERiod?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe:WIDTh <value>[<timesuffix>]</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:PULSe:WIDTh?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Oscillator Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ROSCillator:SOURce1 INTernal</td>
<td>EXTernal</td>
<td>NONE</td>
<td>N</td>
</tr>
<tr>
<td>:ROSCillator:SOURce INTernal</td>
<td>EXTernal</td>
<td>NONE</td>
<td>Y</td>
</tr>
<tr>
<td>:ROSCillator:SOURce1:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO ON</td>
<td>OFF</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>:ROSCillator:SOURce1:AUTO?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURce:AUTO?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURce1?</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:ROSCillator:SOURce?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>Y= Supported by PSG</th>
<th>N= Not supported by PSG</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:CONDition?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE <value></td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:STATus:OPERation:ENABLE?</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-3 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>Command/Parameter</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus:OPERation:NTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:NTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation:PTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:OPERation[:EVENT]?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:PRESet</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:CONDITION?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:ENABLE?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:NTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition <value></td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable:PTRansition?</td>
<td>Y</td>
</tr>
<tr>
<td>:STATus:QUESTionable[:EVENT]?</td>
<td>Y</td>
</tr>
</tbody>
</table>

Sweep Subsystem

<table>
<thead>
<tr>
<th>Command/Parameter</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:CONTrol:TYPE MASTer</td>
<td>SLAVe</td>
</tr>
<tr>
<td>:SWEep:CONTrol:TYPE?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELL <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:DWELL:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SWEep:DWELL:AUTO?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:DWELL?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:GENeration ANALog</td>
<td>STEPped</td>
</tr>
<tr>
<td>:SWEep:GENeration?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual:POINT?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative] <value></td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MANual[:RELative]?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SWEep:MARKer:STATe?</td>
<td>N</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8375xB Compatible SCPI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SWEep:MARKer:XFER</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:MODE AUTO</td>
<td>MANual</td>
</tr>
<tr>
<td>:SWEep:MODE?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POINts?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:POWer:STEP <value>[<lvlsuffix>]</td>
<td>UP</td>
</tr>
<tr>
<td>:SWEep:POWer:STEP?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep:TIME <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SWEep:TIME:AUTO?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMit <value>[<timesuffix>]</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME:LLIMit?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep:TIME?</td>
<td>Y</td>
</tr>
<tr>
<td>:SWEep[:FREQuency]:STEP <value>[<freqsuffix>]</td>
<td>UP</td>
</tr>
<tr>
<td>:SWEep[:FREQuency]:STEP?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger:SOURce IMMEDIATE</td>
<td>BUS</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger:SOURce?</td>
<td>N</td>
</tr>
<tr>
<td>:SWEep[:POINts]:TRIGger[:IMMediate]</td>
<td>N</td>
</tr>
</tbody>
</table>

System Subsystem

<table>
<thead>
<tr>
<th>Command</th>
<th>PSG Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYSTem:ALTernate <reg num></td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:ALTernate:STATe ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SYSTem:ALTernate:STATe?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:ALTernate?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:GPIB:ADDRESS <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:ADDRESS <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:ADDRESS?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:TYPE SCPI</td>
<td>70100A</td>
</tr>
<tr>
<td>:SYSTem:COMMunicate:PMETer:TYPE?</td>
<td>N</td>
</tr>
</tbody>
</table>

Table 7-3 8375xB SCPI Commands (Continued)
SCPI Command Compatibility

8375xB Compatible SCPI Commands

Table 7-3 8375xB SCPI Commands (Continued)

<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:SYStem:ERRor?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:KEY:DISable SAVE</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:KEY:DISable? SAVE</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:KEY:ENABLE SAVE</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:KEY:ENABLE? SAVE</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:KEY[:CODE] <value></td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:KEY[:CODE]?</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:LANGuage "SCPI"</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:LANGuage?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet:TYPE FACTory</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet:TYPE?</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet[:EXECute]</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:PRESet[:USER]:SAVE</td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:SECurity:CLEar</td>
<td>N</td>
</tr>
<tr>
<td>:SYStem:SECurity:COUNT <value></td>
<td>Y</td>
</tr>
<tr>
<td>:SYStem:SECurity:KLOCk ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SYStem:SECurity:ZERO ON</td>
<td>OFF</td>
</tr>
<tr>
<td>:SYStem:VERSion?</td>
<td>Y</td>
</tr>
</tbody>
</table>

Trigger Subsystem

<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger:SOURce1 IMMediate</td>
<td>BUS</td>
</tr>
<tr>
<td>:TRIGger:SOURce IMMediate</td>
<td>BUS</td>
</tr>
<tr>
<td>:TRIGger:SOURce1?</td>
<td>N</td>
</tr>
<tr>
<td>:TRIGger:SOURce?</td>
<td>Y</td>
</tr>
<tr>
<td>:TRIGger[:IMMediate]</td>
<td>Y</td>
</tr>
</tbody>
</table>

Tsweep Subsystem

<table>
<thead>
<tr>
<th>SCPI Command</th>
<th>83751B & 83752B</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TSWeep</td>
<td>Y</td>
</tr>
</tbody>
</table>
8662A/63A Compatible Commands

The tables in this section provide the following:

Table on page 471: a comprehensive list of 8662A/63A programming commands, listed in alphabetical order. The equivalent SCPI command sequence for each supported code is provided. Codes that have no equivalent SCPI command sequence are indicated in the command column, as are codes that are not supported by the PSG family.

Table on page 478: a list of the implemented 8662B/63B programming commands that set the active function. This table also indicates which codes are compatible with the increment (up), and the decrement (down) SCPI commands.

To use the commands, select 866xA as the remote language. See ":*LANGuage" on page 105 for selecting the language type.

When using the programming codes in this section, you can:

- set the PSG system language to 866xA for the current session:

 Utility > GPIB/RS–232 LAN > Remote Language > 866xA

 or send the command:

 :SYST:LANG "8662" or "8663"

- set the PSG system language to 866xA so that it does not reset on a preset, an instrument power cycle or a *RST command:

 Utility > Power On/Preset > Preset Language > 866xA

 or send the command:

 :SYST:PRESET:LANG "8662" or "8663"

- set the *IDN? response to any 866xA–like response you prefer. Refer to the :SYSTem:IDN command on page 418.

NOTE

Compatibility is provided for GPIB only; RS–232 and LAN are not supported.

Device Clear does not preset the instrument.

To reproduce the sweep functionality, use the PSG List Sweep features.
SCPI Command Compatibility

8662A/63A Compatible Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>@1</td>
<td>Write require service mask</td>
<td>Y</td>
<td>Y</td>
<td>*SRE <mask> supported, however, only 4 of the 8 bits of the 8662/8663 status byte will be set. These are: Entry Error, Hardware Error, Power Fail, and Request Service Message (SRQ).</td>
</tr>
<tr>
<td>@2</td>
<td>Deferred execution mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>@3</td>
<td>Immediate execution mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>+D</td>
<td>dBm</td>
<td>Y</td>
<td>Y</td>
<td>DBM</td>
</tr>
<tr>
<td>AM</td>
<td>AM modulation</td>
<td>Y</td>
<td></td>
<td>AM:DEPTh <val> <units></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:TRAC ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FM:STAT OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:STAT ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:DEPTh <val> <units></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:TRAC ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:STAT ON</td>
</tr>
<tr>
<td>AO</td>
<td>Amplitude off</td>
<td>Y</td>
<td>Y</td>
<td>OUTPut:STATe OFF</td>
</tr>
<tr>
<td>AP</td>
<td>Amplitude</td>
<td>Y</td>
<td>Y</td>
<td>POW:REF:STATe OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POWER:AMPL <val> <units></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OUTPut:STATe ON</td>
</tr>
<tr>
<td>AS</td>
<td>BLSQ</td>
<td>Auto sequence</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>BP</td>
<td>BPSK modulation</td>
<td>N</td>
<td></td>
<td>not supported</td>
</tr>
<tr>
<td>CT</td>
<td>Configure trigger</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>-D</td>
<td>dBm</td>
<td>Y</td>
<td>Y</td>
<td>DBM</td>
</tr>
<tr>
<td>DB</td>
<td>dB</td>
<td>Y</td>
<td>Y</td>
<td>DB</td>
</tr>
<tr>
<td>DG</td>
<td>Degree</td>
<td>Y</td>
<td></td>
<td>DEG</td>
</tr>
<tr>
<td>DM</td>
<td>dBm</td>
<td>Y</td>
<td>Y</td>
<td>DBM</td>
</tr>
<tr>
<td>DN</td>
<td>Decrement</td>
<td>Y</td>
<td>Y</td>
<td>See Table 7-5 on page 478</td>
</tr>
<tr>
<td></td>
<td>Passes DOWN as parameter of active function command.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>Start frequency</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-5 on page 478</td>
</tr>
<tr>
<td>FB</td>
<td>Stop frequency</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-5 on page 478</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8662A/63A Compatible Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>FM modulation</td>
<td>Y</td>
<td>Y</td>
<td><code>FM:DEV <val> <units></code> <code>AM:STAT OFF</code> <code>FM:STAT ON</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><code>FM:DEV <val> <units></code> <code>FM:STAT ON</code></td>
</tr>
<tr>
<td>FR</td>
<td>Center frequency</td>
<td>Y</td>
<td>Y</td>
<td><code>FREQuency:CW <val> <units></code> <code>See also: W2, W3, and W4, and Table 7-5 on page 478</code></td>
</tr>
<tr>
<td>FS</td>
<td>Span frequency</td>
<td>Y</td>
<td>Y</td>
<td><code>See W2, W3, W4, and Table 7-5 on page 478</code></td>
</tr>
<tr>
<td>GZ</td>
<td>GHz</td>
<td>Y</td>
<td>Y</td>
<td><code>GHZ</code></td>
</tr>
<tr>
<td>HZ</td>
<td>Hz</td>
<td>Y</td>
<td>Y</td>
<td><code>HZ</code></td>
</tr>
<tr>
<td>IS</td>
<td>Set increment</td>
<td>Y</td>
<td>Y</td>
<td><code>no equivalent SCPI command sequence</code></td>
</tr>
<tr>
<td></td>
<td>Adds <code>STEP : INCR</code> to active function command.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KZ</td>
<td>kHz</td>
<td>Y</td>
<td>Y</td>
<td><code>KHZ</code></td>
</tr>
<tr>
<td>L1</td>
<td>Learn front panel</td>
<td>N</td>
<td>N</td>
<td><code>not supported</code></td>
</tr>
<tr>
<td>L2</td>
<td>Fast learn</td>
<td>N</td>
<td>N</td>
<td><code>not supported</code></td>
</tr>
<tr>
<td>MQ/NO</td>
<td>Modulation off</td>
<td>Y</td>
<td>Y</td>
<td><code>AM:STATe OFF</code> <code>FM:STATe OFF</code> <code>PULM:STATe OFF</code> <code>PM:STATe OFF</code></td>
</tr>
<tr>
<td>M1</td>
<td>For 8662A: <code><mod></code> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><code><mod>:SOURce INT1</code> <code><mod>:INT1:FREQ 400Hz</code></td>
</tr>
<tr>
<td></td>
<td>Modulation source internal 400 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For 8663A: Executes MF with <code><freq> = 400 Hz</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>For 8662A: <code><mod></code> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><code><mod>:SOURce INT1</code> <code><mod>:INT1:FREQ 1kHz</code></td>
</tr>
<tr>
<td></td>
<td>Modulation source internal 1 kHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For 8663A: Executes MF with <code><freq> = 1 kHz</code></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>For 8662A: <code><mod></code> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><code><mod>:SOURce EXT</code> <code><mod>:EXT:COUPling AC</code> <code><mod>:EXT:IMP 600</code></td>
</tr>
<tr>
<td></td>
<td>Modulation source external AC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For 8663A: <code><mod></code> = AM, FM, or PM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><code><mod>:SOURce EXT<n></code> <code><mod>:EXT<n>:COUPling AC</code> <code><mod>:EXT<n>:IMP 600</code></td>
</tr>
<tr>
<td></td>
<td><code><n> = 1</code> for AM, 2 for FM or PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: For PM, the impedance value is set using the SP71/SP70 commands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>For 8662A: <code><mod></code> = FM or AM, depending on which is on.</td>
<td>Y</td>
<td></td>
<td><code><mod>:SOURce EXT</code> <code><mod>:EXT:COUPling DC</code> <code><mod>:EXT:IMP 600</code></td>
</tr>
<tr>
<td></td>
<td>Modulation source external DC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8662A/63A Compatible Commands

For 8663A:

- `<mod>` = AM, FM, or PM, depending on which is on.
- `<n>` = 1 for AM, 2 for FM or PM

NOTE: For PM, the impedance value is set using the SP71/SP70 commands

- **MF**
 - Modulation frequency
 - `<mod>` = FM, or PM, depending on which is on.

Also see: M1, M2, and Table 7-5 on page 478

AM:

- AM:SOUR: INT1
- AM:SOUR:INT1:FREQ `<freq>`

FM or PM:

- FM or PM:
 - `<mod>`: SOUR: INT2
 - `<mod>`: SOUR:INT2:FREQ `<freq>`

Pulse:

- PULM:SOUR: INT
- PULM:INT:FREQ `<freq>`
- PULM:SOUR:INT SQUARE

MS

- Read status key message
- Returns status string.

MV

- mV

M2

- MHz

N1

- Linear 100 steps

N2

- Linear 1000 steps

N3

- Step size

N4

- Log 10% steps

N5

- Log 1% steps

PC

- %

PL

- Pulse modulation
- Must have an instrument with pulse capability.

PM

- Phase modulation
- Not compatible with any FM modulation.

R1

- Knob resolution x10

R2

- Knob resolution /10

R3

- Knob off

R4|BLR1

- Knob hold

R5|BLR2

- Knob increment

RC

- Recall

RD

- Knob down
- Only for manual sweep

Table 7-4 8662A/63A Commands & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 8663A:</td>
<td></td>
<td>Y</td>
<td></td>
<td><mod>:SOURce EXT<cn> <mod>:EXT<cn>:COUpling DC <mod>:EXT<cn>:IMP 600</td>
</tr>
<tr>
<td>MF</td>
<td>Modulation frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code><mod></code> = FM, or PM, depending on which is on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Also see: M1, M2, and Table 7-5 on page 478</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>Read status key message</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns status string.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV</td>
<td>mV</td>
<td>Y</td>
<td>Y</td>
<td>MV</td>
</tr>
<tr>
<td>M2</td>
<td>MHz</td>
<td>Y</td>
<td>Y</td>
<td>MHz</td>
</tr>
<tr>
<td>N1</td>
<td>Linear 100 steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W4</td>
</tr>
<tr>
<td>N2</td>
<td>Linear 1000 steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W4</td>
</tr>
<tr>
<td>N3</td>
<td>Step size</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, W4, and Table 7-5 on page 478</td>
</tr>
<tr>
<td>N4</td>
<td>Log 10% steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W4</td>
</tr>
<tr>
<td>N5</td>
<td>Log 1% steps</td>
<td>Y</td>
<td>Y</td>
<td>See W2, W3, and W4</td>
</tr>
<tr>
<td>PC</td>
<td>%</td>
<td>Y</td>
<td>Y</td>
<td>PCT</td>
</tr>
<tr>
<td>PL</td>
<td>Pulse modulation</td>
<td>Y</td>
<td></td>
<td>PULM:STAT ON</td>
</tr>
<tr>
<td>PM</td>
<td>Phase modulation</td>
<td>Y</td>
<td></td>
<td>PM:STAT ON</td>
</tr>
<tr>
<td></td>
<td>Not compatible with any FM modulation.</td>
<td></td>
<td></td>
<td>See also: Table 7-5 on page 478</td>
</tr>
<tr>
<td>R1</td>
<td>Knob resolution x10</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R2</td>
<td>Knob resolution /10</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R3</td>
<td>Knob off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>R4</td>
<td>BLR1</td>
<td>Knob hold</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>R5</td>
<td>BLR2</td>
<td>Knob increment</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>RC</td>
<td>Recall</td>
<td>Y</td>
<td>Y</td>
<td>*RCL</td>
</tr>
<tr>
<td>RD</td>
<td>Knob down</td>
<td>Y</td>
<td>Y</td>
<td>LIST:MANual DOWN</td>
</tr>
</tbody>
</table>

Keysight E8257D/67D & E8663D PSG Signal Generators SCPI Command Reference 473
SCPI Command Compatibility

8662A/63A Compatible Commands

Table 7-4 8662A/63A Commands & Equivalent SCPI Sequences (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>Read require service mask</td>
<td>N</td>
<td>N</td>
<td>*SRE? supported, however, only 4 of the 8 bits of the 8662/8663 status byte will be set. These are: Entry Error, Hardware Error, Power Fail, and Request Service Message (SRQ).</td>
</tr>
<tr>
<td>RU</td>
<td>Knob up Only for manual sweep</td>
<td>Y</td>
<td>Y</td>
<td>LIST:MANual UP</td>
</tr>
<tr>
<td>SP00</td>
<td>System preset Presets the instrument, including the compatibility language.</td>
<td>Y</td>
<td>Y</td>
<td>SYSTem:PRESet</td>
</tr>
<tr>
<td>SP10</td>
<td>Frequency offset off</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:OFFS:STAT OFF</td>
</tr>
<tr>
<td>SP11</td>
<td>Positive frequency offset The 8662 modifies the output, but does not change the displayed frequency; the PSG modifies the displayed frequency, but does not change the output. Because of this, you must first set the offset, then reapply the frequency to change the output.</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:OFFS -<value> FREQ:OFFS:STAT ON FREQ:CW <displayed value></td>
</tr>
<tr>
<td>SP12</td>
<td>Negative frequency offset The 8662 modifies the output, but does not change the displayed frequency; the PSG modifies the displayed frequency, but does not change the output. Because of this, you must first set the offset, then reapply the frequency to change the output.</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:OFFS <value> FREQ:OFFS:STAT ON FREQ:CW <displayed value></td>
</tr>
<tr>
<td>SP20</td>
<td>ALC bandwidth normal</td>
<td>Y</td>
<td>Y</td>
<td>PWer:ALC:BANDwidth:AUTO ON</td>
</tr>
<tr>
<td>SP21</td>
<td>ALC bandwidth < 1 kHz</td>
<td>Y</td>
<td>Y</td>
<td>PWer:ALC:BANDwidth:AUTO OFFPOWer:ALC:BANDwidth 1KHZ</td>
</tr>
<tr>
<td>SP30</td>
<td>Amplitude reference off</td>
<td>Y</td>
<td>Y</td>
<td>PW:REF:STATe OFF</td>
</tr>
<tr>
<td>SP31</td>
<td>Amplitude reference</td>
<td>Y</td>
<td>Y</td>
<td>PW:REF <val> <val> = current amplitude setting PW:REF:STATe ON</td>
</tr>
<tr>
<td>SP32</td>
<td>Amplitude reference relative to 1 mV</td>
<td>Y</td>
<td>Y</td>
<td>PW:REF 106.99DBM PW:REF:STATe ON PW1UV</td>
</tr>
<tr>
<td>SP40</td>
<td>External AM off Modulation frequency sweep mode off</td>
<td>Y</td>
<td>N</td>
<td>AM:STAT OFF</td>
</tr>
<tr>
<td>SP41</td>
<td>Internal FM + external AM (AC)</td>
<td>Y</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td></td>
<td>Modulation frequency sweep mode on</td>
<td></td>
<td></td>
<td>not supported</td>
</tr>
</tbody>
</table>
SCPI Command Compatibility

8662A/63A Compatible Commands

SP42 Internal FM + external AM (DC)

- FM:SOUR INT1
- FM:INT1:FREQ 400 HZ
- FM:STAT ON
- AM:SOUR EXT1
- AM:EXT1:IMP 600
- AM:DEPTH 95 PCT
- AM:EXT1:COUP DC
- AM:STAT ON

SP50 AUX FM off

SP51 AUX FM on

RF (MHz)

<table>
<thead>
<tr>
<th>Deviation (kHz)</th>
<th>0.01−12</th>
<th>0</th>
<th>120−160</th>
<th>160−320</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>6.25</td>
<td>12.5</td>
<td>25</td>
</tr>
</tbody>
</table>

NOTE: The deviation for this command cannot be greater than the deviation of the FM1 path.

- FM2:STAT OFF

SP60 Parameter shift keying off

SP61 Parameter shift keying up/down (two-key)

SP62 Parameter shift keying up/down (one-key)

SP70 External PM input impedance 50 W

- Effects the behavior of M3 and M4.

SP71 External PM input impedance 600 W

- Effects the behavior of M3 and M4.

SP80 Special functions 10−62 off

SP81 Amplitude conversion (V→dBm)

SP82 Display GPIB address

SP83 ROM test

SP84 RAM test

SP85 Amplitude correction off

SP86 Amplitude correction on

- PSG ALC ON always works with sweep.

SP87 Amplitude correction on (includes Sweep)

SP88 GPIB operator request response

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| SP42 | Internal FM + external AM (DC) | Y | Y | PM2:SOUR EXT2
| | | | | FM2:EXT2:COUP DC
| | | | | FM2:EXT2:IMP 600
| | | | | FM2:DEV <dev> kHz
| | | | | FM2:STAT ON
| SP50 | AUX FM off | Y | Y | FM2:STAT OFF
| SP51 | AUX FM on | Y | Y | no equivalent SCPI command sequence
| | RF (MHz) | | | no equivalent SCPI command sequence
| | FM Deviation (kHz) | | | |
| | 0.01−12 | 25 | 6.25 | |
| | 0 | 12.5 |
| | 120−160 | | | |
| | 160−320 | | | |
| SP60 | Parameter shift keying off | N | N | not supported
| SP61 | Parameter shift keying up/down (two-key) | N | N | not supported
| SP62 | Parameter shift keying up/down (one-key) | N | N | not supported
| SP70 | External PM input impedance 50 W | Y | | no equivalent SCPI command sequence
| | Effects the behavior of M3 and M4. | | | |
| SP71 | External PM input impedance 600 W | Y | | no equivalent SCPI command sequence
| | Effects the behavior of M3 and M4. | | | |
| SP80 | Special functions 10−62 off | Y | Y | FM2:STAT OFF
| | AM:STAT OFF |
| | FREQ:OFFS:STAT OFF |
| SP81 | Amplitude conversion (V→dBm) | N | N | not supported
| SP82 | Display GPIB address | N | N | not supported
| SP83 | ROM test | N | N | not supported
| SP84 | RAM test | N | N | not supported
| SP85 | Amplitude correction off | Y | Y | PW:ALC:STATe OFF
| SP86 | Amplitude correction on
| | PSG ALC ON always works with sweep. | Y | Y | PW:ALC:STATe ON
| SP87 | Amplitude correction on (includes Sweep) | Y | | PW:ALC:STATe ON
| SP88 | GPIB operator request response | N | | not supported |
SCPI Command Compatibility

8662A/63A Compatible Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP88</td>
<td>Auto sequence</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP89</td>
<td>GPIB operator request response</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP90</td>
<td>Set auto sequence step delay</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP91</td>
<td>Enable frequency hopping mode</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP92</td>
<td>Knob (restore normal operation)</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP93</td>
<td>Manual amplitude level control</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP94</td>
<td>Knob, 120 increments per revolution</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP95</td>
<td>Knob, 120 increments per revolution, reconfigure AUX con.</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP96</td>
<td>Modulation oscillator off when modulation is off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP97</td>
<td>Modulation oscillator on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP98</td>
<td>Turn display on</td>
<td>Y</td>
<td>Y</td>
<td>DISP ON</td>
</tr>
<tr>
<td>SP99</td>
<td>Turn display off</td>
<td>Y</td>
<td>Y</td>
<td>DISP OFF</td>
</tr>
<tr>
<td>SP2.0</td>
<td>Power up preset off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SP2.1</td>
<td>Power up preset on</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SQ</td>
<td>Sequence</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
<tr>
<td>SS</td>
<td>BLST</td>
<td>Set sequence</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ST</td>
<td>Store Saves/recalls register to sequence 0.</td>
<td>Y</td>
<td>Y</td>
<td>*SAV</td>
</tr>
<tr>
<td>T1</td>
<td>0.5 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 0.5ms Beyond PSG range limit; is set to 1ms.</td>
</tr>
<tr>
<td>T2</td>
<td>1 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 1ms</td>
</tr>
<tr>
<td>T3</td>
<td>2 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 2ms</td>
</tr>
<tr>
<td>T4</td>
<td>10 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 10ms</td>
</tr>
<tr>
<td>T5</td>
<td>100 ms per step</td>
<td>Y</td>
<td>Y</td>
<td>SWEEP:DWELL 100ms</td>
</tr>
<tr>
<td>TR</td>
<td>Trigger Performs command code setup with CT command.</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI command sequence</td>
</tr>
<tr>
<td>UP</td>
<td>Increment Passes UP as a parameter of the active function command.</td>
<td>Y</td>
<td>Y</td>
<td>See Table 7-5 on page 478</td>
</tr>
<tr>
<td>UV</td>
<td>mV</td>
<td>Y</td>
<td>Y</td>
<td>UV</td>
</tr>
<tr>
<td>W1</td>
<td>Sweep off</td>
<td>Y</td>
<td>Y</td>
<td>FRQ:MODE CW LIST:TRIG:SOUR IMM</td>
</tr>
</tbody>
</table>

Table 7-4 8662A/63A Commands & Equivalent SCPI Sequences (Continued)
SCPI Command Compatibility

8662A/63A Compatible Commands

W2

Auto sweep mode on
Generates a sweep list based on stored parameters from FA, FB, FR, FS, N1, N2, N3, N4, and N5

Default values:
- FR = 100 MHz,
- FS = 10 MHz,
- N1,2 FA = 1 MHz,
- FB = 1279 MHz

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| W2 | Auto sweep mode on | Y | Y | INIT:CONT ON
SWEEP:MODE AUTO
LIST:TRIG:SOUR IMM
LIST:DWELL:TYPE STEP
LIST:TYPE LIST
FREQ:MODE LIST |

W3

Manual sweep mode on
Generates a sweep list based on stored parameters from FA, FB, FR, FS, N1, N2, N3, N4, and N5

Default values:
- FR = 100 MHz,
- FS = 10 MHz,
- N1,2 FA = 1 MHz,
- FB = 1279 MHz

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| W3 | Manual sweep mode on | Y | Y | INIT:CONT ON
SWEEP:MODE MANuR
LIST:TRIG:SOUR IMM
LIST:DWELL:TYPE LIST
LIST:TYPE LIST
FREQ:MODE LIST |

W4

Single sweep mode on
Generates a sweep list based on stored parameters from FA, FB, FR, FS, N1, N2, N3, N4, and N5

Default values:
- FR = 100 MHz,
- FS = 10 MHz,
- N1,2 FA = 1 MHz,
- FB = 1279 MHz

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| W4 | Single sweep mode on | Y | Y | INIT:CONT OFF
SWEEP:MODE AUTO
LIST:TRIG:SOUR IMM
LIST:DWELL:TYPE STEP
LIST:TYPE LIST
FREQ:MODE LIST
INIT |

X1

Marker 1

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Marker 1</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

X2

Marker 2

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X2</td>
<td>Marker 2</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

X3

Marker 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X3</td>
<td>Marker 3</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

X4

Marker 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X4</td>
<td>Marker 4</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

X5

Marker 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X5</td>
<td>Marker 5</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

X6

Marker off

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X6</td>
<td>Marker off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

X7

All markers off

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7</td>
<td>All markers off</td>
<td>N</td>
<td>N</td>
<td>not supported</td>
</tr>
</tbody>
</table>

Y0

Remote stepped sweep off

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| Y0 | Remote stepped sweep off | Y | Y | FREQ:MODE ON
LIST:TRIG:SOUR IMM |

Y1|Y2

Remote stepped sweep on

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
</table>
| Y1|Y2 | Remote stepped sweep on | Y | Y | INIT:CONT ON
SWEEP:MODE AUTO
LIST:DWELL:TYPE STEP
LIST:TYPE LIST
FREQ:MODE LIST
LIST:TRIG:SOUR BUS |

Y3

Execute remote stepped sweep

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Command Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y3</td>
<td>Execute remote stepped sweep</td>
<td>Y</td>
<td>Y</td>
<td>*TRG</td>
</tr>
</tbody>
</table>

Table 7-4 8662A/63A Commands & Equivalent SCPI Sequences (Continued)
Table 7-5 8662/63B Command Compatibility

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Sets Active Function</th>
<th>Compatible with UP/DN</th>
<th>8662</th>
<th>8663</th>
<th>Equivalent SCPI Commands for UP/DN and Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>AM modulation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>AM:DEPTH UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:DEPTH DOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AM:DEPTH:STEP:INCR</td>
</tr>
<tr>
<td>AP</td>
<td>Amplitude</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>POW:AMPL UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POW:AMPL DOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>POW:AMPL:STEP:INCR</td>
</tr>
<tr>
<td>FA</td>
<td>Start frequency</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:CW:STEP:INCR</td>
</tr>
<tr>
<td>FB</td>
<td>Stop frequency</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:CW:STEP:INCR</td>
</tr>
<tr>
<td>FM</td>
<td>FM modulation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>PM:DEV UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM:DEV DOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM:DEV:STEP:INCR</td>
</tr>
<tr>
<td>FR</td>
<td>Center frequency</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:CW:STEP:INCR</td>
</tr>
<tr>
<td>FS</td>
<td>Span frequency</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>FREQ:CW:STEP:INCR</td>
</tr>
<tr>
<td>MF</td>
<td>Modulation frequency</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td><mod>:INT:FREQ UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><mod>:INT:FREQ DOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><mod>:INT:FREQ:STEP:INCR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><mod> = AM</td>
</tr>
<tr>
<td>N3</td>
<td>Step size</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>no equivalent SCPI commands</td>
</tr>
<tr>
<td>PM</td>
<td>Phase modulation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td>PM:DEV UP</td>
</tr>
<tr>
<td></td>
<td>Not compatible with any FM modulation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM:DEV DOWN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM:DEV:STEP:INCR</td>
</tr>
</tbody>
</table>
Index

Symbols
ΦM Dev Couple Off On softkey 224
ΦM Dev softkey 223
ΦM Off On softkey 222
ΦM Path 1 2 softkey 215
ΦM Stop Rate softkey 218
ΦM Sweep Time softkey 220
ΦM Tone 2 Amp Percent of Peak softkey 219
\(\pi/4\) DQPSK softkey
See custom subsystem keys
of Carriers softkey 346, 350
Points softkey 163
Skipped Points softkey 306

Numerics
1048576 softkey 241
128QAM softkey
See custom subsystem keys
131072 softkey 241
16 1’s & 16 0’s softkey
See custom subsystem keys
16384 softkey 241
16PSK softkey
See custom subsystem keys
16QAM softkey
See custom subsystem keys
2.100 MHz softkey 237
256QAM softkey
See custom subsystem keys
262144 softkey 241
2-Lvl FSK softkey
See custom subsystem keys
32 1’s & 32 0’s softkey
See custom subsystem keys
32768 softkey 241
32QAM softkey
See custom subsystem keys
4 1’s & 4 0’s softkey
See custom subsystem keys
40,000 MHz softkey 235, 237
digital modulation subsystem 274, 287
dual ARB subsystem 300
external I/Q filter 332, 361, 387
I/Q modulation filter 302, 337, 389
modulation attenuation 363
4-Lvl FSK softkey
See custom subsystem keys

4QAM softkey
See custom subsystem keys
524288 softkeys 241
64 1’s & 64 0’s softkey
See custom subsystem keys
64QAM softkey
See custom subsystem keys
65536 softkey 241
8 1’s & 8 0’s softkey
See custom subsystem keys
8340, 8360, 8757 Language 114
8340B/41B, compatible commands 422
836xB/L, compatible commands 435
8371xB, compatible commands 450
8373xB, compatible commands 450
8375xB, compatible commands 459
8648A/B/C/D softkey 105, 114
8656B, 8657A/B softkey 105, 114
8657D NADC softkey 105, 114
8657D PDC softkey 105, 114
8657J PHS softkey 105, 114
8662A/63A, compatible commands 470
8757D, compatible commands 422
8PSK softkey
See custom subsystem keys

A
abort list/step sweep 123
Access denied 61
Activate Secure Display softkey 117
Add Comment To Seq[n] Reg[nn] softkey 67
Adjust Phase softkey 149
ALC 169, 176
ALC BW softkey 169
ALC Hold 308, 338, 390
ALC hold markers
dmodulation subsystem 338
dual ARB subsystem 308
multitone subsystem 364
two tone subsystem 390
ALC level 170
ALC Off On softkey 176
Align DACs softkey 253, 293
Alignment Left Cent Right softkey 386
All softkey 49, 66
alternate amplitude markers
AWGN ARB subsystem 238
alternate frequency 201, 210
Alternate Sweep Off On softkey 102
Alternate Sweep softkey 102
AM softkeys
 AM Depth 190, 197
 AM Depth Couple Off On 198
 AM Mode Normal Deep 189
 AM Off On 196
 AM Path 1 2 188
 AM Polarity Normal Inverted 189
 AM Rate 191
 AM Start Rate 191
 AM Stop Rate 192
 AM Sweep Rate 194
 AM Tone 1 Rate 191
 AM Tone 2 Amp Percent Of Peak 193
 AM Tone 2 Rate 192
 AM Type LIN EXP 197
Ampl softkeys
 Ampl Offset 183
 Ampl Ref Off On 181
 Ampl Ref Set 181
 Ampl Start 182
 Ampl Stop 182
amplitude
 LF output 209
 list sweep points 156
amplitude and frequency correction pair 128
Amplitude hardkey 183, 184
Amplitude Markers Off On softkey 165
amplitude modulation subsystem keys
 AM Depth 190, 197
 AM Depth Couple Off On 198
 AM Mode Normal Deep 189
 AM Off On 196
 AM Path 1 2 188
 AM Polarity Normal Inverted 189
 AM Rate 191
 AM Start Rate 191
 AM Stop Rate 192
 AM Sweep Rate 194
 AM Tone 1 Rate 191
 AM Tone 2 Amp Percent Of Peak 193
 AM Tone 2 Rate 192
 AM Type LIN EXP 197
Ext softkeys
 Ext Coupling DC AC 190
 Ext Impedance 50 Ohm 600 Ohm 191
 Ext1 196
 Ext2 196
Gaussian 193, 218
Incr Set 188, 199
Internal 1 2 196
Negative 194, 219
Positive 194, 219
Uniform 193
Uniform softkey 218
amplitude units 34
APCO 25 264
APCO 25 C4FM softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See GPS subsystem keys
APCO 25 w/C4FM softkey 264, 346, 349
APCO 25 w/C4QPSK softkey 346, 349
APCO 25 w/CQPSK softkey 264
Apply Settings softkey 386
Apply to Waveform softkey 303, 306
Arb AWGN Off On softkey 243
ARB Off On softkey 331
arb player 12
ARB Reference Ext Int softkey
 See AWGN subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See multitone subsystem keys
ARB sample clock rate 312
ARB Sample Clock softkey 242, 317, 345, 369, 395
arbitrary waveform
 clipping 292
 runtime scaling 316
 scaling files 316
Atten Hold Off On softkey 177
attenuator 31, 279, 284, 286, 336, 362, 388
attenuator auto 285
attenuator bandwidth 286
automatic leveling control 169, 176
AWGN
 carrier bandwidth 313
 carrier to noise 313
 carrier to noise control 313
 flat noise bandwidth 313
 noise state off on 312
AWGN ARB subsystem keys
 Marker Polarity subsystem keys 240
AWGN subsystem
 ALC hold 238
 RF blanking/pulse 239
AWGN subsystem keys
1048576 241
131072 241
16384 241
2.100 MHz 237
262144 241
32768 241
40,000 MHz 235, 237
524288 241
65536 241
alc hold 238
alternate amplitude 238
Arb AWGN Off On 243
ARB Reference Ext Int 242
ARB Sample Clock 242
Bandwidth 235
Clear Header 236
I/Q Mod Filter Manual Auto 237
I/Q Output Filter Manual Auto 235
Modulator Atten Manual Auto 236
Noise Seed Fixed Random 243
None 239
Reference Freq 241
Save Setup To Header 236
Through 235, 237
Waveform Length 241

B
backward compatible SCPI commands
*IDN? output 418
8340B/41B 422
836xB/L 435
8371xB 450
8373xB 450
8375xB 459
8662A/63A 470
8757D 422
band and channel selection 135, 136
Bandwidth softkey 235, 244
Baseband Frequency Offset softkey
 Dual ARB subsystem keys 292
baud rate 29
BBG Data Clock Ext Int softkey
 See custom subsystem keys
BBG Ref Ext Int softkey
 See custom subsystem keys
BBG1 softkey 276, 289
Binary softkey 45, 68
binary values 14

Bit softkey 45
blanking 74
blanking, display 38
Bluetooth softkey 264
boolean SCPI parameters 9
boolean, numeric response data 10
BPSK softkey
 See custom subsystem keys
Brightness softkey 35
Build New Waveform Sequence softkey 317
burst
 rise time 251
 shape 60, 252
 shape rise delay 250
 shape rise time 251
Burst Gate In Polarity Neg Pos softkey 78, 79
Bus softkey
 AM trigger source 195
 Dmodulation subsystem keys 354
dual ARB subsystem keys 324
FM trigger source 203
list trigger source 157
low frequency output subsystem keys 213
modulation subsystem keys 221
trigger subsystem keys 125
bus trigger source
 custom subsystem 269
dmodulation subsystem 354
dual ARB subsystem 324

C
calibration subsystem 18
calibration subsystem keys 20
 Calibration Type DC User Full 19
calibration subsystem keys 20
 Calibration Type User Full 22
dCFM/DcφM Cal 18
Execute Cal 18, 21
I/Q Calibration 18
Revert to Default Cal Settings 19, 22
Start Frequency 20, 22
Stop Frequency 20, 23
Calibration Type DC User Full softkey 19
capture screen 36
carrier bandwidth 313
Carrier Phases Fixed Random softkey 347
carrier to noise 313
catalog, mass memory subsystem 68
CDPD softkey 264, 346, 349
can not be reached
channel number 134
channels 132
clear header 71
Clear Header softkey 236, 297, 335, 360, 387
clearing markers 303, 304
Clip |+jQ| To softkey 292
Clip |I| To softkey 292
Clip |Q| To softkey 292
clipping
waveform files 292
Clipping softkey 292
Clipping Type |+jQ| |I|,|Q| softkey 292
clock
command tree, SCPI 6
Common Mode I/Q Offset softkey 277
communication subsystem keys
Default Gateway 25
GPIB Address 24
Hostname 25
IP Address 26
LAN Config 25
Meter Address 27
Meter Channel A B 27
Meter Timeout 28
Power Meter 28
Reset RS-232 29
RS-232 Baud Rate 29
RS-232 ECHO Off On 29
RS-232 Timeout 30
subnet 26
COMP, 8340, 8360, 8757 Language 105
compatible commands
8257D/67D/E8663D 419
Configure Cal Array softkey 128
connector selection, triggering
custom subsystem 271
Dmodulation subsystem 356
dual ARB subsystem 326
continuous
segment advance 323
Continuous softkey
custom subsystem keys 264
Dmodulation subsystem keys 351
dual ARB subsystem keys 323
continuous sweep 123
continuous trigger
response selection
custom subsystem 266
Dmodulation subsystem 353
dual ARB subsystem 322
trigger mode
custom subsystem 264
Dmodulation subsystem 351
dual ARB subsystem 319
contrast hardkeys 36
control additive noise 313
Copy File softkey 50, 69
correction
frequency and amplitude pair 128
correction subsystem 128
correction subsystem keys
Configure Cal Array 128
Flatness Off On 130
Load From Selected File
flatness 128
Preset List 129
Store To File 129
creating a waveform
multitone 360
sequence, dual ARB 317
custom
continuous 264
gate 264
trigger 266
Custom Digital Mod State softkey 346, 349
Custom Off On softkey 272
custom subsystem 272, 273
delay query 256
predefined setup 264
triggering, See triggers
custom subsystem keys
\(\pi/4\) DQPSK 260, 341, 342
128AM 260, 341, 342
16 1’s & 16 0’s 253
16PSK 260, 341, 342
16QAM 260, 341, 342
256QAM 260, 341, 342
2-Lvl FSK 260, 341, 342
32 1’s & 32 0’s 253
32QAM 260, 341, 342
4 1’s & 4 0’s 253
4-Lvl FSK 260, 341, 342
4QAM 260, 341, 342
64 1’s & 64 0’s 253
64QAM 260, 341, 342
8 1’s & 8 0’s 253
8PSK 260, 341, 342
Align DACs 253
Index

APCO 25 C4FM 257
APCO 25 w/C4FM 264
APCO 25 w/CQPSK 264
BBG Data Clock Ext Int 245
BBG Ref Ext Int 256
Bluetooth 264
BPSK 260, 341, 342
Burst Shape Fall Time 249
Burst Shape Rise Delay 250
Bus 269
CDPD 264
Continuous 264
D8PSK 260, 341, 342
Diff Data Encode Off On 255
Ext 253, 269
Ext BBG Ref Freq 257
Ext Data Clock Normal Symbol 256
Ext Delay Bits 270
Ext Delay Off On 270
Ext Polarity Neg Pos 271
Fall Delay 247, 249
Fall Time 248
Filter Alpha 245
Filter BbT 246
FIX4 253, 254, 255
Free Run, trigger 266
Freq Dev 259
Gate Active Low High 267
Gated 264
Gaussian 257
Gray Coded QPSK 260, 341, 342
I/Q Scaling 258
IS-95 QPSK 260, 341, 342
MSK 260, 341, 342
None 264
Nyquist 257
Optimize FIR For EVM ACP 252
QPSK 260, 341, 342
Patt Trig In 1, Patt Trig In 2 271
Patt Trig In 2 271
Phase Dev 259
Phase Polarity Normal Invert 262
PN data pattern 253
QPSK 260, 341, 342
Rectangle 257
Rise Delay 250
Rise Time 251
Root Nyquist 257
Sine 252
Single 264
Symbol Rate 262
Trigger & Run 266
Trigger Key 269
UN3/4 GSM Gaussian 257
User File 252, 253
User FIR 257
User FSK 260, 341, 342
User I/Q 260, 341, 342
CW frequency 145

D
D8PSK softkey
See custom subsystem keys
data
memory subsystem 50, 69
data append
memory subsystem 52
data bit 52, 56
data block 60
Data Clock Out Neg Pos softkey 81
Data Clock Polarity Neg Pos softkey 78, 80, 82
data files 50, 69
data FSK 54
data IQ 56
Data Mode Raw Enc TLM softkey 376, 377
Data Out Polarity Neg Pos softkey 81, 84
data pattern 253
Data Polarity Neg Pos softkey 78, 80
DATA/CLK/SYNC Rear Outputs Off On softkey 83
date format 34
dBm softkey 126
dBuV softkey 126
dBuVemf softkey 126
DC softkey 211
DCFM/DCΦM Cal softkey 18
decimal values 14
DECT softkey 346, 349
default calibration 22
Default Gateway softkey 25
defaults, restore factory 150
delay query 256
delay, I/Q 276
delay, triggering
custom subsystem 270
demodulation subsystem 356, 357
dual ARB subsystem 326, 327
Delete softkeys
Delete All ARB DMOD Files 63
Delete All ARB MDMOD Files 65
Delete All ARB MTONE Files 65
Delete All Binary Files 63
Delete All Bit Files 63
Delete All Files 63
Delete All FIR Files 63
Delete All FSK Files 64
Delete All I/Q Files 64
Delete All List Files 64
Delete All NVWFM Files 70
Delete All SEQ Files 65
Delete All Shape Files 65
Delete All State Files 65
Delete All UFLT Files 66
Delete All WFM Files 71, 420
Delete File 66
Delta Markers softkey 166
Delta Ref Set softkey 167
development, FSK 341
DHCP 25
Diagnostic Info softkey 31, 32, 33, 40, 105
diagnostic subsystem keys
 Diagnostic Info 31, 32, 33
 Installed Board Info 31
 License Info 32
 Options Info 32
Diff. Data Encode Off On softkey 255
Diff. Mode I Offset softkey 277
Diff. Mode Q Offset softkey 278
Digital Modulation Off On softkey 359
digital modulation subsystem keys
 40.000 MHz 274, 287
 BBG1 276, 289
 Common Mode I/Q Offset 277
 Diff. Mode I Offset 277
 Diff. Mode Q Offset 278
 Ext 50 Ohm 276, 289
 Ext 600 Ohm 276, 289
 Ext In 600 Ohm I Offset 279
 Ext In 600 Ohm Q Offset 280
 Ext Input Level (nnn mV) default Man Meas 285
 High Crest Mode Off On 275
 I Offset 281
 I/Q Adjustments Off On 284
 I/Q Delay 276
 I/Q Gain Balance Source 1 280
 I/Q Mod Filter Manual Auto 287
 I/Q Off On 291, 399
I/Q Out Gain Balance 278
I/Q Output Atten 279
I/Q Output Filter Manual Auto 274
I/Q Timing Skew 283
I/Q Timing Skew Path softkey 283
Int I/Q Skew Corrections Off On 289
Int I/Q Skew Corrections RF BB Off 288
Int Phase Polarity Normal Invert 275, 288
Modulation Atten Optimize Bandwidth 286
Modulator Atten Manual Auto 284, 285, 286
Off 276, 289
Q Offset 281
Quadrature Skew 282
Summing Ratio (SRC1/SRC2) x.xx dB 290
Through 274, 287
digital signal interface module
 See digital subsystem keys
digital subsystem keys
 Bit Order 405
 Clock Phase 402
 Clock Polarity 403
 Clock Rate 403
 Clock Skew 404
 Clock Source 404
 Data Type 412
 Direction 406
 Frame Polarity 408
 I Gain 406
 I Offset 407
 IQ Polarity 409
 Logic Type 413
 Loop Back Test Type 413
 N5102A Off On 415
 Negate I 407
 Negate Q 410
 Numeric Format 408
 Pass Through Preset 415
 Port Config 414
 Q Gain 409
 Q Offset 410
 Reference Frequency 404
 Rotation 410
 Scaling 411
 Signal Type 412
 Swap IQ 407
 Word Alignment 405
 Word Size 411
directories 12
directory structure 12
Index

discrete response data 10
discrete SCPI parameters 8
display 31
 secure mode 117
display blanking 38
display subsystem keys
 Brightness 35
display contrast 36
 Inverse Video Off On 36
 Update in Remote Off On 37
displayed amplitude units 34
DMOD softkey 45
Dmodulation subsystem
 markers, See markers
triggering, See triggers
Dmodulation subsystem keys
 # of Carriers 346, 350
 40.000 MHz 332, 337
 APCO 25 C4FM 333
 APCO 25 w/C4FM 346, 349
 APCO 25 w/C4QPSK 346, 349
 ARB Reference Ext Int 344
 ARB Sample Clock 345, 369, 395
 Bus 354
 Carrier Phases Fixed Random 347
 CDPD 346, 349
 Clear Header 335
 Continuous 351
 Custom Digital Mod State 346, 349
 DECT 346, 349
 Digital Modulation Off On 359
 EDGE 346, 349
 Ext 354
 Ext Delay Off On 357
 Ext Delay Time 356
 Ext Polarity Neg Pos 358
 Filter Alpha 334
 Filter BbT 334
 Free Run 353
 Freq Dev 341
 Freq Spacing 346
 Gate Active Low High 354
 Gated 351
 Gaussian 333
 GSM 346, 349
 I/Q Mod Filter Manual Auto 337
 I/Q Output Filter Manual Auto 332
 Immediate 344
 Initialize Table 349
 Insert Row 349
 Load/Store 348
 Marker Polarity Neg Pos 343
 Markers 338, 339
 Modulator Atten Manual Auto 336
 Multicarrier Atten Manual Auto 336
 Multicarrier Off On 346
 NADC 346, 349
 None 338, 339
 Nyquist 333
 Off 344
 On 344
 Optimize FIR For EVM ACP 334
 Patt Trig In 1, 2 356
 PDC 346, 349
 PHS 346, 349
 PWT 346, 349
 Rectangle 333
 Reference Freq 242, 343
 Reset & Run 353
 Root Nyquist 333
 Save Setup To Header 335
 Select File 346
 Single 351
 Store Custom Dig Mod State 350
 Symbol Rate 351
 TETRA 346, 349
 Through 332, 337
 Trigger & Run 353
 Trigger Key 354
 UN3/4 GSM Gaussian 333
 User FIR 333
 Do External Input Level Measurement softkey 286
 Do Power Search softkey 171, 172, 173, 174
documentation, list of 34
 downloading files 61
dual ARB subsystem 293
dual ARB subsystem keys
 alternate amplitude 308
clocking 292
generate sine 297
 markers, See markers
 runtime scaling 316
 scaling waveform files 316
 Through 300
 triggering, See triggers
 VCO clock 328, 329
dual ARB subsystem keys
 setting baseband frequency offset value 292
485
Skipped Points 306
40,000 MHz 300, 302
APCO 25 C4FM 295
Apply to Waveform 303, 306
ARB Off On 331
ARB Reference Ext Int 314
ARB Sample Clock Rate 317
Build New Waveform Sequence 317
Bus 324
carrier bandwidth 313
Clear Header 297
Clip \(|I+jQ|\) To 292
Clip \(|I|\) To 292
Clip \(|Q|\) To 292
Clipping 292
Clipping Type \(|I+jQ|, |I|, |Q|\) 292
Continuous 323
EDGE 295
EDGE EHSR 295
EDGE Wide 295
Edit Noise RMS Override 298
Edit Repetitions 317
Ext 324
Ext Delay Off On 327
Ext Delay Time 326
Ext Polarity Neg Pos 273, 328
Filter Alpha 293
Filter BbT 294
First Mkr Point 303, 306
Free Run 322
gate Active Low High 322
gated 319
Gaussian 295
Header RMS 298, 299
I/Q Mod Filter Manual Auto 302
I/Q Output Filter Manual Auto 300
Immediate 315
Insert Waveform 317
IS-95 295
IS-95 Mod 295
IS-95 Mod w/EQ 295
IS-95 w/EQ 295
Last Mkr Point 303, 306
Marker 1 2 3 4 303
Marker Polarity Neg Pos 311
Markers 304, 306, 308, 310
Modulation Filter Off On 296
Modulator Atten Manual Auto 301
Name and Store 317
noise 312, 313
None 308, 310
Nyquist 295
Off 315
On 315
Optimize FIR For EVM ACP 294
Patt Trig In 1 326
Patt Trig In 2 326
Rectangle 295
Reference Freq 314, 394
Reset & Run 322
Save Setup To Header 300
Scale Waveform Data 316
Scaling 316
Segment Advance 319
Select Waveform 329, 330
Set Marker Off All Points 304
Set Marker Off Range Of Points 303
Set Marker On Range Of Points 306
Single 319, 323
Through 300, 302
Toggle Marker 1 2 3 4 317
Trigger & Run 322
Trigger Key 324
UN3/4 GSM Gaussian 295
User FIR 295
Waveform Runtime Gaussian 316
WCDMA 295
dual arb subsystem keys
 Root Nyquist 295
Dual-Sine softkey 205, 211, 220
dwell points 153
dwell time 153

E
E8241A
 44A, 51A, 54A 421
E8247C, 57C, 67C 421
echo state 29
EDGE EHSR softkey
 See dual ARB subsystem keys
EDGE softkey 346, 349
 See dual ARB subsystem keys
EDGE Wide softkey
 See dual ARB subsystem keys
Edit Noise RMS Override softkey 298
Edit Repetitions softkey 317
Enter Secure Mode softkey 119
Erase All softkey 117
Erase and Overwrite All softkey 119
Erase and Sanitize All softkey 120
Erase softkey 118
ERROR 221 61
Error Info softkey 103, 104
Event 1 Polarity Neg Pos 82, 84
Event 2 Polarity Neg Pos 82, 84
Execute Cal softkey 18, 20, 21, 22
Ext 50 Ohm softkey 276, 289
Ext 600 Ohm softkey 276, 289
Ext BBG Ref Freq softkey
 See custom subsystem keys
Ext Data Clock Normal Symbol softkey
 See custom subsystem keys
Ext Detector Coupling Factor softkey
 See custom subsystem keys
Ext Delay Bits softkey 270
Ext Delay Off On softkey
custom subsystem 270
 Dmodulation subsystem 357
dual ARB subsystem 327
Ext Delay Time softkey 326, 356
Ext Detector Coupling Factor softkey 175
Ext In 600 Ohm I Offset softkey 279
Ext In 600 Ohm Q Offset softkey 280
Ext Polarity Neg Q Offset softkey
custom subsystem 271
 Dmodulation subsystem 358
dual ARB subsystem 273, 328
Ext Polarity Normal Inverted softkey
pulse modulation subsystem 226
Ext softkey
custom subsystem 253, 269
 Dmodulation subsystem 354
dual ARB subsystem 324
Ext softkeys
 Ext 195, 203
 Ext Coupling DC AC 190, 201, 216
 Ext Impedance 50 Ohm 600 Ohm 191, 201, 217
 Ext Pulse 231
 Ext 1 196
 Ext 1|2 222
 Ext 2 196, 206
extended numeric SCPI parameter 8
external filter 274
external frequency reference 343
external module stop frequency 110
External Ref Bandwidth softkey 150
external reference oscillator 150
external trigger source
custom subsystem 269
 Dmodulation subsystem 354
dual ARB subsystem 324
F
Fall Delay softkey
 See custom subsystem keys
Fall Time softkey 249
 See custom subsystem keys
file
 names 11, 50, 69
 retrieval 61
 systems 68
types 68
file names 12
filename 12
Filter Alpha softkey
 See custom subsystem keys
Filter BbT softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See GPS subsystem keys
filter external 274
filters
digital modulation subsystem 274, 287
Dmodulation subsystem 333, 337
dual ARB subsystem 300, 302
multitone subsystem 361, 363
two tone subsystem 388, 389
FIR data 53
FIR softkey 46
firmware revision 32
First Mkr Point softkey 303, 306
FIX4 softkey 254, 255
 See custom subsystem keys
 See GPS subsystem keys
fixed frequency 138, 139
fixed power 177
flat noise bandwidth 312
Flatness Off On softkey 130
flatness preset 129
FM softkeys
 FM ΦM Normal High BW 216
 FM Dev 207
 FM Dev Couple Off On 208
 FM Off On 206
 FM Path 1 2 200
 FM Rate 204
 FM Start Rate 204
 FM Sweep Rate 202
 FM Tone 1 Rate 204
 FM Tone 2 Amp Percent of Peak 202
 FM Tone 2 Rate 201
forgiving listening and precise talking 7
free run 322
Free Run softkey
 AM trigger source 195
 custom subsystem 266
 Dmodulation subsystem 353
 dual ARB subsystem 322
 FM trigger source 203
 list trigger source 157
 low frequency output subsystem 213
 phase modulation subsystem 221
 trigger subsystem 125
Freq Channels softkey 132,134
Freq CW softkey 138,139
Freq Dev softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
Freq Separation softkey 386
Freq Spacing softkey 346,370,371
Freq Span softkey 142
frequency
 CW mode 145
 internal modulation 209
 list sweep points 154
 list sweep query 155
 mode 138,139
 reference 141
 start 143
 stop 144
frequency and amplitude correction pair 128
Frequency hardkey 136,145
frequency modulation subsystem keys
 Bus 203
 Dual-Sine 205
 Ext 203
 Ext Coupling DC AC 201
 Ext Impedance 50 Ohm 600 Ohm 201
Ext2 206
 FM Dev 207
 FM Dev Couple Off On 208
 FM Off On 206
 FM Path 1 2 200
 FM Rate 204
 FM Source 206
 FM Start Rate 204
 FM Sweep Rate 202
 FM Tone 1 Rate 204
 FM Tone 2 Amp Percent of Peak 202
 FM Tone 2 Rate 201
Free Run 203
Gaussian 204
Incr Set 200
 Internal 1 2 206
 Internal 2 206
 Negative 205
 Noise 205
 Positive 205
 Ramp 205
 Sine 205
 Square 205
 Swept-Sine 205
 Triangle 205
 Trigger Key 203
 Uniform 204
frequency multiplier 112
 frequency subsystem 131
frequency subsystem keys
 Adjust Phase 149
 External Ref Bandwidth 150
 Freq Center 131
 Freq Channel 132,134
 Freq CW 138,139
 Freq Manual 138
 Freq Multiplier 140
 Freq Offset 135,136,140,141
 Freq Ref Off On 142
 Freq Ref Set 141
 Freq Span 142
 Freq Start 143,144
 Frequency 136,145
 Internal Ref Bandwidth 150
 Phase Ref Set 149
 Ref Oscillator Source Auto Off On 151
 Restore Factory Defaults 150
 Sweep Type 138,139
FSK softkey 46
Function Generator softkey 213
function shape 205

G
gain 278, 280
Gate Active Low High softkey
custom subsystem 267
Dmodulation subsystem 354
dual ARB subsystem 322
gated 351
Gated softkey
custom subsystem keys 264
Dmodulation subsystem 351
dual ARB subsystem 319
gated trigger 319
gated trigger mode
custom subsystem 264
Dmodulation subsystem 351
dual ARB subsystem 319
gateway 25
Gaussian 193, 218
Gaussian softkey 204, 211
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See GPS subsystem keys
generate sine 297
Goto Row softkey 374
GPIB Address softkey 24
GPS Ref (f0) softkey 381, 384
GPS Ref Clk Ext Int softkey 381, 383
GPS subsystem
Data Mode Raw Enc TLM 377
GPS subsystem keys
APCO 25 C4FM 377
Data Mode Raw Enc TLM 376
Doppler Shift 377
Filter Alpha 378
Filter BbT 379
FIX4 376
Gaussian 377
GPS Ref (f0) 381
GPS Ref Clk Ext Int 381
IQ Phase Normal Invert 380
IS-95 377
IS-95 Mod 377
IS-95 Mod w/EQ 377
IS-95 w/EQ 377
Nyquist 377
Optimize FIR For EVM ACP 379
P Code Pwr 380
PN15 376
PN9 376
Ranging Code C/A P C/A+P 380
Real-time GPS Off On 382
Rectangle 377
Root Nyquist 377
Satellite ID 382
UN3/4 GSM Gaussian 377
User File 376
User FIR 377
Gray Coded QPSK softkey
See custom subsystem keys
GSM softkey 346, 349
GTLOCAL 24

H
header description 72
header ID 72
Help Mode Single Cont softkey 104
hexadecimal values 14
High Crest Mode Off On softkey 275
hostname softkey 25

I
I offset external 279
I Offset softkey 281, 397
I/Q Adjustments Off On softkey 284, 398
I/Q calibration 18, 19
I/Q Calibration softkey 18
I/Q calibration start stop 20
I/Q clipping 292
I/Q Gain Balance Source 1 softkey 280
I/Q Mod Filter Manual Auto softkey 237, 287, 302,
337, 363, 390
I/Q Off On softkey 291, 399
I/Q Out Gain Balance softkey 278
I/Q Output Atten softkey 279
I/Q Output Filter Manual Auto softkey 235, 274, 300, 332, 361, 388
I/Q Scaling softkey
See custom subsystem keys
I/Q softkey 47
I/Q Timing Skew Path 283
I/Q timing Skew softkey 283
IDN command 105
IEEE 488.2 common command keys
Diagnostic Info 40
IEEE 488.2 common commands

- CLS 39
- ESE 39
- ESE? 39
- ESR? 40
- OPC 40
- OPC? 40
- PSC? 41
- RST 41
- SAV 42
- SRE 42
- SRE? 42
- STB? 43
- TRG 43
- WAI 43

Immediate softkey 315, 344
Incr Set hardkey 188, 199, 200, 227
See phase modulation subsystem keys
Initialize Phase Fixed Random softkey 373
Initialize Table softkey 349
Insert Row softkey 349
Insert Waveform softkey 317
Installed Board Info softkey 31
Int I/Q Skew Corrections RF BB Off softkey 288, 289
Int softkeys
 - Int Doublet 230, 231
 - Int Free-Run 230, 231
 - Int Gated 230, 231
 - Int Phase Polarity Normal Invert 275, 288
 - Int Triggered 230, 231
integer response data 10
interface module
 - See digital subsystem keys
Internal Ref Bandwidth softkey 150
Internal softkeys
 - Internal 1 222
 - Internal 1 2 196, 206
 - Internal 2 206, 222
 - Internal Monitor 213
 - Internal Square 230, 231
Inverse Video Off On softkey 36
IP address 25
IP Address softkey 26

IQ Delay softkey 276
IQ Phase Normal Invert softkey 380, 383
IS-95 Mod softkey
 - See dual ARB subsystem keys
 - See GPS subsystem keys
IS-95 Mod w/EQ softkey
 - See dual ARB subsystem keys
 - See GPS subsystem keys
IS-95 OQPSK softkey
 - See custom subsystem keys
IS-95 QPSK softkey
 - See custom subsystem keys
IS-95 softkey
 - See dual ARB subsystem keys
 - See GPS subsystem keys
IS-95 w/EQ softkey
 - See dual ARB subsystem keys
 - See GPS subsystem keys
IS-95 w/EQ softkey
 - See dual ARB subsystem keys
 - See GPS subsystem keys

L
LAN Config softkey 25
LAN, hostname 25
Language softkey 105, 114
Last Mkr Point softkey 303, 306
Leveling Mode softkey 175
LF Out softkeys
 - LF Out Amplitude 209
 - LF Out Off On 214
 - LF Out Stop Freq 209, 210, 217
 - LF Out Sweep Time 212
 - LF Out Tone 2 Ampl % of Peak 210
 - LF Out Tone 2 Freq 209, 210, 217
License Info softkey 32
list data 60
list frequency mode 138, 139
list power mode 177
List softkey 47, 68
list sweep data 67
list/sweep subsystem 152
Load From Selected File softkey 66, 72, 128, 369
load list data 72
Load List From Step Sweep softkey 159
Load/Store softkey 348
local 24
Local hardkey
 - communication subsystem 24
lock and level 75, 76, 77
low frequency output subsystem keys
 - Bus 213
DC 211
Dual-Sine 211
Ext 213
Free Run 213
Function Generator 213
Gaussian 211
Internal Monitor 213
LF Out Amplitude 209
LF Out Off On 214
LF Out Stop Freq 209, 210, 217
LF Out Sweep Time 212
LF Out Tone 2 Ampl % of Peak 210
Negative 212
Noise 211
Positive 212
Ramp 211
Sine 211
Square 211
Swept-Sine 211
Triangle 211
Trigger Key 213
Uniform 211
Low Pass Filter below 2 GHz Off On 44
Low-band filter subsystem keys
Low Pass Filter below 2 GHz Off On 44

M
Manual Freq softkey 138
Manual Mode Off On softkey 155, 162
Manual Point softkey 155
marker 1 2 3 4 338, 364, 365
Marker 1 2 3 4 softkey 304, 306
Marker 1 Polarity Neg Pos softkey
 Dmodulation subsystem 343
dual ARB subsystem 311
multitone subsystem 367
two tone subsystem 393
Marker 1 softkey
 Dmodulation subsystem 338, 339
dual ARB subsystem 308, 310
multitone subsystem 364, 365
two tone subsystem 390, 392
Marker 1|2|3|4 Polarity Neg Pos softkey
 AWGN ARB subsystem 240
Marker 1|2|3|4 softkey 238
Marker 1|2|3 softkey 239
Marker 2 Polarity Neg Pos softkey
 Dmodulation subsystem 343
dual ARB subsystem 311
multitone subsystem 367
two tone subsystem 393
Marker 2 softkey
 Dmodulation subsystem 338, 339
dual ARB subsystem 308, 310
multitone subsystem 364, 365
two tone subsystem 390, 392
Marker 3 Polarity Neg Pos softkey
 Dmodulation subsystem 343
dual ARB subsystem 311
multitone subsystem 367
two tone subsystem 393
Marker 3 softkey
 Dmodulation subsystem 338, 339
dual ARB subsystem 308, 310
multitone subsystem 364, 365
two tone subsystem 390, 392
Marker 4 Polarity Neg Pos softkey
 Dmodulation subsystem 343
dual ARB subsystem 311
multitone subsystem 367
two tone subsystem 393
Marker 4 softkey
 Dmodulation subsystem 338, 339
dual ARB subsystem 308, 310
multitone subsystem 364, 365
two tone subsystem 390, 392
Marker Delta Off On softkey 167
Marker Delta Off On softkey 167
Marker Delta Off On softkey 167
marker polarity 367, 393
Marker softkey 303
marker subsystem 165
turn off markers 165
Marker Value softkey 165
markers
ALC hold 238
 Dmodulation subsystem 338
dual ARB subsystem 308
multitone subsystem 364
 two tone subsystem 390
alternate amplitude
 AWGN subsystem 238
AWGN ARB subsystem 239
AWGN subsystem 238
clear all 304
clearing 303
marker polarity
 AWGN subsystem 240
 Dmodulation subsystem 343
dual ARB subsystem 311
multitone subsystem 367
two tone subsystem 393
RF blanking/pulse 239
 Dmodulation subsystem 339
dual ARB subsystem 310
multitone subsystem 365
two tone subsystem 392
setting 306
 shifting points 305
mass memory subsystem keys
 Binary 68
Delete All NVWFM Files 70
Delete All WFM Files 420
Delete File 71
List 68
Load From Selected File 72
State 68
Store To File 73
User Flatness 68
Master softkey 160
mcarrier 349
MDMOD softkey 47
measurement units 126
memory 12
memory subsystem 52, 54, 56, 66
memory subsystem keys 59, 60
 Add Comment To Seq[n] Reg[nn] 67
All files 49
All softkey 66
Binary 45
Bit 45
Copy 50, 69
Data PRAM 58
Delete All ARB DMOD Files 63
Delete All ARB MTONE Files 65
Delete All Binary Files 63
Delete All Bit Files 63
Delete All Files 63
Delete All FIR Files 63
Delete All FSK Files 64
Delete All I/Q Files 64
Delete All List Files 64
Delete All MDMOD Files 65
Delete All SEQ Files 65
Delete All Shape Files 65
Delete All State Files 65
Delete All UFLT Files 66
Delete All WFM Files 71
Delete File 66
DMOD 45
FIR 46
FSK 46
I/Q catalog 47
List 47
Load From Selected File 66
MDMOD 47
MTONE 48
Oversample Ratio 53
Rename File 67, 73
SEQ 48
SHAPE 48
State 49
Store To File 67
User Flatness 49
Meter Address softkeys 27
Meter Channel A B softkey 27
Meter Timeout softkey 28
Mod On/Off hardkey 75
modulation 260, 341, 342
Modulation Filter Off On softkey 296
modulation off on 75
Modulator Atten (nnn dB) Manual Auto softkey 285
Modulator Atten Manual Auto softkey 236, 284, 285,
 301, 336, 362, 388
Modulator I/Q Output Atten softkey 286
module, digital signal interface
 See digital subsystem keys
move, files 67, 73
MSGPS subsystem keys
 GPS Ref (f0) 384
 GPS Ref Clk Ext Int 383
IQ Phase Normal Invert 383
Number of Satellites 384
Pause/Resume 383
Real-time MSGPS Off On 385
Restart 384
Index

Scenario 385
Select Scenario 384
MSK softkey
 See custom subsystem keys
MSUS 13, 68
MTONE softkey 48
Multicarrier Off On softkey 346
multicarrier setup 346
multiplier 111
multitone markers, See markers
Multitone Off On softkey 375
multitone subsystem keys
 40.000 MHz 361, 363, 389
 ARB Reference Ext Int 369, 395
Clear Header 360
Freq Spacing 370, 371
Goto Row 374
I/Q Mod Filter Manual Auto 363
I/Q Output Filter Manual Auto 361
Initialize Phase Fixed Random 373
Load From Selected File 369
Marker 1 364, 365
Marker 1 Polarity Neg Pos 367
Marker 2 364, 365
Marker 2 Polarity Neg Pos 367
Marker 3 364, 365
Marker 3 Polarity Neg Pos 367
Marker 4 364, 365
Marker 4 Polarity Neg Pos 367
Modulator Atten Manual Auto 362
Multitone Off On 375
None 364, 365
Number Of Tones 370, 372
Random Seed Fixed Random 373
Reference Freq 368
Save Setup To Header 360
Store To File 370
Through 361, 363, 387, 389
Toggle State 370, 374
mV softkey 126
mVemf softkey 126
clock source 404
data type 412
direction 406
frame polarity 408
I gain 406
i offset 407
iq polarity 409
logic type 413
loop back test type 413
N5102A off on 415
negate I 407
negate Q 410
numeric format 408
pass through 415
port config 414
Q gain 409
Q offset 410
reference frequency 404
rotation 410
scaling 411
signal type 412
swap IQ 407
word alignment 405
word size 411
NADC softkey 346, 349
Name and Store softkey 317
Negative softkey 194, 205, 212, 219
noise 312, 313
noise bandwidth 312
Noise Seed Fixed Random softkey 243
Noise softkey 205, 211, 220
noise state on 312
None softkey 118, 238, 239, 264, 308, 310, 338, 339, 364, 365, 390, 392
non-volatile memory 12
Normal Inverted Polarity 226
Number of Satellites softkey 384
Number Of Tones softkey 370, 372
numeric boolean response data 10
numeric SCPI parameter 7
numeric, extended SCPI parameter 8
Nyquist softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See GPS subsystem keys

N
N5102A
 bit order 405
clock phase 402
clock polarity 403
clock rate 403
clock skew 404

O
octal values 14
OEM
 frequency band 111
 multiplier 112
 on off, select 110
 start 109
 stop 110
Off softkey 276, 289, 315, 344
offset frequency 141
offset, common mode 277
offset, differential Q 278
offset, ext I/Q signal 277
On softkey 315, 344
Optimize FIR For EVM ACP softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See GPS subsystem keys
Optimize for (nnn sps) Bandwidth softkey 286
Optimize S/N Ratio softkey 178
options
 007, marker subsystem 165
 015, wideband digital modulation subsystem 397
 403
 AWGN real-time subsystem 244
 AWGN subsystem 235
 409
 GPS subsystem 376
 424
 GPS subsystem 376
 MSGPS subsystem 383
 601 or 602
 all subsystem 234, 386
 custom subsystem 245
 digital modulation subsystem 274
 Dmodulation subsystem 332
 dual ARB subsystem 292
 multitone subsystem 360
Options Info softkey 32
OQPSK softkey
 See custom subsystem keys
oscillator
 bandwidth 150
 reference 150
 source 151
Output Blanking Off On Auto softkey 74
output settled, RF off 77
output subsystem
 output settled 75
 polarity, output settled 75
 retrace, output settled 76
 RF off, output settled 77
output subsystem keys
 Mod On/Off 75
 Output Blanking Off On Auto 74
 RF On/Off 77
Oversample Ratio softkey 53
Overwrite softkey 118

P
P Code Pwr softkey 380
parameter types. See SCPI commands parameter types
paths, SCPI command tree 6
Patt Trig In 1 softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
Patt Trig In 2 326
Patt Trig In 2 softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
Pause/Resume softkey 383
PDC softkey 346, 349
persistent
 power on states 115
 preset states 115
phase adjustment 149
Phase Dev softkey
 See custom subsystem keys
phase modulation subsystem keys
 ΦM Sweep Time 220
 FM ΦM Normal High BW softkey 216
 ΦM Dev 223
 ΦM Dev Couple Off On 224
 ΦM Off On 222
 ΦM Path 1 2 215
 ΦM Tone 2 Ampl Percent of Peak 219
 ΦM Tone 2 Rate 218
 Bus 221
 Bus, Free run, Ext, Trigger Key 221
 Dual-Sine 220
 Ext Coupling DC AC 216
 Ext Impedance 50 Ohm 600 Ohm 217
Ext1|2 222
Free Run 221
Incr Set 215, 225
Internal 1 222
Internal 2 222
Noise 220
Ramp 220
Sine 220
Square 220
Swept-Sine 220
Triangle 220
Trigger Key 221
Phase Polarity Normal Invert softkey 262
Phase Ref Set softkey 149
PHS softkey 346, 349
PN11 softkey
 See custom subsystem keys
PN15 softkey
 See custom subsystem keys
See GPS subsystem keys
PN20 softkey
 See custom subsystem keys
PN23 softkey
 See custom subsystem keys
PN9 Mode Preset softkey 116
PN9 softkey
 See custom subsystem keys
See GPS subsystem keys
points
dwell 153
 selection 155
polarity
burst gate 78, 79
data clock input 78, 80
data clock output 81, 82
data input 78, 80
data output 81, 84
digital modulation subsystem 288
event 1 2 3 4 82, 84
I/Q 275
markers
 AWGN ARB subsystem 240
 Dmodulation subsystem 343
dual ARB subsystem 311
 multitone subsystem 367
two tone subsystem 393
symbol sync input 79, 80
symbol sync output 82, 84
triggers
custom subsystem 267, 271
dmodulation subsystem 354, 358
dual ARB subsystem 322, 328
Positive softkey 194, 205, 212, 219
power
 list sweep query 156, 157
 start 182
 stop 182
 units 126
power meter
 address 27
 channel B 27
timeout
 GPIB 28
Power Meter softkey 28
Power On Last Preset softkey 112
power on states 115
Power Search Manual Auto softkey 171, 174
Power Search Reference Fixed Mod softkey 172, 173
power subsystem 169
power subsystem keys 178, 179
 ALC BW 169
 ALC BW Auto 169
 ALC Off On 176
 Ampl Offset 183
 Ampl Ref Off On 181
 Ampl Ref Set 181
 Ampl Start 182
 Ampl Stop 182
 Amplitude 183, 184
 Atten Hold Off On 177
 Do Power Search 171, 172, 173, 174
 Ext Detector Coupling Factor 175
 Leveling Mode 175
 Power Search Manual Auto 171, 172, 173, 174
 Set ALC Level 170
 Set Atten 176
power–on 31
PRAM
 data pattern 255
downloads 58
 list 59
PRAM DATA BLOCK 60
PRAM LIST 60
PRAM? 60
precise talking and forgiving listening 7
predefined setups, custom subsystem 264
preset 90
Preset hardkey 114
Preset List softkey 129, 160
Preset Normal User softkey 116
preset states 115
protection state 178, 179
Pulse Frequency 227
pulse modulation subsystem 226, 227
pulse modulation subsystem keys 229
 Delay Step 227
 Ext Pulse 231
 Int Doublet 230, 231
 Int Free–Run 230, 231
 Int Gated 230, 231
 Int Triggered 230, 231
 Internal Square 230, 231
 Pulse Delay 226
 Pulse Off On 231
 Pulse Period 228
 Pulse Rate 227
 Pulse Width 229
Pulse Period Increment 229
Pulse/RF blanking 310
pulse/RF blanking 239
pulse/rf blanking 239
pulse/RF blanking markers
 Dmodulation subsystem 339
 dual ARB subsystem 310
 multitone subsystem 365
 two tone subsystem 392
PWT softkey 346, 349
Q
Q external offset 280
Q Offset softkey 281, 397
QPSK softkey
 See custom subsystem keys
Quadrature Skew softkey 282, 398
query
 frequency points 155
 power points 156, 157
Query, IDN? 105
quotes, SCPI command use of 14
R
ramp positive/negative 205
Ramp softkey 205, 211, 220
ramp sweep 162
 range 142
 selecting 161
span 142
time 163
ramp, low frequency 212
Random Seed Fixed Random softkey 373
Ranging Code C/A P C/A+P softkey 380
ratio, source 290
real response data 9
Real–time AWGN Off On softkey 244
real–time AWGN subsystem keys
 Bandwidth 244
 Real–time AWGN Off On 244
real–time custom triggering, See triggers
Real–time GPS Off On softkey 382
Real–time MSGPS Off On softkey 385
real–time noise 312
RECALL Reg softkey 41
recall state files 67
Rectangle softkey
 See custom subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See GPS subsystem keys
rectangular waveguide 111
Ref Oscillator Source Auto Off On softkey 151
Reference Freq softkey
 See AWGN subsystem keys
 See Dmodulation subsystem keys
 See dual ARB subsystem keys
 See GPS subsystem keys
reference oscillator bandwidth 150
reference oscillator internal 150
remote 37
Rename File softkey 67, 73
reset & run 322, 353
Reset & Run softkey
 Dmodulation subsystem 353
 dual ARB subsystem 322
Reset RS–232 softkey 29
response data types. See SCPI commands re-
sponse types
Restart softkey 384
Restore Factory Defaults softkey 150
Restore Sys Defaults softkey 115
Retrace Off On softkey 157
retrace, sweeps 157
retrigger, single mode 315, 344
Revert to Default Cal Settings softkey 19, 22
revision number, firmware 32
rf blanking 310
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF blanking/pulse markers</td>
</tr>
<tr>
<td>Dmodulation subsystem 339</td>
</tr>
<tr>
<td>dual ARB subsystem 310</td>
</tr>
<tr>
<td>multitone subsystem 365</td>
</tr>
<tr>
<td>two tone subsystem 392</td>
</tr>
<tr>
<td>RF On/Off hardkey 77</td>
</tr>
<tr>
<td>Rise Delay softkey 250</td>
</tr>
<tr>
<td>See custom subsystem keys</td>
</tr>
<tr>
<td>Rise Time softkey 251</td>
</tr>
<tr>
<td>See custom subsystem keys</td>
</tr>
<tr>
<td>RMS header info 298, 299</td>
</tr>
<tr>
<td>RMS noise header info 298</td>
</tr>
<tr>
<td>Root Nyquist softkey</td>
</tr>
<tr>
<td>See custom subsystem keys</td>
</tr>
<tr>
<td>See Dmodulation subsystem keys</td>
</tr>
<tr>
<td>See dual ARB subsystem keys</td>
</tr>
<tr>
<td>See GPS subsystem keys</td>
</tr>
<tr>
<td>rotate markers 305</td>
</tr>
<tr>
<td>route subsystem keys</td>
</tr>
<tr>
<td>Burst Gate In Polarity Neg Pos 78, 79</td>
</tr>
<tr>
<td>Data Clock Out Neg Pos 81</td>
</tr>
<tr>
<td>Data Clock Polarity Neg Pos 78, 80, 82</td>
</tr>
<tr>
<td>Data Out Polarity Neg Pos 81, 84</td>
</tr>
<tr>
<td>Data Polarity Neg Pos 78, 80</td>
</tr>
<tr>
<td>DATA/CLK/SYNC Rear Outputs Off On 83</td>
</tr>
<tr>
<td>Event 1 Polarity Neg Pos 82, 84</td>
</tr>
<tr>
<td>Event 2 Polarity Neg Pos 82, 84</td>
</tr>
<tr>
<td>Symbol Sync Out Polarity Neg Pos 82, 84</td>
</tr>
<tr>
<td>Symbol Sync Polarity Neg Pos 79, 80</td>
</tr>
<tr>
<td>RS–232 Baud Rate softkey 29</td>
</tr>
<tr>
<td>RS–232 ECHO 0ff On softkeys 29</td>
</tr>
<tr>
<td>RS–232 reset 29</td>
</tr>
<tr>
<td>RS–232 Timeout softkeys 30</td>
</tr>
<tr>
<td>Run Complete Self Test softkey 43</td>
</tr>
<tr>
<td>runtime scaling 316</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Sanitize softkey 118</td>
</tr>
<tr>
<td>Satellite ID softkey 382</td>
</tr>
<tr>
<td>save flatness data 129</td>
</tr>
<tr>
<td>Save Reg softkey 42</td>
</tr>
<tr>
<td>Save Seq[n] Reg[n] softkey 42</td>
</tr>
<tr>
<td>Save Setup To Header softkey 236, 300, 335, 360, 387</td>
</tr>
<tr>
<td>save state files 67</td>
</tr>
<tr>
<td>Save User Preset softkey 116</td>
</tr>
<tr>
<td>Scale Waveform Data softkey 316</td>
</tr>
<tr>
<td>scaling</td>
</tr>
<tr>
<td>during playback 316</td>
</tr>
</tbody>
</table>
amplitude modulation
AWGN
AWGN real-time
calibration
communication
correction
custom
diagnostic
digital modulation
digital subsystem N5102A
display
Dmodulation
dual ARB
frequency
frequency modulation
GPS subsystem
IEEE 488.2 common commands
list/sweep
low frequency output
low-band filter
marker
mass memory
MSGPS subsystem
multitone
output
phase modulation
power
pulse modulation
route
status
system
trigger
Tsweep
screen blanking
screen capture
Screen Saver Delay
1 hr softkey
Screen Saver Mode softkeys
Screen Saver Off softkeys
secure wave directory
security functions
erase
none
overwrite
sanitize
secure display
secure mode
segment advance
softkey
trigger mode
trigger response
Select File softkey
Select Scenario softkey
Select Seq softkey
Select Waveform softkey
SEQ softkey
sequence files
sequence, creating
Set ALC Level softkey
Set Atten softkey
Set Marker Off All Points softkey
Set Marker Off Range Of Points softkey
Set Marker On Range Of Points softkey
setting markers
SHAPE softkey
shift markers
signal to noise ratio
setting
Sine softkey
See low frequency output subsystem keys
See phase modulation subsystem keys
single
segment advance
trigger mode
custom subsystem
Dmodulation subsystem
dual ARB subsystem
trigger responses
Single softkey
custom subsystem
Dmodulation subsystem
dual ARB subsystem
dual ARB subsystem keys
Single Sweep softkey
skew
skew, I/Q
adjustment
path
state
Slave softkey
software options
source
bbg1
external
internal
sum
summing ratio
source I/Q modulator 289
source trigger
custom subsystem 269
Dmodulation subsystem 354
dual ARB subsystem 324
Span Type User Full softkey 174
Square softkey 205, 211, 220
start frequency 143
Start Frequency softkey 20, 22, 173
State softkey 49, 68
Status Byte Register commands
IDN? 40
RCL 41
status register commands 86-101
step and list frequencies 138, 139
step and list power 177
Step Dwell softkey 161
step sweep
selecting 155, 161
stop frequency 144
Stop Frequency softkey 20, 23, 174
Store Custom Dig Mod State softkey 350
store list data 73
Store To File softkey 67, 73, 129, 370
string response data 10
string SCPI parameter 9
strings, quote usage 14
Subnet Mask softkey 26
subsystems
correction 128
frequency 131
list/sweep 152
marker 165
power 169
Tsweep 185
Summing Ratio (SRC1/SRC2) x.xx dB softkey 290
sweep
abort 185
commands 152-164
Control softkey 160
Direction Down Up softkey 152
rate 202
Retrace Off On softkey 157
Time Manual Auto softkey 163
Time softkey 163
Type List Step softkey 158
Type softkey 161, 177
Sweep Repeat Single Cont softkey 123
Swept-Sine softkey 205, 211, 220
Symbol Out Polarity Neg Pos softkey 82
Symbol Rate softkey 351
Symbol Sync Out Polarity Neg Pos softkey 84
Symbol Sync Polarity Neg Pos softkey 79, 80
system
capability 102
date 103
preset 114
system commands 102-122
system subsystem keys
8648A/B/C/D 105, 114
8656B, 8657A/B 105, 114
8657D NADC 105, 114
8657D PDC 105, 114
8657J PHS 105, 114
Activate Secure Display 117
Alternate Sweep Off On 102
Alternate Sweep Seq 0, Register 1-9 102
Diagnostic Info 105
Enter Secure Mode 119
erase 118
Erase All 117
Erase and Overwrite All 119
Erase and Sanitize All 120
Error Info 103, 104
Help Mode Single Cont 104
none 118
overwrite 118
PN9 Mode Preset 116
Power On Last Preset 112
Preset 114
Preset Normal User 116
Restore Sys Defaults 115
sanitize 118
Save User Preset 116
SCPI 105, 114
Screen Saver Delay
1 hr 120
Screen Saver Mode 120
Screen Saver Off On 121
Time/Date 103, 121
View Next Error Message 103, 104
T
table setup, multitone 370
TETRA softkey 346, 349
through 361, 363, 387, 389
time, dwell 153
Time/Date softkey 103, 121
timeout RS-232 30
Toggle Marker 1 2 3 4 softkey 317
toggle state 370
Toggle State softkey 370, 374
Triangle softkey 205, 211, 220
trigger 354
 segment advance 319
Trigger & Run softkey
custom subsystem 266
 Dmodulation subsystem 353
dual ARB subsystem 322
trigger commands 123-125
trigger custom
 free 266
 single 264
Trigger In Polarity Neg Pos softkey 124
Trigger Key softkey
 Dmodulation subsystem 354
dual ARB subsystem keys 324
frequency modulation subsystem 203
list/sweep subsystem 157
low frequency output subsystem 213
phase modulation subsystem 221
trigger subsystem 125
trigger key trigger source
custom subsystem 269
 Dmodulation subsystem 354
dual ARB subsystem 324
Trigger Out Polarity Neg Pos softkey 124
trigger source, list sweep 157
trigger subsystem keys
 Bus 125, 195
 Ext 125, 195
 Free Run 125, 195
 Single Sweep 123
 Sweep Repeat Single Cont 123
 Trigger In Polarity Neg Pos 124
 Trigger Key 125
 Trigger Out Polarity Neg Pos 124
trigger sweep
 bus 195
trigger sweep
 external 195
 immediate 195
 key 195
triggers
collector selection
Modulator Atten Manual Auto 388
None 390,392
Save Setup To Header 387
two tone Off On 396

U
UN3/4 GSM Gaussian softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See GPS subsystem keys
Uniform softkey 193,204,211
unit subsystem keys
dBuV 126
dBuVemf 126
mV 126
mVemf 126
units 126
uV 126
uVemf 126
units 34,126
unprotected
memory subsystem 61
unspecifed RMS 298,299
unspecifed RMS noise 298
Update in Remote Off On softkey 37
uploading files 61
User File softkey 252
See custom subsystem keys
See GPS subsystem keys
User FIR softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See GPS subsystem keys
user flatness corrections, state 130
User Flatness softkey 49,68
user flatness, delete files 66
User FSK softkey
See custom subsystem keys
User I/Q softkey
See custom subsystem keys
uV softkey 126
uVemf softkey 126

W
waveform
multitone 360
sequence, dual ARB 317
waveform clipping 292
Waveform Length softkey 241
Waveform Runtime Scaling softkey 316
waveform scaling
during playback 316
files 316
waveform shape 205
waveguide 111
WB IQ Calibration 21,22
WB IQ calibration full 22
WB IQ calibration start 22
WB IQ calibration stop 23
WCDMA softkey
See dual ARB subsystem keys
Wide Band IQ Calibration 20
wideband digital modulation subsystem keys
I Offset 397
I/Q Adjustments Off On 398
Q Offset 397
Quadrature Skew 398
window state 38
WR bands 111