Keysight
N5166B CXG
N5171B/72B/73B EXG
N5181B/82B/83B MXG
X-Series Signal Generators
Notices

© Keysight Technologies, Inc. 2012-2020

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgments

Manual Part Number

N5180-90057

Edition

Edition 1, June 2020
Supersedes: July 2019

Printed in USA/Malaysia

Published by:
Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public.

Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula

The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:

http://www.keysight.com/find/mxg

To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:

http://www.keysight.com/find/MyKeysight

Information on preventing instrument damage can be found at:

www.keysight.com/find/PreventingInstrumentRepair

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:

http://www.keysight.com/find/techsupport
Table of Contents

1. **SCPI Basics**
 - Command Reference Information .. 32
 - SCPI Command Listings ... 32
 - Key and Data Field Cross Reference .. 32
 - Supported Field .. 32
 - SCPI Basics .. 33
 - Common Terms .. 33
 - Command Syntax ... 34
 - Command Types .. 36
 - Command Tree ... 36
 - Command Parameters and Responses .. 37
 - Program Messages .. 42
 - File Name Variables .. 43
 - File Types and Directory Structure .. 44
 - MSUS (Mass Storage Unit Specifier) Variable 45
 - Quote Usage with SCPI Commands .. 46
 - Binary, Decimal, Hexadecimal, and Octal Formats 47

2. **Basic Function Commands**
 - Correction Subsystem ([:SOURce]:CORRection) .. 50
 - :FLATness:FREQuency .. 50
 - :FLATness:INITialize:FSStep .. 50
 - :FLATness:LOAD .. 50
 - :FLATness:PAIR ... 51
 - :FLATness:POINts ... 51
 - :FLATness:PRESet ... 51
 - :FLATness:STEP:POINts ... 51
 - :FLATness:STEP:STARt ... 52
 - :FLATness:STEP:STOP ... 52
 - :FLATness:STORE ... 52
 - :PMETer:CHANnel ... 53
 - :PMETer:COMMunicate:LAN:DEVice .. 53
 - :PMETer:COMMunicate:LAN:IP ... 53
 - :PMETer:COMMunicate:LAN:PORT ... 54
 - :PMETer:COMMunicate:TYPE ... 54
 - :PMETer:COMMunicate:USB:DEVice ... 55
 - [:STATe] ... 55
 - Digital Modulation Subsystem—N5166B/72B ([:SOURce]) 56
 - :BURSt:STATe .. 56
 - :DM:CORRection:OPTimization ... 56
 - :DM:EXTernal:INPut:ATTen ... 56
 - :DM:EXTernal:INPut:ATTen:LEVel ... 57
Contents

:DM:EXTernal:POLarity 58
:DM:INternal:CHANnels:CORRection[:STATe] 59
:DM:INternal:CHANnels:OPTimization 59
:DM:INternal:EQUalization:FILTER:SELect 60
:DM:INternal:EQUalization:FILTER:STATe 60
:DM:IQADjustment:DElay 61
:DM:IQADjustment:EXTernal:CMRange 61
:DM:IQADjustment:EXTernal:QOFFset 63
:DM:IQADjustment:EXTernal:QSKew 64
:DM:IQADjustment:GAIN 65
:DM:IQADjustment:QOFFset 66
:DM:IQADjustment:QSKew 67
:DM:IQADjustment:SKEW 67
:DM:IQADjustment[:STATe] 68
:DM:POLarity[:ALL] .. 68
:DM:SOURce ... 68
:DM:SRATio .. 69
:DM:STATe .. 69

Frequency Subsystem ([:SOURce]) 70

:FREQuency:CENTer .. 70
:FREQuency:CHANnels:BAND 70
:FREQuency:CHANnels:NUMBer 72
:FREQuency:CHANnels[:STATe] 73
:FREQuency[:CW] ... 74
:FREQuency:FIXed .. 74
:FREQuency:LSPurs:STATe 75
:FREQuency:MODE ... 75
:FREQuency:MULTiplier 76
:FREQuency:OFFSet ... 76
:FREQuency:OFFSet:STATe 77
:FREQuency:REFerence 77
:FREQuency:REFerence:SET 77
:FREQuency:REFerence:STATe 77
:FREQuency:SPAN .. 78
:FREQuency:STARt .. 78
:FREQuency:STOP ... 78
:PHASE:REFerence ... 79
:PHASE[:ADJust] ... 79
:ROSCillator:BWandwith:EXTernal 79
:ROSCillator:FREQuency:BBG 80
List/Sweep Subsystem ([SOURce]) .. 83
:ROSCillator:FREQuency:EXTernal .. 80
:ROSCillator:OVEN:STATe ... 80
:ROSCillator:OVEN:TUNE ... 81
:ROSCillator:SOURce ... 81
:ROSCillator:SOURce:AUTO ... 81
:ROSCillator:OVEN:TUNE ... 82
List/Sweep Subsystem ([SOURce]) .. 83
 :LIST:CPOInt? .. 83
 :LIST:DIRection ... 84
 :LIST:DWELL ... 84
 :LIST:DWELL:POINts? .. 84
 :LIST:DWELL:TYPE ... 85
 :LIST:FREQuency ... 85
 :LIST:FREQuency:POINts ... 85
 :LIST:MANual ... 85
 :LIST:MODE ... 86
 :LIST:OPTions ... 86
 :LIST:POWer ... 87
 :LIST:POWer:POINts .. 87
 :LIST:RETRace ... 88
 :LIST:TRIGger:EXTERNAL:SOURce .. 88
 :LIST:TRIGger:INTERNAL:SOURce 89
 :LIST:TRIGger:SLOPe ... 89
 :LIST:TRIGger:SOURce .. 90
 :LIST:TYPE ... 90
 :LIST:TYPE:LIST:INITialize:FSTep 91
 :LIST:TYPE:LIST:INITialize:PRESet 91
 :LIST:WAVEform ... 91
 :LIST:WAVEform:POINts ... 92
 :SWEep:ATTen:PROTection:[STATe] .. 92
 :SWEep:CPOInt? ... 93
 :SWEep:DWELL ... 93
 :SWEep:[FREQuency]:STEP:[LInear] 93
 :SWEep:[FREQuency]:STEP:LOGarithmic 94
 :SWEep:POINts ... 94
 :SWEep:SPACing .. 94
 Marker Subsystem–N5173B/83B ([SOURce]) ... 96
 :MARKer:AMPlitude:[STATe] .. 96
 :MARKer:AMPlitude:VALue ... 96
 :MARKer:AOFF ... 96
 :MARKer:DELTa ... 97
 :MARKer:MODe ... 97
 :MARKer:REFerence .. 97
 :MARKer[0]:12345678910111213141516171819:FREQuency 98
 :MARKer[0]:12345678910111213141516171819:[STATe] 98
 Power Subsystem ([SOURce]:POWer) .. 99
 :ALC:BANDwidth ... 99
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ALTernate:AMPLitude</td>
<td>108</td>
</tr>
<tr>
<td>:ALTernate:TRIGger:EXTernal[:SOURce]</td>
<td>109</td>
</tr>
<tr>
<td>:ALTernate:TRIGger[:SOURce]</td>
<td>109</td>
</tr>
<tr>
<td>:ALTernate[:STATe]</td>
<td>110</td>
</tr>
<tr>
<td>:ATTenuation:AUTO</td>
<td>111</td>
</tr>
<tr>
<td>:ATTenuation:BYPass</td>
<td>111</td>
</tr>
<tr>
<td>:HARMonics</td>
<td>112</td>
</tr>
<tr>
<td>[:LEVel]:MINimum:LIMit</td>
<td>113</td>
</tr>
<tr>
<td>[:LEVel]:IMMediate:OFFSet</td>
<td>112</td>
</tr>
<tr>
<td>[:LEVel]:IMMediate]:AMPLitude</td>
<td>113</td>
</tr>
<tr>
<td>:MODE</td>
<td>114</td>
</tr>
<tr>
<td>NOISe[:STATe]</td>
<td>114</td>
</tr>
<tr>
<td>:PROTection[:STATe]</td>
<td>115</td>
</tr>
<tr>
<td>:REFerence</td>
<td>115</td>
</tr>
<tr>
<td>:REFerence:STATe</td>
<td>116</td>
</tr>
<tr>
<td>:START</td>
<td>116</td>
</tr>
<tr>
<td>:STOP</td>
<td>116</td>
</tr>
<tr>
<td>:USER:MAX</td>
<td>117</td>
</tr>
<tr>
<td>:USER:ENABle</td>
<td>117</td>
</tr>
<tr>
<td>Vector Modulation Subsystem—N5166B/72B/82B [:SOURce]:IQ</td>
<td>118</td>
</tr>
<tr>
<td>:AUX:INPut:STRobe[:MODE]</td>
<td>118</td>
</tr>
<tr>
<td>:AUX:INPut:STRobe:SLOPe</td>
<td>118</td>
</tr>
<tr>
<td>:AUX:OPERating:MODE</td>
<td>119</td>
</tr>
<tr>
<td>:AUX:OUTPut:STRobe:SLOPe</td>
<td>119</td>
</tr>
<tr>
<td>:OPERating:MODE</td>
<td>120</td>
</tr>
<tr>
<td>:OUTPut:IMPairments:AWGN:BARdwidth</td>
<td>BWIdth</td>
</tr>
<tr>
<td>:OUTPut:IMPairments:AWGN:EBNO</td>
<td>121</td>
</tr>
</tbody>
</table>
3. System Commands

Calibration Subsystem (:CALibration) .. 134
 :ALC:MODulator:BIAS ... 134
 :BBG:SKEW RFOut|EXTERNAL ... 134
 EXternal[1]:2|EXTERNAL .. 134
 :IQ:DC .. 134
 :IQ:DEFault .. 134
 :IQ:FULL .. 134
 :IQ:START .. 134
 :IQ:STOP .. 134
 :IQ:TYPE .. 134
 :IQ:[USER] .. 134

Communication Subsystem (:SYSTem:COMMunicate) 138
 :GPIB:ADDress .. 138
 :GTLocal .. 138
 :LAN:CONFig .. 138
 :LAN:DEFaults .. 138
 :LAN:DESCription .. 138
 :LAN:DHCP:EXPIres .. 138
 :LAN:DHCP:OBTained .. 138
 :LAN:DHCP:SERVer .. 138
 :LAN:DNS:DNS[|DNS] ... 138
 :LAN:DNS:[|DNS] ... 138
 :LAN:DOMain .. 138
 :LAN:GATeway .. 138
 :LAN:HOSTname .. 138

:OUTPut:IMPairments:AWGN:IBWidth ... 122
:OUTPut:IMPairments:AWGN:IBWidth:|AUTO| 122
:OUTPut:IMPairments:AWGN:MUX SUM|SIGNal|NOISe 122
:OUTPut:IMPairments:AWGN:POWER:SIGNal ... 125
:OUTPut:IMPairments:AWGN:SBRate .. 126
:OUTPut:IMPairments:AWGN:SNR ... 126
:OUTPut:IMPairments:AWGN:SNRFormat .. 127
:OUTPut:IMPairments:AWGN:[STATE] .. 127
:OUTPut:IMPairments:PHASE:NOISe:F1 .. 128
:OUTPut:IMPairments:PHASE:NOISe:F2 .. 128
:OUTPut:IMPairments:PHASE:NOISe:LMID .. 129
:OUTPut[1]:TRIGger:CONTinuous:|TYPE| FREE|TRIGger .. 129
:OUTPut[1]:TRIGger:EXTERNAL:DELay .. 130
:OUTPut[1]:TRIGger:EXTERNAL:POLarity .. 130
:OUTPut[1]:TRIGger:EXTERNAL:SOURce ... 130
:OUTPut[1]:TRIGger:SOURce .. 131
:OUTPut[1]:TRIGger:STATus .. 131
:OUTPut:IMPairments:PHASe:NOISe:[STATE] 129
:OUTPut:IMPairments:PHASE:NOISe:LMID .. 129
:OUTPut:IMPairments:AWGN:[STATE] .. 127
:OUTPut:IMPairments:AWGN:SNRFormat .. 127
:OUTPut:IMPairments:AWGN:SNR .. 127
:OUTPut:IMPairments:AWGN:POWER:IBWidth 122
:OUTPut:IMPairments:AWGN:POWER:SIGNal ... 125
Contents

::LAN::IDENTify. .. 141
::LAN::IP. .. 142
::LAN::MDNS. ... 142
::LAN::REStart. .. 143
::LAN::SUBNet. .. 143

Diagnostic Subsystem (:DIAGnostic::CPU::INFormation) ... 144
::CC0unt::ATTenuator ... 144
::CC0unt::PON .. 144
::CC0unt::PROtection ... 144
::DISPlay::OTIMe .. 144
::LiCense::AUXiliary ... 144
::LiCense::WAveform ... 145
::OPTions ... 146
::OPTions::DETail ... 146
::OTIMe .. 146
::REVision .. 146
::SDAtE? .. 146
::WLICence::VAUe ... 147

Display Subsystem (:DISPlay) ... 148
::ANNotation::AMPLitude::.STATE] ... 148
::ANNotation::AMPLitude::UNIT .. 148
::ANNotation::FREQuency::.STATE] ... 148
::ANNotation::CLOCK::DATE::FORMAT ... 149
::ANNotation::CLOCK::.STATE] .. 149
::BRIGhtness .. 149
::CAPTure ... 150
::CMAP::DEFault .. 150
::REMote .. 150
[:WINDow]::.STATE] .. 151

IEEE 488.2 Common Commands ... 152
*CLS ... 152
*ESE ... 152
*ESE? ... 152
*ESR? ... 152
*IDN? ... 153
*OPC .. 153
*OPC? ... 153
*OPT? ... 153
*PSC ... 154
*PSC? .. 154
*RCL ... 154
*RST ... 154
*SAV ... 155
*SRE ... 155
*SRE? ... 156
*STB? ... 156
*TRG ... 156
*TST? .. 157
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>*WAI</td>
<td>157</td>
</tr>
<tr>
<td>Memory Subsystem (.MEMory)</td>
<td>158</td>
</tr>
<tr>
<td>:CATalog:BINary?</td>
<td>158</td>
</tr>
<tr>
<td>:CATalog:BIT</td>
<td>158</td>
</tr>
<tr>
<td>:CATalog:DMOD</td>
<td>159</td>
</tr>
<tr>
<td>:CATalog:FIR</td>
<td>159</td>
</tr>
<tr>
<td>:CATalog:FSK?</td>
<td>159</td>
</tr>
<tr>
<td>:CATalog:IQ?</td>
<td>160</td>
</tr>
<tr>
<td>:CATalog:LIST?</td>
<td>160</td>
</tr>
<tr>
<td>:CATalog:MDMod</td>
<td>161</td>
</tr>
<tr>
<td>:CATalog:MTOne</td>
<td>161</td>
</tr>
<tr>
<td>:CATalog:PTRain?</td>
<td>162</td>
</tr>
<tr>
<td>:CATalog:SEQ?</td>
<td>162</td>
</tr>
<tr>
<td>:CATalog:SHAPe</td>
<td>162</td>
</tr>
<tr>
<td>:CATalog:STATE?</td>
<td>163</td>
</tr>
<tr>
<td>:CATalog:UFLT?</td>
<td>163</td>
</tr>
<tr>
<td>:CATalog[:ALL]?</td>
<td>164</td>
</tr>
<tr>
<td>:COPY[:NAME]</td>
<td>164</td>
</tr>
<tr>
<td>:DATA</td>
<td>165</td>
</tr>
<tr>
<td>:DATA:APPend</td>
<td>166</td>
</tr>
<tr>
<td>:DATA:BIT</td>
<td>166</td>
</tr>
<tr>
<td>:DATA:BIT:INSert</td>
<td>168</td>
</tr>
<tr>
<td>:DATA:FIR</td>
<td>169</td>
</tr>
<tr>
<td>:DATA:FSK</td>
<td>170</td>
</tr>
<tr>
<td>:DATA:IQ</td>
<td>171</td>
</tr>
<tr>
<td>:DATA:PRAM:FILE:BLOCK</td>
<td>173</td>
</tr>
<tr>
<td>:DATA:PRAM:FILE:LIST</td>
<td>174</td>
</tr>
<tr>
<td>:DATA:SHAPe</td>
<td>175</td>
</tr>
<tr>
<td>:DELeTe:ALL</td>
<td>176</td>
</tr>
<tr>
<td>:DELeTe:BINary</td>
<td>176</td>
</tr>
<tr>
<td>:DELeTe:BIT</td>
<td>176</td>
</tr>
<tr>
<td>:DELeTe:DMOD</td>
<td>177</td>
</tr>
<tr>
<td>:DELeTe:FIR</td>
<td>177</td>
</tr>
<tr>
<td>:DELeTe:FSK</td>
<td>177</td>
</tr>
<tr>
<td>:DELeTe:IQ</td>
<td>177</td>
</tr>
<tr>
<td>:DELeTe:LIST</td>
<td>177</td>
</tr>
<tr>
<td>:DELeTe:MDMod</td>
<td>178</td>
</tr>
<tr>
<td>:DELeTe:MTOne</td>
<td>178</td>
</tr>
<tr>
<td>:DELeTe:PTRain</td>
<td>178</td>
</tr>
<tr>
<td>:DELeTe:SEQ</td>
<td>178</td>
</tr>
<tr>
<td>:DELeTe:SHAPe</td>
<td>178</td>
</tr>
<tr>
<td>:DELeTe:STATE?</td>
<td>179</td>
</tr>
<tr>
<td>:DELeTe:UFLT</td>
<td>179</td>
</tr>
<tr>
<td>:DELeTe[:NAME]</td>
<td>179</td>
</tr>
<tr>
<td>:EXP:RO[:ASCII]:PTRain</td>
<td>179</td>
</tr>
<tr>
<td>:EXP:RO[:ASCII]:SEP:COLumn</td>
<td>180</td>
</tr>
<tr>
<td>:EXP:RO[:ASCII]:SEP:DECimal</td>
<td>180</td>
</tr>
<tr>
<td>:FREE[:ALL]</td>
<td>180</td>
</tr>
</tbody>
</table>
Status Subsystem (:STATus) .. 200

:OPERation:CONDition? ... 200
:OPERation:ENABLE .. 200
:OPERation:NTRansition ... 200
:OPERation:PTRansition ... 201
:OPERation:SUPPress ... 201
:OPERation[:EVENT] ... 201
:PRESet ... 201
:QUESTionable:BERT:CONDition 202
:QUESTionable:BERT:ENABLE .. 202
:QUESTionable:BERT:NTRansition 202
:QUESTionable:BERT:PTRansition 203
:QUESTionable:BERT[:EVENT] .. 203
:QUESTionable:CALibration:CONDition? 203
:QUESTionable:CALibration:ENABLE 204
:QUESTionable:CALibration:NTRansition 204
:QUESTionable:CALibration:PTRansition 205
:QUESTionable:CALibration[:EVENT] 205
:QUESTionable:CONDition? ... 205
:QUESTionable:ENABLE .. 206
:QUESTionable:FREQuency:CONDition? 206
:QUESTionable:FREQuency:ENABLE 206
:QUESTionable:FREQuency:NTRansition 207
:QUESTionable:FREQuency:PTRansition 207
:QUESTionable:FREQuency[:EVENT] 207
:QUESTionable:MODulation:CONDition? 208
:QUESTionable:MODulation:ENABLE 208
:QUESTionable:MODulation:NTRansition 208
:QUESTionable:MODulation:PTRansition 209
:QUESTionable:MODulation[:EVENT] 209
:QUESTionable:POWer:CONDition? 210
:QUESTionable:POWer:ENABLE 210
:QUESTionable:POWer:NTRansition 210
:QUESTionable:POWer:PTRansition 211
:QUESTionable:POWer[:EVENT] 211
:QUESTionable:PTRansition ... 211
:QUESTionable[:EVENT] .. 212

System Subsystem (:SYSTem) .. 213

:CAPability .. 213
:DATE ... 213
:ERRor:CODE[:NEXT] ... 213
:ERRor[:NEXT] .. 214
4. Analog Modulation Commands

Amplitude Modulation Subsystem–Option UNT ([:SOURce]) .. 250
- AM[1]:[DEPTH]:EXPonential ... 250
- AM[1][2]:[DEPTH]:LIinear ... 250
- AM[1]:[DEPTH]:[LIinear]:TRACk ... 250
- AM[1]:[DEPTH]:STEP[INCReement] .. 251
- AM[1]:[EXTernal][1]:COUPling ... 251
- AM[1]:[EXTeRNal][1]:I2:IMPedance .. 252
- AM[1]:[INTernal]:DUAL:FUNCTION:AMPLitude:PERCent 252
- AM[1]:[INTernal]:DUAL:FUNCTION:POFFset 252
- AM[1]:[INTernal]:DUAL:FUNCTION[1]:[2]:FREQuency 253
- AM[1]:[INTernal]:DUAL:FUNCTION[1][2]:SHAPe 253
- AM[1]:[INTernal]:DUAL:FUNCTION[1][2]:SHAPe:RAMP 253
- AM[1]:[INTernal]:FUNCTION[1]:[2]:FREQuency 254
- AM[1]:[INTernal]:FUNCTION[1]:[2]:POFFset 254
- AM[1]:[INTernal]:FUNCTION[1]:[2]:SHAPe 254
:AM:MODE ... 260
:AM[1]|2:SOURce .. 272
:AM[1]|2:STATe ... 261
:AM[1]|2:TYPE ... 262
:AM:WIDEband:STATe ... 262

Frequency Modulation Subsystem–Option UNT ([:SOURce]) 263
:FM[1]|2:SOURce .. 271
:FM[1]|2:STATe ... 272
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FM[:DEViation]:STEP[:INCResent]</td>
<td>273</td>
</tr>
<tr>
<td>Low Frequency Output Subsystem ([:SOURce]:LFOutput)</td>
<td>274</td>
</tr>
<tr>
<td>:AMPplitude</td>
<td>274</td>
</tr>
<tr>
<td>:DUAL:FUNCtion2:AMPLitude:PERCent</td>
<td>274</td>
</tr>
<tr>
<td>:DUAL:FUNCtion2:POFFset</td>
<td>274</td>
</tr>
<tr>
<td>:DUAL:FUNCtion[1]:2:FREQuency</td>
<td>275</td>
</tr>
<tr>
<td>:DUAL:FUNCtion[1]:2:SHAPE</td>
<td>275</td>
</tr>
<tr>
<td>:DUAL:FUNCtion[1]:2:SHAPE:RAMP</td>
<td>275</td>
</tr>
<tr>
<td>:FUNCTION[1]:2:FREQuency</td>
<td>276</td>
</tr>
<tr>
<td>:FUNCTION[1]:2:PERiod</td>
<td>276</td>
</tr>
<tr>
<td>:FUNCTION[1]:2:POFFset</td>
<td>276</td>
</tr>
<tr>
<td>:FUNCTION[1]:2:SHAPE</td>
<td>277</td>
</tr>
<tr>
<td>:FUNCTION[1]:2:SHAPE:RAMP</td>
<td>277</td>
</tr>
<tr>
<td>:LOAD:IMpedance</td>
<td>278</td>
</tr>
<tr>
<td>:NOise[1]:2:TYPE</td>
<td>278</td>
</tr>
<tr>
<td>:OFFset</td>
<td>278</td>
</tr>
<tr>
<td>:SOURce</td>
<td>279</td>
</tr>
<tr>
<td>:SOURce:MONitor</td>
<td>280</td>
</tr>
<tr>
<td>STAIE</td>
<td>280</td>
</tr>
<tr>
<td>:SWEep:FUNCtion:FREQuency:STARt</td>
<td>281</td>
</tr>
<tr>
<td>:SWEep:FUNCtion:FREQuency:STOP</td>
<td>281</td>
</tr>
<tr>
<td>:SWEep:FUNCtion:SHAPE</td>
<td>281</td>
</tr>
<tr>
<td>:SWEep:FUNCtion:SHAPE:RAMP</td>
<td>281</td>
</tr>
<tr>
<td>:SWEep:RATE[1]:2</td>
<td>282</td>
</tr>
<tr>
<td>:SWEep:SHAPE</td>
<td>282</td>
</tr>
<tr>
<td>:SWEep:TIME:COUPled</td>
<td>282</td>
</tr>
<tr>
<td>:SWEep:TIME[1]:2</td>
<td>283</td>
</tr>
<tr>
<td>:SWEep:TRIGger</td>
<td>283</td>
</tr>
<tr>
<td>:SWEep:TRIGger:EXTernal:SOURce</td>
<td>284</td>
</tr>
<tr>
<td>:SWEep:TRIGger:INTernal:SOURce</td>
<td>284</td>
</tr>
<tr>
<td>:SWEep:TRIGger:SLOPe</td>
<td>285</td>
</tr>
<tr>
<td>Phase Modulation Subsystem–Option UNT ([:SOURce])</td>
<td>286</td>
</tr>
<tr>
<td>:PM[1]:2:BANDwidth:BWIDth</td>
<td>286</td>
</tr>
<tr>
<td>:PM[1]:2:EXTernal[1]:2:COUPling</td>
<td>286</td>
</tr>
<tr>
<td>:PM[1]:2:EXTernal[1]:2:IMpedance</td>
<td>286</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:DUAL:FUNCtion[1]:2:FREQuency</td>
<td>287</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:DUAL:FUNCtion[1]:2:SHAPE</td>
<td>288</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:FUNCtion[1]:2:FREQuency</td>
<td>289</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:FUNCtion[1]:2:POFFset</td>
<td>289</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:FUNCtion[1]:2:SHAPE</td>
<td>290</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:FUNCtion[1]:2:SHAPE:RAMP</td>
<td>290</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:NOise[1]:2:TYPE</td>
<td>290</td>
</tr>
<tr>
<td>:PM[1]:2:INTernal:SWEep:FUNCtion:FREQuency:STARt</td>
<td>290</td>
</tr>
</tbody>
</table>
5. Arb Commands

All Subsystem—N5166B/72B/82B ([::SOURce]) ... 310
:RADio:ALL:OFF ... 310

Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B ([::SOURce]:RADio:DMODulation:ARB) ... 311
:BASEband:FREQuency:OFFSet ... 311
:BASEband:FREQuency:OFFSet:PHASe:RESet ... 311
:FILTER ... 311
:FILTER:ALPHA ... 313
:FILTER:BBT ... 313

Pulse Modulation Subsystem—Options UNW and N5180320B ([::SOURce]) 298
:PULM:EXTernal:POLarity ... 298
:PULM:INTernal:DELay:STEP ... 298
:PULM:INTernal:FREQuency ... 299
:PULM:INTernal:PERiod ... 300
:PULM:INTernal:PERiod:STEP:[INCRement] ... 301
:PULM:INTernal:PWIDth:STEP ... 301
:PULM:INTernal:TRAIN:LIST:PRESet ... 302
:PULM:INTernal:TRAIN:OFFTime ... 303
:PULM:INTernal:TRAIN:ONTime ... 303
:PULM:INTernal:TRAIN:REPetition ... 304
:PULM:INTernal:TRAIN:TRIGger ... 305
:PULM:INTernal:TRAIN:TRIGger:IMMediate ... 305
:PULM:INTernal:VIDeo:POLarity ... 305
:PULM:SOURce ... 306
:PULM:SOURce:INTernal ... 306
:PULM:STAte ... 307
Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRIGger:TYPE:GATE</td>
<td>339</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]</td>
<td>340</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTernal:DELay</td>
<td>341</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTernal:DELay:STATe</td>
<td>342</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTernal:SLOPe</td>
<td>342</td>
</tr>
<tr>
<td>:TRIGger[:SOURce]:EXTernal[:SOURce]</td>
<td>342</td>
</tr>
<tr>
<td>[:STATe]</td>
<td>343</td>
</tr>
<tr>
<td>Dual ARB Subsystem--N5166B/72B/82B (:SOURce):RADio:ARB</td>
<td>344</td>
</tr>
<tr>
<td>:BASEband:FREQuency:OFFSet</td>
<td>344</td>
</tr>
<tr>
<td>:BASEband:FREQuency:OFFSet:PHASE:RESet</td>
<td>345</td>
</tr>
<tr>
<td>:DOProtection</td>
<td>345</td>
</tr>
<tr>
<td>:FILTer:BBT</td>
<td>346</td>
</tr>
<tr>
<td>:FILTer:CHANnel</td>
<td>346</td>
</tr>
<tr>
<td>:FILTer:TYPE</td>
<td>347</td>
</tr>
<tr>
<td>:FILTer[:STATe]</td>
<td>348</td>
</tr>
<tr>
<td>:GENerate:SINE</td>
<td>348</td>
</tr>
<tr>
<td>:GENerate:TEST:WAVEforms</td>
<td>349</td>
</tr>
<tr>
<td>:HEADer:CLEar</td>
<td>350</td>
</tr>
<tr>
<td>:HEADER:NOIse:RMS[:OVERride]</td>
<td>350</td>
</tr>
<tr>
<td>:HEADER:RMS</td>
<td>351</td>
</tr>
<tr>
<td>:HEADER:SAVE</td>
<td>352</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTen</td>
<td>353</td>
</tr>
<tr>
<td>:IQ:MODulation:ATTen:AUTO</td>
<td>353</td>
</tr>
<tr>
<td>:MARKer:CLEar</td>
<td>353</td>
</tr>
<tr>
<td>:MARKer:CLEar:ALL</td>
<td>353</td>
</tr>
<tr>
<td>:MARKer:ROTate</td>
<td>355</td>
</tr>
<tr>
<td>:MARKer[:SET]</td>
<td>356</td>
</tr>
<tr>
<td>:MBSync</td>
<td>358</td>
</tr>
<tr>
<td>:MBSync:NASLaves</td>
<td>359</td>
</tr>
<tr>
<td>:MBSync:NSLaves</td>
<td>360</td>
</tr>
<tr>
<td>:MBSync:SLISten</td>
<td>360</td>
</tr>
<tr>
<td>:MBSync:SREFERence</td>
<td>361</td>
</tr>
<tr>
<td>:MBSync:SSLaves</td>
<td>361</td>
</tr>
<tr>
<td>:MDESTination:AAMPliitude</td>
<td>362</td>
</tr>
<tr>
<td>:MDESTination:ALCHold</td>
<td>362</td>
</tr>
<tr>
<td>:MDESTination:PULSe</td>
<td>364</td>
</tr>
<tr>
<td>:MPOlarity:MARKer1</td>
<td>2</td>
</tr>
<tr>
<td>:NOIse:CBWidth</td>
<td>365</td>
</tr>
<tr>
<td>:NOIse:CBRate</td>
<td>366</td>
</tr>
<tr>
<td>:NOIse:CN</td>
<td>367</td>
</tr>
<tr>
<td>:NOIse:CNFormat</td>
<td>367</td>
</tr>
<tr>
<td>:NOIse:EiNBO</td>
<td>367</td>
</tr>
<tr>
<td>:NOIse:MUX</td>
<td>368</td>
</tr>
<tr>
<td>:NOIse:POWer:CARRier</td>
<td>368</td>
</tr>
</tbody>
</table>
6. Avionics VOR/ILS Commands

Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVIonics:VOR
:BEARing:ANGLE ... 430
:BEARing:DIRection .. 430
:DEPTH:SUBCarrier ... 431
:DEPTH:VAR ... 431
:DEViation:REF .. 432
:FREQuency:REFVar ... 432
:FREQuency:SUBCarrier .. 432
:FREQuency[:CARRier]:INDex 432
:MODE ... 434
:PRESet ... 435

Avionics Subsystem COM/ID—Option N5180302B [:SOURce]:AVIonics:CID
:CODE ... 436
:DEPTH .. 436
:FREQuency .. 437
:PRESet .. 437
:TYPE .. 437
[:STATe] ... 438

Avionics Subsystem ILS Localizer—Option N5180302B [:SOURce]:AVIonics:ILSLocalizer
:DDM:DDM .. 439
:DDM:UAMPs .. 440
:DDM[:PERCent] .. 440
:FLY:DIRection ... 441
:FLY:PHASe .. 442
:FREQuency:LEFT .. 443
:FREQuency:RIGHT .. 443
:FREQuency[:CARRier]:INDex 443
:MODE .. 445
7. Bit Error Rate Test (BERT) Commands

Calculate Subsystem (:CALCulate:BERT[:BASeband]) ... 458
:SDM .. 445
:PRESet ... 445

Avionics Subsystem ILS Glide Slope—Option N5180302B [:SOURce]:AVIonics:ILSGslope 446
:DDM:DDM .. 446
:DDM:UAMPs ... 447
:DDM[PERCent] ... 447
:FLY:DIRection .. 448
:FLY:PHASE .. 449
:FREQuency:DOWN .. 450
:FREQuency:UP .. 450
:FREQuency[::CARRier]:INDex 450
:MODEL .. 451
:PRESet ... 452
:SDM .. 452

Avionics Subsystem Marker Beacon—Option N5180302B [:SOURce]:AVIonics:MBEacon 453
:DEPTH .. 453
:FREQuency:INNER .. 453
:FREQuency:MIDDLE ... 453
:FREQuency:OUTer .. 454
:FREQuency[:CARRier]:INDex 454
:MODEL .. 455
:PRESet ... 455

7. Bit Error Rate Test (BERT) Commands

Calculate Subsystem (:CALCulate:BERT[:BASeband]). ... 458
:COMParator:MODE .. 458
:COMParator:THReshold .. 458
:COMParator[:STATE] ... 459
:DISPlay:MODE ... 459
:DISPlay:UPDate ... 459

Data Subsystem (:DATA). ... 460
:BERT:AUXout ... 460
:BERT[:BASeband][:DATA] .. 461

Input Subsystem (:INPut:BERT[:BASeband]) ... 463
:CGATe:DELay:CLOCK .. 463
:CGATe:DELay:MODE ... 463
:CGATe:DELay:TIME .. 464
:CGATe:DELay[:STATE] .. 464
:CGATe:POLarity ... 464
:CGATe[:STATE] ... 465
:clock:DELay:RESolution .. 465
:clock:DELay:TIME .. 466
:clock:DELay[:STATE] ... 466
:clock:POLarity ... 466
:DATA:POLarity .. 467

Route Subsystem (:ROUTE:LINE:BERT) ... 468
:CLOCK:BNC:SOURce .. 468
8. Digital Signal Interface Module Commands

Digital Subsystem—Option 003 and 004 (:SOURce) ... 478
 :DIGital:CLK:CPs 1|2|4 ... 478
 :DIGital:CLK:PHASE .. 478
 :DIGital:CLK:POLarity ... 479
 :DIGital:CLK:RATE ... 479
 :DIGital:CLK:REFERENCE:FREQUENCY .. 480
 :DIGital:CLK:SKew ... 480
 :DIGital:CLK:SOURCE ... 481
 :DIGital:DATA:ALIGNment .. 481
 :DIGital:DATA:BORDER ... 481
 :DIGital:DATA:DIREction .. 482
 :DIGital:DATA:INPut:ATTen:LEVEL .. 483
 :DIGital:DATA:INPut:FILTER .. 486
 :DIGital:DATA:INPut:FILTER:CHANNEL .. 487
 :DIGital:DATA:INPut:MDESTination:PULSe ... 489
 :DIGital:DATA:INPut:MPOLarity:MARKer1 ... 489
 :DIGital:DATA:INPut:NOISe:CHANnel .. 491
 :DIGital:DATA:INPut:NOISe:BBANDwidth .. 491
 :DIGital:DATA:INPut:NOISe:CBRate ... 492
 :DIGital:DATA:INPut:NOISe:CBWidth .. 492
9. Real-Time Commands

All Subsystem ([:SOURce]:RADio) .. 512
 :ALL:OFF ... 512

AWGN Real-Time Subsystem–Option N5180403B ([:SOURce]:RADio:AWGN:RT) 513
 :BWIDth .. 513
 :CBWidth .. 513
 :IQ:MODulation:ATTen ... 513
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom) .. 516
[:POWer:CONtrol ... 514
[:POWer:NOISe:CHANnel ... 514
[:RAIOn ... 515
[:STAte] ... 515

Contents

[:IQ:MODulation:ATTen:AUTO .. 514
[:POWer:CONtrol ... 514
[:POWer:NOISe:CHANnel ... 514
[:RAIOn ... 515
[:STAte] ... 515

Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom) .. 516
[:ALPha ... 516
[:BASEband:FREQuency:OFFSet .. 516
[:BASEband:FREQuency:OFFSet:PHASe:RESet .. 516
[:BBT ... 517
[:BRATe ... 517
[:BURSt:SHAPe:FALL:DELay .. 519
[:BURSt:SHAPe:FALL:TIME .. 520
[:BURSt:SHAPe:FDELay .. 520
[:BURSt:SHAPe:FTIME .. 521
[:BURSt:SHAPe:RDELay .. 521
[:BURSt:SHAPe:RISE:DELay .. 522
[:BURSt:SHAPe:RISE:TIME .. 522
[:BURSt:SHAPe:RTIME .. 523
[:BURSt:SHAPe[:TYPE]} .. 523
[:CHANnel ... 523
[:DATA ... 524
[:DATA:FIX4 ... 524
[:DATA:PRAM ... 525
[:DENCode ... 525
[:EDAtA:DELay ... 525
[:EDCLOCK ... 526
[:FILTer ... 526
[:IQ:MODulation:ATTen .. 527
[:IQ:MODulation:ATTen:AUTO .. 527
[:IQ:SCAle ... 528
[:MODulation:ASK[:DEPTH]} .. 528
[:MODulation:FSK[:DEVIation]} .. 529
[:MODulation:MSK[:PHASe]} .. 529
[:MODulation:UFSDK ... 529
[:MODulation:UIQ ... 530
[:MODulation[:TYPE]} .. 530
[:NOISe:BANDwidth ... 531
[:NOISe:CBRate ... 531
[:NOISe:CBWidth ... 532
[:NOISe:CN ... 532
[:NOISe:CNFormat ... 533
[:NOISe:EBNO ... 533
[:NOISe:MUX ... 533
[:NOISe:POWer:CARRier .. 534
[:NOISe:POWer:CONtrol[:MODE]} .. 535
[:NOISe:POWer:NOISe:CHANnel .. 535
[:NOISe:POWer:NOISe:TOTal .. 535

27
Documentation Overview

Getting Started Guide
- Safety Information
- Receiving the Instrument
- Environmental & Electrical Requirements
- Basic Setup
- Accessories
- Operation Verification
- Regulatory Information

User's Guide
- Signal Generator Overview
- Preferences & Enabling Options
- Basic Operation
- Optimize Performance
- Avionics VOR/ILS (Option N5180302B)
- Analog Modulation (Option UNT)
- Pulse Modulation (Options UNW or N5180320B)
- Basic Digital Operation—No BBG Option
- Basic Digital Operation (Options 653/655/656/657)
- Digital Signal Interface Module (Option 003 /004)
- Baseband Operating Mode—Primary, BERT, or N5102A
- BERT (Option N5180UN7B)
- Real–Time Noise—AWGN (Option N5180403B)
- Real–Time Phase Noise Impairments (Option N5180432B)
- Real-Time Fading (Option 660)
- Custom Digital Modulation (Option N5180431B)
- Multitone and Two-Tone Waveforms (Option N5180430B)
- Troubleshooting
- Working in a Secure Environment

Programming Guide
- Getting Started with Remote Operation
- Using IO Interfaces
- Programming Examples
- Programming the Status Register System
- Creating and Downloading Files
- Creating and Downloading User–Data Files

SCPI Reference
- SCPI Basics
- Basic Function Commands
- System Commands
- Analog Modulation Commands
- Arb Commands
- Avionics VOR/ILS Commands
- Bit Error Rate Test (BERT) Commands
- Digital Signal Interface Module Commands
- Real-Time Commands
Programming Compatibility Guide — Provides a listing of SCPI commands and programming codes for signal generator models that are supported by the Keysight CXG, EXG, and MXG X- Series signal generators.

Service Guide — Troubleshooting
— Replaceable Parts
— Assembly Replacement
— Post–Repair Procedures
— Safety and Regulatory Information
— Instrument History

Error Messages Guide — Error Messages
— Error Message Format
— Error Message Type
— List of Error Messages

Key Help\(^a\) — Key function description
— Related SCPI commands

a. Press the **Help** key, and then the key for which you wish help.
1 SCPI Basics

This chapter describes how SCPI information is organized and presented in this reference. An overview of the SCPI language is also provided.

This chapter contains the following sections:

- Command Reference Information on page 32
- SCPI Basics on page 33
Command Reference Information

SCPI Command Listings

The Table of Contents lists the Standard Commands for Programmable Instruments (SCPI) without the parameters. The SCPI subsystem name will generally have the first part of the command in parenthesis that is repeated in all commands within the subsystem. The title(s) beneath the subsystem name is the remaining command syntax. The following example demonstrates this listing:

Communication Subsystem (:SYSTem:COMMunicate)
 :LAN:IP
 :LAN:SUBNet

The following examples show the complete commands from the above Table of Contents listing:

:SYSTem:COMMunicate:LAN:IP
:SYSTem:COMMunicate:LAN:SUBNet

Key and Data Field Cross Reference

The index is set up so applicable key and data field names can be cross-referenced to the appropriate SCPI command. There are two headings in the index where the key and data field names can be found:

- individual softkey, or data field name (i.e. To look up the communication subsystem topic on Default Gateway softkey refer to Default Gateway softkey.)
- subsystem name (i.e. To look for the Default Gateway softkey (in the Communication Subsystem), refer to the heading labeled: “communication subsystem keys”.)

Supported Field

Within each command section, the “Supported” heading describes which signal generator configurations are supported by the SCPI command. When “All Models” is shown next to this heading, all signal generator configurations are supported by the SCPI command. When “All with Option xxx” is shown next to this heading, only the stated option(s) is supported.
SCPI Basics

This section describes the general use of the SCPI language for Keysight X-Series signal generators. It is not intended to teach you everything about the SCPI language; the SCPI Consortium or IEEE can provide that level of detailed information. For a list of the specific commands available for the signal generator, refer to the table of contents.

For additional information, refer to the following publications:

Common Terms

The following terms are used throughout the remainder of this section:

Command A command is an instruction in SCPI consisting of mnemonics (keywords), parameters (arguments), and punctuation. You combine commands to form messages that control instruments.

Controller A controller is any device used to control the signal generator, for example a computer or another instrument.

Event Command Some commands are events and cannot be queried. An event has no corresponding setting; it initiates an action at a particular time.

Program Message A program message is a combination of one or more properly formatted commands. Program messages are sent by the controller to the signal generator.

Query A query is a special type of command used to instruct the signal generator to make response data available to the controller. A query ends with a question mark. Generally you can query any command value that you set.

Response Message A response message is a collection of data in specific SCPI formats sent from the signal generator to the controller. Response messages tell the controller about the internal state of the signal generator.
Command Syntax

A typical command is made up of keywords prefixed with colons (:). The keywords are followed by parameters. The following is an example syntax statement:

[:SOURce]:PULM:INTernal:FREQuency <frequency>|MAXimum|MINimum|UP|DOWN

In the example above, the :INTernal:FREQuency portion of the command immediately follows the :PULM portion with no separating space. The portion following the :INTernal, <frequency>|MAXimum|MINimum|UP|DOWN, are the parameters (argument for the command statement). There is a separating space (white space) between the command and its parameter.

Additional conventions in syntax statements are shown in Table 1-1 and Table 1-2.

Table 1-1 Special Characters in Command Syntax

<table>
<thead>
<tr>
<th>Characters</th>
<th>Meaning</th>
<th>Example</th>
</tr>
</thead>
</table>
| | A vertical stroke between keywords or parameters indicates alternative choices. For parameters, the effect of the command varies depending on the choice. | [:SOURce]:AM:MOD DEEP|NORMal
DEEP or NORMal are the choices. |
| [] | Square brackets indicate that the enclosed keywords or parameters are optional when composing the command. These implied keywords or parameters will be executed even if they are omitted. | [:SOURce]:FREQuency[:CW]?
SOURce and CW are optional items. |
| <> | Angle brackets around a word (or words) indicate they are not to be used literally in the command. They represent the needed item. | [:SOURce]:FREQuency:STARt <value><unit>
In this command, the words <value> and <unit> should be replaced by the actual frequency and unit. |

:SOURce:FREQuency:STARt 2.5GHz |
SCPI Basics

Table 1-2 Command Syntax

<table>
<thead>
<tr>
<th>Characters, Keywords, and Syntax</th>
<th>Example</th>
</tr>
</thead>
</table>
| Upper-case lettering indicates the minimum set of characters required to execute the command. But, each mode of the command must be in either short form or the complete long form (no in-between). Example: Correct: | [:SOURce]:FREQuency[:CW]?,
| :FREQ | FREQ is the minimum requirement. |
| :FREQuency | |
| Incorrect: | |
| :FREQuenc | |
| Lower-case lettering indicates the portion of the command that is optional; it can either be included with the upper-case portion of the command or omitted. This is the flexible format principle called forgiving listening. Refer to "Command Parameters and Responses" on page 37 for more information. | :FREQuency |
| Either :FREQ, :FREQuency, or :FREQUENCY is correct. | |
| When a colon is placed between two command mnemonics, it moves the current path down one level in the command tree. Refer to “Command Tree” on page 36 more information on command paths. | :TRIGger:OUTPut:POLarity? |
| TRIGger is the root level keyword for this command. | |
| If a command requires more than one parameter, you must separate adjacent parameters using a comma. Parameters are not part of the command path, so commas do not affect the path level. | [:SOURce]:LIST:
| DWELL <value>,<value> | |
| A semicolon separates two commands in the same program message without changing the current path. | :FREQ 2.5GHz;:POW 10dBm |
| White space characters, such as <tab> and <space>, are generally ignored as long as they do not occur within or between keywords. However, you must use white space to separate the command from the parameter, but this does not affect the current path. | :FREQ uency or :POWer :LEVel are not allowed.
| A <space> between :LEVel and 6.2 is mandatory. | |
| :POWer:LEVel 6.2 | |
Command Types

Commands can be separated into two groups: common commands and subsystem commands. Figure 1-1, shows the separation of the two command groups.

Common commands are used to manage status registers, synchronization, and data storage and are defined by IEEE 488.2. They are easy to recognize because they all begin with an asterisk. For example *IDN?, *OPC, and *RST are common commands. Common commands are not part of any subsystem and the signal generator interprets them in the same way, regardless of the current path setting.

Subsystem commands are distinguished by the colon (:). The colon is used at the beginning of a command statement and between keywords, as in :FREQuency[:CW?]. Each command subsystem is a set of commands that roughly correspond to a functional block inside the signal generator. For example, the power subsystem (:POWer) contains commands for power generation, while the status subsystem (:STATus) contains commands for controlling status registers.

![Command Types Diagram](Figure 1-1)

Command Tree

Most programming tasks involve subsystem commands. SCPI uses a structure for subsystem commands similar to the file systems on most computers. In SCPI, this command structure is called a command tree and is shown in Figure 1-2.
Figure 1-2 Simplified Command Tree

The command closest to the top is the root command, or simply “the root.” Notice that you must follow a particular path to reach lower level commands. In the following example, :POWer represents AA, :ALC represents BB, :SOURce represents GG. The complete command path is :POWer:ALC:SOURce? (:AA:BB:GG).

Paths Through the Command Tree

To access commands from different paths in the command tree, you must understand how the signal generator interprets commands. The parser, a part of the signal generator firmware, decodes each message sent to the signal generator. The parser breaks up the message into component commands using a set of rules to determine the command tree path used. The parser keeps track of the current path (the level in the command tree) and where it expects to find the next command statement. This is important because the same keyword may appear in different paths. The particular path is determined by the keyword(s) in the command statement.

A message terminator, such as a <new line> character, sets the current path to the root. Many programming languages have output statements that automatically send message terminators.

NOTE

The current path is set to the root after the line-power is cycled or when *RST is sent.

Command Parameters and Responses

SCPI defines different data formats for use in program and response messages. It does this to accommodate the principle of forgiving listening and precise talking. For more information on program data types refer to IEEE 488.2.

Forgiving listening means the command and parameter formats are flexible.

For example, with the :FREQuency:REference:STATe ON|OFF|1|0 command, the signal generator accepts :FREQuency:REference:STATe ON, :FREQuency:REference:STATe 1, :FREQ:REF:STAT ON, :FREQ:REF:STAT 1 to turn on the frequency reference mode.
Each parameter type has one or more corresponding response data types. A setting that you program using a numeric parameter returns either real or integer response data when queried. Response data (data returned to the controller) is more concise and restricted, and is called precise talking.

Precise talking means that the response format for a particular query is always the same.

For example, if you query the power state (:POWer:ALC:STATE?) when it is on, the response is always 1, regardless of whether you previously sent :POWer:ALC:STATE 1 or :POWer:ALC:STATE ON. Table shows the response for a given parameter type.

<table>
<thead>
<tr>
<th>Parameter Types</th>
<th>Response Data Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric</td>
<td>Real, Integer</td>
</tr>
<tr>
<td>Extended Numeric</td>
<td>Real, Integer</td>
</tr>
<tr>
<td>Discrete</td>
<td>Discrete</td>
</tr>
<tr>
<td>Boolean</td>
<td>Numeric Boolean</td>
</tr>
<tr>
<td>String</td>
<td>String</td>
</tr>
<tr>
<td>Definite Block</td>
<td>Arbitrary byte dataa</td>
</tr>
</tbody>
</table>

a. (i.e. text, binary, discrete, real, integer, etc.-).

Numeric Parameters

Numeric parameters are used in both common and subsystem commands. They accept all commonly used decimal representations of numbers including optional signs, decimal points, and scientific notation.

If a signal generator setting is programmed with a numeric parameter which can only assume a finite value, it automatically rounds any entered parameter which is greater or less than the finite value. For example, if a signal generator has a programmable output impedance of 50 or 75 ohms, and you specified 76.1 for the output impedance, the value is rounded to 75. The following are examples of numeric parameters:

- 100 no decimal point required
- 100. fractional digits optional
- –1.23 leading signs allowed
- 4.56E<space>03 space allowed after the E in exponential
- –7.89E<001 use either E or e in exponential
- +256 leading + allowed
- .5 digits left of decimal point optional
Extended Numeric Parameters

Most subsystems use extended numeric parameters to specify physical quantities. Extended numeric parameters accept all numeric parameter values and other special values as well.

The following are examples of extended numeric parameters:

- 100 any simple numeric value
- 1.2GHz GHz can be used for exponential (E009)
- 200MHz MHz can be used for exponential (E006)
- −100mV negative 100 millivolts
- 10DEG 10 degrees

Extended numeric parameters also include the following special parameters:

- DEFault resets the parameter to its default value
- UP increments the parameter
- DOWN decrements the parameter
- MINimum sets the parameter to the smallest possible value
- MAXimum sets the parameter to the largest possible value

Discrete Parameters

Discrete parameters use mnemonics to represent each valid setting. They have a long and a short form, just like command mnemonics. You can mix upper and lower case letters for discrete parameters.

The following examples of discrete parameters are used with the command :TRIGger[:SEQuence]:SOURce BUS|IMMediate|EXTernal.

- BUS GPIB, LAN, or USB triggering
- IMMediate immediate trigger (free run)
- EXTernal external triggering

Although discrete parameters look like command keywords, do not confuse the two. In particular, be sure to use colons and spaces properly. Use a colon to separate command mnemonics from each other and a space to separate parameters from command mnemonics.

The following are examples of discrete parameters in commands:

- TRIGger:SOURce BUS
- TRIGger:SOURce IMMediate
- TRIGger:SOURce EXTernal
Boolean Parameters

Boolean parameters represent a single binary condition that is either true or false. The two-state boolean parameter has four arguments. The following list shows the arguments for the two-state boolean parameter:

- **ON** boolean true, upper/lower case allowed
- **OFF** boolean false, upper/lower case allowed
- **1** boolean true
- **0** boolean false

String Parameters

String parameters allow ASCII strings to be sent as parameters. Single or double quotes are used as delimiters.

The following are examples of string parameters:

- 'This is valid'
- "This is also valid"
- 'SO IS THIS'

Real Response Data

Real response data represent decimal numbers in either fixed decimal or scientific notation. Most high-level programming languages that support signal generator input/output (I/O) handle either decimal or scientific notation transparently.

The following are examples of real response data:

- +4.000000E+010, −9.990000E+002
- −9.990000E+002
- +4.0000000000000E+010
- +1
- 0
Integer Response Data

Integer response data are decimal representations of integer values including optional signs. Most status register related queries return integer response data.

The following are examples of integer response data:

- 0 signs are optional
- +100 leading + allowed
- −100 leading – allowed
- 256 never any decimal point

Discrete Response Data

Discrete response data are similar to discrete parameters. The main difference is that discrete response data only returns the short form of a particular mnemonic, in all upper case letters.

The following are examples of discrete response data:

- IMM
- EXT
- INT
- NEG

Numeric Boolean Response Data

Boolean response data returns a binary numeric value of one or zero.

String Response Data

String response data are similar to string parameters. The main difference is that string response data returns double quotes, rather than single quotes. Embedded double quotes may be present in string response data. Embedded quotes appear as two adjacent double quotes with no characters between them.

The following are examples of string response data:

- "This is a string"
- "one double quote inside brackets: [""]
- "Hello!"
Program Messages

The following commands will be used to demonstrate the creation of program messages:

\[
[:SOURce]:FREQuency:STARt \quad [:SOURce]:FREQuency:STOP

[:SOURce]:FREQuency[:CW] \quad [:SOURce]:POWer[:LEVel]:OFFSet
\]

Example 1

`:FREQuency:STARt 500MHz;STOP 1000MHz`

This program message is correct and will not cause errors; \texttt{START} and \texttt{STOP} are at the same path level. It is equivalent to sending the following message:

\texttt{FREQuency:STARt 500MHz;FREQuency:STOP 1000MHz}

Example 2

`:POWer 10DBM;:OFFSet 5DB`

This program message will result in an error. The message makes use of the default \texttt{POWer[:LEVel]} node (root command). When using a default node, there is no change to the current path position. Since there is no command \texttt{OFFSET} at the root level, an error results.

The following example shows the correct syntax for this program message:

`:POWer 10DBM;:POWer:OFFSet 5DB`

Example 3

`:POWer:OFFSet 5DB;POWer 10DBM`

This program message results in a command error. The path is dropped one level at each colon. The first half of the message drops the command path to the lower level command \texttt{OFFSET}; \texttt{POWER} does not exist at this level.

The \texttt{POWER 10DBM} command is missing the leading colon and when sent, it causes confusion because the signal generator cannot find \texttt{POWER} at the \texttt{POWER:OFFSet} level. By adding the leading colon, the current path is reset to the root. The following shows the correct program message:

`:POWer:OFFSet 5DB;:POWer 10DBM`

Example 4

\texttt{FREQ 500MHz;POW 4DBM}

In this example, the keyword short form is used. The program message is correct because it utilizes the default nodes of \texttt{FREQ[:CW]} and \texttt{POW[:LEVel]}. Since default nodes do not affect the current path, it is not necessary to use a leading colon before \texttt{FREQ} or \texttt{POW}.
File Name Variables

File name variables designate a data file and file path. File name variables are used in the SCPI command syntax whenever files are accessed. The name of the file is always required, but the file path can sometimes be optional or be designated using different formats. The following table shows these different file path formats:

<table>
<thead>
<tr>
<th>Format</th>
<th>File Name Variable</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format 1</td>
<td>"<file name>"</td>
<td>"Test_Data"</td>
</tr>
<tr>
<td>Format 2</td>
<td>"<file name@msus>"</td>
<td>"Test_Data@SEQ"a</td>
</tr>
<tr>
<td>Format 3</td>
<td>"<msus:file name>"</td>
<td>"SEQ:Test_Data"</td>
</tr>
<tr>
<td>Format 4</td>
<td>"</user/directory/file name>"</td>
<td>"/USER/SEQ/Test_Data"</td>
</tr>
</tbody>
</table>

a. Included for backwards compatibility. Not the recommended syntax.

Formats 2–4 offer programming flexibility and are equivalent. Format 1 can only be used with SCPI commands that imply the path name as part of the command syntax. Typically, SCPI load commands that access user-data files do not need to have a file path designated.

See Table 1-3 on page 45 for information on file types and directories.

The maximum length for a file name is 23 characters, excluding the file path.

Example Using Format 1

:CORR:FLAT:LOAD "FLAT_DATA"

The preceding example loads user-flatness data from a file called FLAT_DATA located in the USERFLAT directory. No file path is needed as the command syntax implies the directory where the file is located.

Example Using Format 2

:MEM:COPY "IQ_DATA@SNVWFM","Test_DATA@WFM1"

The preceding example copies a file named IQ_DATA located in the WAVEFORM directory to a file named Test_DATA in volatile waveform memory (BBG).

Example Using Format 3

:MEM:COPY "SNVWFM:IQ_DATA","WFM1:Test_DATA"

The preceding example copies a file named IQ_DATA located in the WAVEFORM directory to a file named Test_DATA in volatile waveform memory (BBG).
Example Using Format 4

:MEM:COPY
"/USER/WAVEFORM/IQ_DATA","/USER/BBG1/WAVEFORM/IQ_DATA"

The preceding example copies a file named IQ_DATA located in the WAVEFORM directory to a file named IQ_DATA in volatile waveform memory (BBG).

The following examples show commands, with different formats, that can be used to download a waveform file named Test_Data into the signal generator’s volatile waveform memory (BBG):

Command Syntax Format 3

:MEM:ORY:DATA "WFM1:Test_Data",#ABC

Command Syntax Format 4

:MEM:ORY:DATA "/USER/BBG1/WAVEFORM/Test_Data",#ABC

These commands are equivalent. The data block, #ABC, is described as follows:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>A</td>
<td>Number of digits in the byte count B</td>
</tr>
<tr>
<td>B</td>
<td>Byte count in C</td>
</tr>
<tr>
<td>C</td>
<td>Waveform data</td>
</tr>
</tbody>
</table>

Refer to “:DATA” on page 165 and the Programming Guide for more information on data blocks and downloading waveform data.

File Types and Directory Structure

The signal generator uses a computer directory model structure for file storage. The top level directory is called the USER directory. All other directories are subdirectories located under the USER directory. Each subdirectory is dedicated to the type of data stored. For example, the BIN directory is used to store binary data whereas the MARKERS directory is used to store marker data.
NOTE

When the USB media is used, the files on the USB media are stored in a single directory (i.e. USER/). Each file has an extension (i.e. .waveform, .list, .markers, .state, etc.-). The SCPI commands use the paths shown in Table 1-3 on page 45 and the associated examples. But when viewed, the USB media, will not display these directories. Instead the file extensions will be displayed. For more information on the USB media capability refer to the Programming Guide and to the Users Guide.

The instrument’s directory /USER/NONVOLATILE contains either the internal storage and USB media non-volatile files stored with the filename extensions: .waveform, .list, .markers, .state, etc.-. This directory is useful when ftp is used.

The following table lists signal generator the subdirectories and file paths where file types are stored.

Table 1-3 File Types and Directory Structures

<table>
<thead>
<tr>
<th>File System</th>
<th>File Type</th>
<th>File Path</th>
<th>MSUS Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINARYa</td>
<td>BIN</td>
<td>/USER/BIN</td>
<td>BINARY:</td>
</tr>
<tr>
<td>HDR1 - volatile arbitrary waveform header filea</td>
<td>HDR1</td>
<td>/USER/BBG1/HEADER</td>
<td>HDR1:</td>
</tr>
<tr>
<td>LIST - sweep list file</td>
<td>LIST</td>
<td>/USER/LIST</td>
<td>LIST:</td>
</tr>
<tr>
<td>MKR1 - volatile arbitrary waveform marker filea</td>
<td>MKR1</td>
<td>/USER/BBG1/MARKERS</td>
<td>MKR1:</td>
</tr>
<tr>
<td>NVHDR - non-volatile arbitrary waveform header filea</td>
<td>NVHDR</td>
<td>/USER/HEADER</td>
<td>NVHDR:</td>
</tr>
<tr>
<td>NVMKR - non-volatile arbitrary waveform marker filea</td>
<td>NVMKR</td>
<td>/USER/MARKERS</td>
<td>NVMKR:</td>
</tr>
<tr>
<td>NVWFOM - non-volatile arbitrary waveform filea</td>
<td>NVWFOM</td>
<td>/USER/WAVEFORM</td>
<td>NVWFOM:</td>
</tr>
<tr>
<td>SEQ - ARB sequence filea</td>
<td>SEQ</td>
<td>/USER/SEQ</td>
<td>SEQ:</td>
</tr>
<tr>
<td>STATE</td>
<td>STATE</td>
<td>/USER/STATE</td>
<td>STATE:</td>
</tr>
<tr>
<td>USERFLAT - user-flatness file</td>
<td>UFLT</td>
<td>/USER/USERFLAT</td>
<td>USERFLAT:</td>
</tr>
<tr>
<td>WFM1 - volatile waveform filea</td>
<td>WAVEFORM</td>
<td>/USER/BBG1/WAVEFORM</td>
<td>WFM1:</td>
</tr>
</tbody>
</table>

a. This feature does not apply to analog signal generator models.

MSUS (Mass Storage Unit Specifier) Variable

The variable "<msus>" enables a command to be file type specific when working with user files. Some commands use it as the only command parameter, while others can use it in conjunction with a file name when a command is not file type specific. When used with a file name, it is similar to
SCPI Basics

Format 2 in the File Name Variables section on page 43. The difference is the file type specifier (msus) occupies its own variable and is not part of the file name syntax.

The following examples illustrate the usage of the variable "<msus>" when it is the only command parameter:

Command Syntax with the msus variable

:MMEMory:CATalog? "<msus>"

Command Syntax with the file system

:MMEMory:CATalog? "LIST:"

The variable "<msus>" is replaced with "LIST:". When the command is executed, the output displays only the files from the List file system. The following examples illustrate the usage of the variable "<file name>" with the variable "<msus>":

Command Syntax with the file name and msus variables

:MMEMory:DELete[:NAME] "<file name>",["<msus>]"

Command Syntax with the file name and file system

:MMEMory:DELete:NAME "LIST_1","LIST:"

The command from the above example cannot discern which file system LIST_1 belongs to without a file system specifier and will not work without it. When the command is properly executed, LIST_1 is deleted from the List file system.

The following example shows the same command, but using Format 2 from the File Name Variables section on page 43:

:MMEMory:DELete:NAME "LIST_1@LIST"

When a file name is a parameter for a command that is not file system specific, either format ("<file name>";"<msus>" or "<file name@msus>") will work.

Refer to Table 1-3 on page 45 for a listing of the file systems and types.

Quote Usage with SCPI Commands

As a general rule, programming languages require that SCPI commands be enclosed in double quotes as shown in the following example:

"FM:EXTernal:IMPedance 600"

However when a string is the parameter for a SCPI command, additional quotes or other delimiters may be required to identify the string. Your programming language may use two sets of doublequotes, one set of single quotes, or back slashes with quotes to signify the string parameter. The following examples illustrate these different formats:
SCPI Basics

"MEMory:LOAD:LIST ""myfile""" used in BASIC programming languages

"MEMory:LOAD:LIST "myfile"" used in C, C++, Java, and PERL

"MEMory:LOAD:LIST 'myfile'" accepted by most programming languages

Consult your programming language reference manual to determine the correct format.

Binary, Decimal, Hexadecimal, and Octal Formats

Command values may be entered using a binary, decimal, hexadecimal, or octal format. When the binary, hexadecimal, or octal format is used, their values must be preceded with the proper identifier. The decimal format (default format) requires no identifier and the signal generator assumes this format when a numeric value is entered without one. The following list shows the identifiers for the formats that require them:

- #B identifies the number as a binary numeric value (base-2).
- #H identifies the number as a hexadecimal alphanumeric value (base-16).
- #Q identifies the number as a octal alphanumeric value (base-8).

The following are examples of SCPI command values and identifiers for the decimal value 45:

#B101101 binary equivalent
#H2D hexadecimal equivalent
#Q55 octal equivalent

The following example sets the RF output power to 10 dBm (or the equivalent value for the currently selected power unit, such as DBUV or DBUVEFM) using the hexadecimal value 000A:

:POW #H000A

A unit of measure, such as dBm or mV, will not work with the values when using a format other than decimal.
2 Basic Function Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

This chapter describes SCPI commands for subsystems dedicated to signal generator operations common to most CXG, MXG, and EXG X-Series signal generators.

This chapter contains the following sections:

- Correction Subsystem ([SOURce]:CORRection) on page 50
- Digital Modulation Subsystem—N5166B/72B/82B ([SOURce]) on page 56
- Frequency Subsystem ([SOURce]) on page 70
- List/Sweep Subsystem ([SOURce]) on page 83
- Marker Subsystem—N5173B/83B ([SOURce]) on page 96
- Power Subsystem ([SOURce]:POWer) on page 99
- Vector Modulation Subsystem—N5166B/72B/82B ([SOURce]:IQ) on page 118
Correction Subsystem ([SOURce]:CORRection)

:FLATness:FREQuency

Supported All Models

[:SOURce]:CORRection:FLATness:FREQuency? <point>

This command returns the frequency value of the <point> queried.

Range 1 to 3,201
Key Entry # Points

:FLATness:INITialize:FSTep

Supported All Models

CAUTION

The current flatness data will be overwritten once this command is executed. If needed, save the current data. Refer to the :FLATness:STORe command for storing user flatness files.

[:SOURce]:CORRection:FLATness:INITialize:FSTep

This command replaces the loaded user flatness data with the settings from the current step array data points.

The maximum number of user flatness points is 3,201. When copying the step array settings over to a user flatness file, ensure that the number of points in the step array do not exceed the maximum user flatness points.

See also “:FLATness:STEP:POINTs” on page 51.

Range 1 to 3,201
Key Entry Load Cal Array From Step Array

:FLATness:LOAD

Supported All Models

[:SOURce]:CORRection:FLATness:LOAD "<file name>"

This command loads a user–flatness correction file. The "<file name>" variable is the name of the file located in the Catalog of USERFLAT Files. The directory path is implied in the command and need not be specified in the file name parameter. For more information on file name syntax, refer to “File Name Variables” on page 43.

Key Entry Load From Selected File
Basic Function Commands
Correction Subsystem ([SOURce]:CORRection)

:FLATness:PAIR

Supported All Models

[:SOURce]:CORRection:FLATness:PAIR <freq.>[<freq suffix>], <corr.>[<corr suffix>]

This command sets a frequency and amplitude correction pair.

The maximum number of points that can be entered is 3,201.

<corr.> This variable is the power correction.

Range Frequency range varies and is model dependent. Refer to the instrument’s Data Sheet.

Key Entry Configure Cal Array

:FLATness:POINts

Supported All Models

[:SOURce]:CORRection:FLATness:POINts?

This query returns the number of points in the user-flatness correction file.

:FLATness:PRESet

Supported All Models

The current correction data will be overwritten once this command is executed. Save the current data if needed. Refer to :FLATness:STORe command for storing user-flatness files.

[:SOURce]:CORRection:FLATness:PRESet

This command presets the user-flatness correction to a factory-defined setting that consists of one point.

Key Entry Preset List

:FLATness:STEP:POINts

Supported All Models

[:SOURce]:CORRection:FLATness:STEP:POINts <points> |MAXimum|MINimum|DEFault|

[:SOURce]:CORRection:FLATness:STEP:POINts?[MAXimum|MINimum]

This command is used to define the number of points in the user flatness calibration step array.

See also :FLATness:STEP:STARt and :FLATness:STEP:STOP commands.

*RST 2
Basic Function Commands
Correction Subsystem ([:SOURce]:CORRection)

Range 2 to 3,201

Key Entry

<table>
<thead>
<tr>
<th>:FLATness:STEP:STARt</th>
</tr>
</thead>
</table>

Supported All Models

[:SOURce]:CORRection:FLATness:STEP:START <freq><unit> | MAXimum| MINimum| DEFault |
[:SOURce]:CORRection:FLATness:STEP:START? [MAXimum|MINimum]

This command sets the start frequency for the user flatness calibration step array. See also, :FLATness:STEP:POINts and :FLATness:STEP:STOP commands.

*RST The preset value is model/option dependent. Refer to the instrument’s Data Sheet.

Range The range is model/option dependent. Refer to the instrument’s Data Sheet.

Key Entry Freq Start

<table>
<thead>
<tr>
<th>:FLATness:STEP:STOP</th>
</tr>
</thead>
</table>

Supported All Models

[:SOURce]:CORRection:FLATness:STEP:STOP <freq><unit> | MAXimum| MINimum| DEFault |
[:SOURce]:CORRection:FLATness:STEP:STOP? [MAXimum|MINimum]

This command sets the stop frequency for the user flatness calibration step array. See also, :FLATness:STEP:POINts and :FLATness:STEP:STARt commands.

*RST The preset value is model/option dependent. Refer to the instrument’s Data Sheet.

Range The range is model/option dependent. Refer to the instrument’s Data Sheet.

Key Entry Freq Stop

<table>
<thead>
<tr>
<th>:FLATness:STORE</th>
</tr>
</thead>
</table>

Supported All Models

[:SOURce]:CORRection:FLATness:STORE "<file name>"

This command stores the current user-flatness correction data to a file named by the :CORRection:FLATness:STORE command. The directory path is implied in the command and need not be specified in the "<file name>" variable.

Key Entry Store To File
Basic Function Commands
Correction Subsystem ([SOURce]:CORRection)

Remarks
For information on file name syntax, refer to “File Name Variables” on page 43.

:SPOWer:CHANnel

Supported All Models
[:SOURce]:CORRection:SPOWer:CHANnel A|B
[:SOURce]:CORRection:SPOWer:CHANnel?
This command selects the channel setting on the external power meter for user flatness calibration.

Default Channel A
Key Entry Power Meter Channel A B
Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:SPOWer:COMMunicate:LAN:DEVice

Supported All Models
[:SOURce]:CORRection:SPOWer:COMMunicate:LAN:DEVice <deviceName>
[:SOURce]:CORRection:SPOWer:COMMunicate:LAN:DEVice?
This command enters a VXI–11 device name for a power meter that is being controlled by the signal generator for user flatness calibration. If connecting directly to the power meter, enter the name as specified on your power meter documentation. If connecting through a LAN–GPIB gateway, enter the SICL address of the power meter.

Key Entry PM VXI–11 Device Name
Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:SPOWer:COMMunicate:LAN:IP

Supported All Models
[:SOURce]:CORRection:SPOWer:COMMunicate:LAN:IP <ipAddress>
[:SOURce]:CORRection:SPOWer:COMMunicate:LAN:IP?
This command sets the internet protocol (IP) address for a power meter that is controlled by the signal generator for user flatness calibration. If connecting to a GPIB power meter through a LAN–GPIB gateway, this command sets the IP address of the gateway.

Key Entry Power Meter IP Address
Basic Function Commands
Correction Subsystem ([SOURce]:CORRection)

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
Ensure that the power meter IP address is different from the signal generator address.

:PMETer:COMMunicate:LAN:PORT

Supported
All Models

[:SOURce]:CORRection:PMETer:COMMunicate:LAN:PORT
<portNumber>
[:SOURce]:CORRection:PMETer:COMMunicate:LAN:PORT?

This command sets the IP port number on the power meter that is controlled by the signal generator for users flatness calibration.

Key Entry

<table>
<thead>
<tr>
<th>Power Meter IP Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5025</td>
<td>Standard mode. The command enables standard mode for simple programming.</td>
</tr>
<tr>
<td>5024</td>
<td>Telnet mode. The command enables the telnet SCPI service for programming.</td>
</tr>
</tbody>
</table>

NOTE
For firmware versions <A.01.51, the default telnet mode is 5023. For firmware versions A.01.51 and greater, telnet port 5023 is still available for backwards compatibility.

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
For more information on standard mode and telnet SCPI mode, refer to the Programming Guide.

:PMETer:COMMunicate:TYPE

Supported
All Models

[:SOURce]:CORRection:PMETer:COMMunicate:TYPE
SOCKets|SOCKETS|VXI11|USB
[:SOURce]:CORRection:PMETer:COMMunicate:TYPE?

This command sets the type of control connection for communication with the external power meter for user flatness calibration.

Default
Sockets

Key Entry

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCKets or SOCKETS</td>
<td>The command enables the power meter for sockets LAN control through the signal generator.</td>
</tr>
</tbody>
</table>
Basic Function Commands
Correction Subsystem ([SOURce]:CORRection)

VXI11

The command enables the power meter for VXI-11 control through the signal generator. A power meter with GPIB can be controlled through VXI-11 using a LAN–GPIB gateway.

USB

The command enables the power meter for USB control through the signal generator.

Remarks

The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:PMETer:COMMunicate:USB:DEVice

Supported All Models

[SOURce]:CORRection:PMETer:COMMunicate:USB:DEVice <device>

This command selects the USB device to be used for user flatness calibration. The query returns the USB device identification.

Key Entry USB Device

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:PMETer:COMMunicate:USB:LIST?

Supported All Models

[SOURce]:CORRection:PMETer:COMMunicate:USB:LIST?

The query returns a listing of all connected USB devices.

Key Entry USB Device

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

[:STATe]

Supported All Models

[SOURce]:CORRection[:STATe] ON|OFF|1|0

This command enables or disables the user–flatness corrections.

*RST 0

Key Entry Flatness Off On
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

:BURSt:STATe

Supported N5166B/72B/82B

[:SOURce]:BURSt:STATe ON|OFF|1|0
[:SOURce]:BURSt:STATe?

This command enables or disables the burst envelope function.

*RST 0

Key Entry Burst Envelope Off On

:DM:CORRection:OPTimization

Supported N5166B/72B/82B

[:SOURce]:DM:CORRection:OPTimization RFOut|EXTernal
[:SOURce]:DM:CORRection:OPTimization?

This command enables the internal optimized path to accommodate I/Q signals.

EXT This choice applies correction terms to provide a calibrated signal at the IQ output. When the I/Q Output is selected, the RF signals at the RF Output are uncalibrated.

RFO This choice applies correction terms to provide a calibrated signal at the RF output. When the RF Output is selected, the I/Q signals at the I/Q Output are uncalibrated.

*RST RFO

Key Entry Correction Optimized Path

:DM:EXTernal:INPut:ATTen

Supported N5166B/72B/82B

[:SOURce]:DM:EXTernal:INPut:ATTen <val><unit>
[:SOURce]:DM:EXTernal:INPut:ATTen?

This command sets the attenuation level for the external I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

:DM:EXT:INP:ATT 10

The preceding example sets the modulator attenuator to 10 dB.
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

*:RST +2.00000000E+000
Range 0 to 40 dB
Key Entry Modulator Atten Manual Auto

:DM:EXTernal:INPut:ATTen:AUTO

Supported N5166B/72B/82B

[:SOURce]:DM:EXTernal:INPut:ATTen:AUTO ON|OFF|1|0
[:SOURce]:DM:EXTernal:INPut:ATTen:AUTO?

This command enables or disables the external I/Q attenuator auto mode. The auto mode will be switched to manual if the signal generator receives a AUTO OFF or AUTO 0 command.

ON (1) This choice sets the external I/Q attenuator to auto mode which optimizes the attenuation setting for the current signal generator settings.

OFF (0) This choice sets the attenuator to manual mode and holds the attenuator at its current setting.

Example
:DM:EXT:INP:ATT:AUTO OFF

The preceding example sets the external I/Q attenuator to manual mode.

*:RST 1
Key Entry Modulator Atten Manual Auto

:DM:EXTernal:INPut:ATTen:LEVel

Supported N5166B/72B/82B

[:SOURce]:DM:EXTernal:INPut:ATTen:LEVel <val><volt_units>
[:SOURce]:DM:EXTernal:INPut:ATTen:LEVel?

This command sets the I/Q signal voltage level at the external I/Q inputs. The voltage level set with this command is used as the input level setting for automatic attenuation.

Example
:DM:EXT:INP:ATT:LEV 100MV

The preceding example sets the voltage level for the I and Q inputs to 100 millivolts.

*:RST +4.00000000E–001
Range .05 to 1 Volt
Key Entry I/Q Output Atten
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

:DM:EXTernal:INPut:ATTen:LEVel:MEASurement

Supported N5166B/72B/82B

[[:SOURce]:DM:EXTernal:INPut:ATTen:LEVel:MEASurement]

This command measures the RMS value of the external I/Q signal. The external input level must be set to Measure.

Key Entry Do External Input Level Measurement

Supported N5166B/72B/82B

[[:SOURce]:DM:EXTernal:INPut:ATTen:MODE]

DEFault|MANual|MEASure

[[:SOURce]:DM:EXTernal:INPut:ATTen:MODE?]

This command selects the external measurement used to set the attenuator level. The modulation attenuation must be in Auto mode and is enabled by the :DM:EXTernal:INPut:ATTen:AUTO command.

Example

:DM:EXT:INP:ATT:MODE MAN

The preceding example sets manual as the method for setting the external I/Q input level.

*RST** DEFault

Key Entry Ext Input Level (nnn mV) Default Man Meas

:DM:EXTernal:POLarity

Supported N5166B/72B/82B

[[:SOURce]:DM:EXTernal:POLarity NORMAL|INVert|INVerted

[[:SOURce]:DM:EXTernal:POLarity?]
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B [:SOURce]

This command, for backward compatibility with older signal generator models, selects normal or inverted I/Q routing of signals going out of the rear-panel I and Q output connectors. In the inverted mode, the Q input is routed to the I modulator and the I input is routed to the Q modulator.

Example

:DM:EXT:POL INV

The preceding example inverts I and Q signal routing.

*RST NORM

Key Entry Int Phase Polarity Normal Invert

:DM:INTernal:CHANnel:CORRection[:STATE]

Supported N5166B/72B/82B

[:SOURce]:DM:INTernal:CHANnel:CORRection[:STATE] ON|OFF|1|0

[:SOURce]:DM:INTernal:CHANnel:CORRection[:STATE]?

This command enables and disables the RF and baseband magnitude and phase corrections across the 160 MHz baseband bandwidth, at the current frequency.

When this feature is on, arbitrary frequency switching while the baseband is on will take up to an additional 3.3ms (typical) to 6.8ms the first time that frequency is specified. After that, switching to that frequency will take up to an additional 1.3ms. Up to 1024 unique frequencies can be cached before the oldest cache will be forgotten. If a frequency sweep is activated, then the calculation and caching will occur up front for the first 1024 unique frequencies, and all further unique frequencies will have the characteristics of arbitrary frequency switching.

If the I/Q correction optimized path is set to Ext I/Q Output, then only the baseband corrections are applied and the frequency switching is unaffected.

This correction is convolved with the ACP internal I/Q channel optimization filter and the equalization filter, if they are active. The resulting filter is truncated to 256 taps.

Example

:DM:INT:CHAN:CORR ON

The preceding example enables the internal channel correction calibration.

Key Entry Int Channel Correction Off On

:DM:INTernal:CHANnel:OPTimization

Supported N5166B/72B/82B

[:SOURce]:DM:INTernal:CHANnel:OPTimization EVM|ACP

[:SOURce]:DM:INTernal:CHANnel:OPTimization?
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([SOURce])

This command selects between optimizing the internal I/Q channel for EVM (in channel performance) at the expense of ACP (out of channel performance) or optimizing for ACP at the expense of EVM.

EVM is an 80% Nyquist filter (160 MHz wide) with a wide transition band. When an equalization filter is active, this filter is not active.

ACP is an 80% Nyquist filter (160 MHz wide) with a narrow transition band, thus reducing images for wide-band signals. This filter will be convolved with the active equalization filter, the result of which will be truncated to the center 256 taps.

*RST EVM
Key Entry Optimize Int I/Q Channel EVM ACP

Supported N5166B/72B/82B

[:SOURce]:DM:INTernal:EQUalization:FILTer:SElec "Filter"
[:SOURce]:DM:INTernal:EQUalization:FILTer:SElec?

This command selects the FIR file to use as the equalization filter. Equalization filters are typically complex and must have an oversample ratio of 1. The filter must not have more than 256 taps (512 coefficients for a complex filter). The equalization filter operates at 200 MHz, so all equalization filters must be resampled to 200 MHz if they are sampled at some other rate.

*RST No file selected
Key Entry Select Filter

:DM:INTernal:EQUalization:FILTer:STATe

Supported N5166B/72B/82B

[:SOURce]:DM:INTernal:EQUalization:FILTer:STATe ON|OFF|1|0
[:SOURce]:DM:INTernal:EQUalization:FILTer:STATe?

This command enables or disables the I/Q internal equalization filter. This filter can be used to correct and/or impair the RF and external I/Q outputs for the internal I/Q source. This filter will be convolved with the ACP internal I/Q Channel Optimization filter if that filter is selected, the result of which will be truncated to the center 256 taps. The equalization filter operates at 200 MHz, so all equalization filters must be resampled to 200 MHz if they are sampled at some other rate.

Applying I/Q Delay or I/Q Timing Skew will reduce the actual number of coefficients available in the hardware by 2 taps for every integral step of 5ns of delay or 10 ns of skew.

*RST Off
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

Key Entry Int Equalization Off On

:DM:IQADjustment:DELay

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:DELay <value><unit>
[:SOURce]:DM:IQADjustment:DELay?

This command enables you to change the absolute phase of both I and Q with respect to triggers and markers. A positive value delays I and Q. This value affects both the external I/Q out signals and the baseband signal modulated on the RF output. This adjustment does not affect external I/Q inputs.

The variable <value> is expressed in seconds.

*RST +0.00000000E+000
Range −400 το 400 νανοσεξονδσ (νσ)

Key Entry I/Q Delay
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

:DM:IQADjustment:EXTernal:CMRange

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:EXTernal:CMRange COARse|FINE
[:SOURce]:DM:IQADjustment:EXTernal:CMRange?

This command sets the common mode offset range voltage (COARse or FINE) for both the in–phase (I) and quadrature–phase (Q) signals going out of the rear panel I and Q output connectors.

The common mode offset range is expressed in units of volts (mV–V). The COARse range corresponds to a pre–existing adjustment range of ±2.5 V. When the FINE range is enabled, the common mode offset is limited to ±100 mV.

*RST COAR
Range −2.5 to 2.5 V (Coarse), −100 to 100 mV (Fine)

Key Entry Common Mode I/Q Offset Range
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

:DM:IQADjustment:EXTernal:COFFset

Supported N5166B/72B/82B
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

[:SOURce]:DM:IQADjustment:EXTernal:COFFset <value>
[:SOURce]:DM:IQADjustment:EXTernal:COFFset?

This command sets the common mode offset voltage for both the in–phase (I) and quadrature–phase (Q) signals going to the rear panel I and Q output connectors.

The variable <value> is expressed in units of volts (mV–V).

* RST +0.00000000E+000
Range –2.5 to 2.5 V
Key Entry Common Mode I/Q Offset
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

:DM:IQADjustment:EXTernal:DIOFfset

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:EXTernal:DIOFfset <value>
[:SOURce]:DM:IQADjustment:EXTernal:DIOFfset?

This command sets the differential offset voltage for an in–phase (I) signal routed to the I output connectors.

The variable <value> is expressed in units of volts (mV–V).

* RST +0.00000000E+000
Range –25 to 25 mV
Key Entry Diff. Mode I Offset
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

:DM:IQADjustment:EXTernal:DQOFfset

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:EXTernal:DQOFfset <value>
[:SOURce]:DM:IQADjustment:EXTernal:DQOFfset?

This command sets the differential offset voltage for a quadrature–phase (Q) signal routed to the Q output connectors.

* RST +0.00000000E+000
Range –25 to 25 mV
Key Entry Diff. Mode Q Offset
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

Remarks
This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:EXTernal:INPut:GAIN <val>
[:SOURce]:DM:IQADjustment:EXTernal:INPut:GAIN?

This command adjusts the External Input I/Q Gain Balance.

The variable <val> is expressed in units of decibels (dB), and the minimum increment is 0.001 dB.

*RST +0.00000000E+000
Range −1 to 1
Key Entry External Input I/Q Gain Balance

:DM:IQADjustment:EXTernal:IOFFset

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:EXTernal:IOFFset <value>
[:SOURce]:DM:IQADjustment:EXTernal:IOFFset?

This command sets the offset voltage for a signal applied to the external I Input connector.

The variable <value> is expressed in units of volts (mV–V).

*RST +0.00000000E+000
Key Entry External Input I Offset
Range −100 to 100 mV
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

:DM:IQADjustment:EXTernal:QOFFset

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:EXTernal:QOFFset <value>
[:SOURce]:DM:IQADjustment:EXTernal:QOFFset?

This command sets the offset voltage for a signal applied to the External Q Input connector.

The variable <value> is expressed in units of volts (mV–V).

*RST +0.00000000E+000
Basic Function Commands

Digital Modulation Subsystem—N5166B/72B/82B [:SOURce]

<table>
<thead>
<tr>
<th>Range</th>
<th>−100 to 100 mV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>External Input Q Offset</td>
</tr>
<tr>
<td>Remarks</td>
<td>This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.</td>
</tr>
</tbody>
</table>

:DM:IQADjustment:EXTernal:QSKew

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5166B/72B/82B</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SOURce]:DM:IQADjustment:EXTernal:QSKew <value></td>
<td></td>
</tr>
<tr>
<td>[:SOURce]:DM:IQADjustment:EXTernal:QSKew?</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

This Q phase angle adjustment is uncalibrated.

This command adjusts the phase angle (quadrature skew) between the I and Q vectors by increasing or decreasing the Q phase angle. This command adjusts the signals externally input to the signal generator’s front-panel Q input connector. For more information on this connector, refer to the User’s Guide.

The <value> variable is expressed in degrees with a minimum resolution of 0.1.

If the signal generator is operating at frequencies greater than 3.3 GHz, quadrature skew settings greater than ±5 degrees will not be within specifications.

Positive skew increases the angle from 90 degrees while negative skew decreases the angle from 90 degrees. When the quadrature skew is zero, the phase angle between the I and Q vectors is 90 degrees.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

Example

:DM:IQAD:EXT:QSK 4.5

The preceding example increases the phase angle by 4.5 degrees.

<table>
<thead>
<tr>
<th>RST</th>
<th>+0.00000000E+000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>−200 to +200</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Quadrature Angle Adjustment</td>
</tr>
</tbody>
</table>
Basic Function Commands

Digital Modulation Subsystem—N5166B/72B/82B ([SOURce])

:DM:IQADjustment:GAIN

Supported
N5166B/72B/82B

[:SOURce]:DM:IQADjustment:GAIN <value><unit>
[:SOURce]:DM:IQADjustment:GAIN?

This command adjusts the ratio of I to Q while preserving the composite, vector magnitude. Adding gain (+x dB) to the signal increases the I component and decreases the Q component proportionally. Reducing gain (–x dB) decreases the I component and increases the Q component proportionally.

The variable <value> is expressed in units of decibels (dB).

*RST +0.00000000E+000
Range −1 to 1
Key Entry I/Q Gain Balance
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATE] command.

:DM:IQADjustment:IOFFset

Supported
N5166B/72B/82B

[:SOURce]:DM:IQADjustment:IOFFset <value><unit>
[:SOURce]:DM:IQADjustment:IOFFset?

This command adjusts the I channel offset value.

When using this command to minimize the LO feedthrough signal, optimum performance is achieved when the command is sent after all other I/Q path commands are executed, such as those that change the internal phase polarity or adjust the modulator attenuator. If other adjustments are made after minimizing is performed, the LO feedthrough signal may increase.

The variable <value> is expressed in units of percent with a minimum resolution of 0.025.

*RST +0.00000000E+000
Range −20.000 to 20.000
Key Entry I Offset
Remarks This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATE] command.
Basic Function Commands

Digital Modulation Subsystem—N5166B/72B/82B [:SOURce]

:DM:IQADjustment:PHASe

Supported
N5166B/72B/82B

[:SOURce]:DM:IQADjustment:PHASe <value><unit>
[:SOURce]:DM:IQADjustment:PHASe?

This feature allows adjustment of the absolute phase of the internal I/Q channel by rotating both I and Q, and so adjusting the relative phase of the RF carrier. For MXGs with Option 012, this is the only way to adjust the phase for a unit with an external LO.

The I/Q signal will be scaled down by 0.7071 for all phase offsets except 0. Use -360 or +360, if it is desirable to maintain a constant power level with the ALC off while adjusting the I/Q phase.

The variable <value> is expressed in units of degrees with a resolution of 0.01 degrees. <unit> can be nothing or DEG for degrees.

- **RST**
 +0.00000000E+000
- **Range**
 −360.000 to 360.000
- **Key Entry**
 I/Q Phase

Remarks
This command is effective only if the state of the I/Q adjustment function is set to on. Refer to the .:DM:IQADjustment[:STATe] command.

:DM:IQADjustment:QOFFset

Supported
N5166B/72B/82B

[:SOURce]:DM:IQADjustment:QOFFset

[:SOURce]:DM:IQADjustment:QOFFset?

This command adjusts the Q channel offset value.

When using this command to minimize the LO feedthrough signal, optimum performance is achieved when the command is sent after all other I/Q path commands are executed, such as those that change the internal phase polarity or adjust the modulator attenuator. If other adjustments are made after minimizing is performed, the LO feedthrough signal may increase.

The variable <value> is expressed in units of percent with a minimum resolution of 0.025.

- **RST**
 +0.00000000E+000
- **Range**
 −20.000 to 20.000
- **Key Entry**
 Q Offset

Remarks
This command is effective only if the state of the I/Q adjustment function is set to on. Refer to the .:DM:IQADjustment[:STATe] command.
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

:DM:IQADjustment:QSKew

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:QSKew <value>

This command adjusts the phase angle (quadrature skew) between the I and Q vectors by increasing or decreasing the Q phase angle.

The <value> variable is expressed in degrees with a minimum resolution of 0.1.

If the signal generator is operating at frequencies greater than 3.3 GHz, quadrature skew settings greater than ±5 degrees will not be within specifications.

Positive skew increases the angle from 90 degrees while negative skew decreases the angle from 90 degrees. When the quadrature skew is zero, the phase angle between the I and Q vectors is 90 degrees.

This command is effective only if the state of the I/Q adjustment function is set to ON. Refer to the :DM:IQADjustment[:STATe] command.

Example

:DM:IQAD:QSK 4.5

The preceding example increases the phase angle by 4.5 degrees.

* RST +0.00000000E+000

Range −1E1 to +1E1

Key Entry Quadrature Angle Adjustment

:DM:IQADjustment:SKEW

Supported N5166B/72B/82B

[:SOURce]:DM:IQADjustment:SKEW <value>

This command changes the I/Q skew which is a time delay difference between the I and Q signals. Equal and opposite skew is applied to both I and Q and affects the RF Output and I/Q output paths simultaneously. A positive value delays the I signal relative to the Q signal, and a negative value delays the Q signal relative to the I signal.

Example

:DM:IQAD:SKEW 5E–9

The preceding example sets the time delay difference between the I and Q signals to 5 nanoseconds.

* RST +0.00000000E+000

Range −800 to +800 ns
Basic Function Commands

Digital Modulation Subsystem—N5166B/72B/82B ([:SOURce])

Key Entry

I/Q Skew

:DM:IQADjustment[:STATe]

Supported

N5166B/72B/82B

[:SOURce]:DM:IQADjustment[:STATe] ON|OFF|1|0

[:SOURce]:DM:IQADjustment[:STATe]?

This command enables or disables the I/Q adjustments.

Example

:DM:IQAD 1

The preceding example enables I/Q adjustments.

*RST 0

Key Entry

I/Q Adjustments Off On

Key Path

I/Q > I/Q Adjustments Off On

:DM:POLarity[:ALL]

Supported

N5166B/72B/82B

[:SOURce]:DM:POLarity[:ALL] NORMal|INVert

[:SOURce]:DM:POLarity?

This command sets the digital phase polarity.

NORMal This choice selects normal phase polarity for the I and Q signals.

INVert This choice inverts the Q channel signal.

*RST NORM

Key Entry

Int Phase Polarity Normal Invert

:DM:SOURce

Supported

N5166B/72B/82B

[:SOURce]:DM:SOURce EXTernal|INTernal|SUM

[:SOURce]:DM:SOURce?

This command selects the I/Q modulator source.

This softkey is found under the I/Q menu.

EXTernal This choice selects a 50 ohm impedance for the I and Q input connectors and routes the applied signals to the I/Q modulator.
Basic Function Commands
Digital Modulation Subsystem—N5166B/72B/82B [:SOURce]

INTernal
This choice selects the internal baseband generator as the source for the I/Q modulator and requires Option 65x.

Sum
This choice selects the internal baseband generator and combines that signal with an external source and routes the applied signals to the I/Q modulator and requires Option 65x.

*RST
INT

:DM:STATe
Supported N5166B/72B/82B
[:SOURce]:DM:STATe ON|OFF|1|0
[:SOURce]:DM:STATe?
This command enables or disables the I/Q modulator.

The I/Q modulator is enabled whenever a digital format is turned on.
The I/Q annunciator will be shown on the signal generator display whenever the I/Q modulator is on.

ON (1) This choice enables the internal I/Q modulator.
OFF (0) This choice disables the internal I/Q modulator. You can turn off the I/Q with this choice even though a digital format is enabled. With this configuration, the RF output signal will not be modulated, but the I/Q signals may be present at the rear panel I and Q outputs depending on the rear panel output selection.

*RST
0
Key Entry I/Q Off On

:DM:SRATio
Supported N5166B/72B/82B
[:SOURce]:DM:SRATio <val><unit>
[:SOURce]:DM:SRATio?
This command sets the power level difference (ratio) between the source one and source two signals when the two signals are summed together. A positive ratio value reduces the amplitude for source two, while a negative ratio value reduces the amplitude for source one.

*RST +0.00000000E+000
Range ± 50 dB
Key Entry Summing Ratio (SRC1/SRC2) x.xx dB
Frequency Subsystem ([:SOURce])

:FREQuency:CENTer

Supported All Models

[:SOURce]:FREQuency:CENTer <num>[<freq_suffix>] | UP | DOWN

[:SOURce]:FREQuency:CENTer? [MAXimum|MINimum]

This command sets the center frequency for a step sweep. The center frequency symmetrically divides the selected frequency span and is coupled to the start and stop frequency settings. The frequency range and reset values are dependent on the signal generator model and option number.

The query returns the start and stop frequencies if the optional MAXimum or MINimum are used.

*RST The preset value is model/option dependent. Refer to the instrument's Data Sheet.

Range The range is model/option dependent. Refer to the instrument's Data Sheet.

Example

:FREQ:CENT .5 GHz

The preceding example sets the center frequency for a sweep to .5 GHz.

Key Entry Freq Center

:FREQuency:CHANnels:BAND

Supported All Models

[:SOURce]:FREQuency:CHANnels:BAND
NBASe|NMOBile|BPGSm|MPGSm|BEGSm|MEGSm|
BRGSm|MRGSm|BDCS|MDCS|BPCS|MPCS|B450|GM450|B480|B850BDCS|M480|B850|M850|B8|M8|B15|M15|B390|B420|B460|B915|M380|M410|M450|M870|PHS|DECT

[:SOURce]:FREQuency:CHANnels:BAND?

This command sets the frequency of the signal generator by specifying a frequency channel band. The frequency channel state must be enabled for this command to work.

Refer to the :FREQuency:CHANnels[:STATE] command.

<table>
<thead>
<tr>
<th>SCPI Parameter</th>
<th>Frequency Channel Band Selected</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBASe</td>
<td>Standard Base</td>
<td>NADC</td>
</tr>
<tr>
<td>NMOBile</td>
<td>Standard Mobile</td>
<td>NADC</td>
</tr>
</tbody>
</table>
Basic Function Commands

Frequency Subsystem ([:SOURce])

<table>
<thead>
<tr>
<th>SCPI Parameter</th>
<th>Frequency Channel Band Selected</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPGSm</td>
<td>P-Gsm 900 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>MPGSm</td>
<td>P-Gsm 900 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>BEGSm</td>
<td>E-Gsm 900 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>MEGSm</td>
<td>E-Gsm 900 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>BRGSm</td>
<td>R-Gsm 900 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>MRGSm</td>
<td>R-Gsm 900 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>BDCS</td>
<td>DCS 1800 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>MDCS</td>
<td>DCS 1800 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>BPCS</td>
<td>PCS 1900 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>MPCS</td>
<td>PCS 1900 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>B450</td>
<td>Gsm 450 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>GM450</td>
<td>Gsm 450 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>B480</td>
<td>Gsm 480 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>M480</td>
<td>Gsm 480 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>B850</td>
<td>Gsm 850 Base</td>
<td>GSM</td>
</tr>
<tr>
<td>M850</td>
<td>Gsm 850 Mobile</td>
<td>GSM</td>
</tr>
<tr>
<td>B8</td>
<td>800MHz Base</td>
<td>PDC</td>
</tr>
<tr>
<td>M8</td>
<td>800MHz Mobile</td>
<td>PDC</td>
</tr>
<tr>
<td>B15</td>
<td>1500MHz Base</td>
<td>PDC</td>
</tr>
<tr>
<td>M15</td>
<td>1500MHz Mobile</td>
<td>PDC</td>
</tr>
<tr>
<td>B390</td>
<td>Base 390-400</td>
<td>TETRA</td>
</tr>
<tr>
<td>B420</td>
<td>Base 420-430</td>
<td>TETRA</td>
</tr>
<tr>
<td>B460</td>
<td>Base 460-470</td>
<td>TETRA</td>
</tr>
<tr>
<td>B915</td>
<td>Base 915-921</td>
<td>TETRA</td>
</tr>
<tr>
<td>M380</td>
<td>Mobile 380-390</td>
<td>TETRA</td>
</tr>
<tr>
<td>M410</td>
<td>Mobile 410-420</td>
<td>TETRA</td>
</tr>
<tr>
<td>M450</td>
<td>Mobile 450-460</td>
<td>TETRA</td>
</tr>
<tr>
<td>M870</td>
<td>Mobile 870-876</td>
<td>TETRA</td>
</tr>
<tr>
<td>PHS</td>
<td>Standard PHS</td>
<td>PHS</td>
</tr>
<tr>
<td>DECT</td>
<td>Standard DECT</td>
<td>DECT</td>
</tr>
</tbody>
</table>
Example

```plaintext
:FREQ:CHAN:BAND DECT
```

The preceding example sets the frequency band to standard DECT.

```
*RST
BPGS
```

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>P-GSM Base</th>
<th>E-GSM Base</th>
<th>R-GSM Base</th>
<th>DCS Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS Base</td>
<td>GSM 450 Base</td>
<td>GSM 480 Base</td>
<td>GSM 850 Base</td>
<td></td>
</tr>
<tr>
<td>NADC Base</td>
<td>800MHz Base</td>
<td>1500MHz Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Base</td>
<td>Tetra Base</td>
<td>Tetra Base</td>
<td>Tetra Base</td>
<td></td>
</tr>
<tr>
<td>390/400</td>
<td>420/430</td>
<td>460/470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>915/921</td>
<td>PHS Standard</td>
<td>DECT Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetra Mobile</td>
<td>380/390</td>
<td>Tetra Mobile</td>
<td>Tetra Mobile</td>
<td></td>
</tr>
<tr>
<td>870/876</td>
<td>410/420</td>
<td>450/460</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:FRQuency:CHANnels:NUMBer

Supported All Models

```
[:SOURce]:FREQuency:CHANnels:NUMBer <number>
[:SOURce]:FREQuency:CHANnels:NUMBer?
```

This command sets the frequency of the signal generator by specifying a channel number of a given frequency band.

The channel band and channel state must be enabled for this command to work. Refer to the :FREQuency:CHANnels[:STATe] command.
Basic Function Commands
Frequency Subsystem [:SOURce])

Example

`:FREQ:CHAN:NUMB 24`

The preceding example sets the channel number to 24 for the current band.

```
*RST
```

Range

<table>
<thead>
<tr>
<th>Base/Mode</th>
<th>Channel Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-GSM Base/Mobile</td>
<td>1–24</td>
</tr>
<tr>
<td>E-GSM and R-GSM Base/Mobile</td>
<td>1–1023</td>
</tr>
<tr>
<td>DCS Base/Mobile</td>
<td>512–885</td>
</tr>
<tr>
<td>PCS Base/Mobile</td>
<td>512–900</td>
</tr>
<tr>
<td>GSM-450 Base/Mobile</td>
<td>259–293</td>
</tr>
<tr>
<td>GSM-480 Base/Mobile</td>
<td>306–340</td>
</tr>
<tr>
<td>GSM-850 Base/Mobile</td>
<td>128–251</td>
</tr>
<tr>
<td>NADC Base/Mobile</td>
<td>1–1023</td>
</tr>
<tr>
<td>800MHz Base/Mobile</td>
<td>0–640</td>
</tr>
<tr>
<td>1500MHz Base/Mobile</td>
<td>0–960</td>
</tr>
<tr>
<td>TETRA 380/390 Mobile</td>
<td>3600–4000</td>
</tr>
<tr>
<td>TETRA 390/4000 Base</td>
<td>3600–4000</td>
</tr>
<tr>
<td>TETRA 410/420 Mobile</td>
<td>800–1200</td>
</tr>
<tr>
<td>TETRA 420/430 Base</td>
<td>800–1200</td>
</tr>
<tr>
<td>TETRA 460/470: 2400 through 2800</td>
<td>2400–2800</td>
</tr>
<tr>
<td>TETRA 870/876 Mobile</td>
<td>600–640</td>
</tr>
<tr>
<td>TETRA 915/921 Base</td>
<td>600–940</td>
</tr>
<tr>
<td>PHS Standard</td>
<td>1–255</td>
</tr>
<tr>
<td>DECT Standard</td>
<td>0–9</td>
</tr>
</tbody>
</table>

Key Entry

<table>
<thead>
<tr>
<th>Channel Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FREQuency:CHANnels[:STATe]</td>
</tr>
</tbody>
</table>

Supported

<table>
<thead>
<tr>
<th>Base/Mode</th>
<th>Channel Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Models</td>
<td></td>
</tr>
</tbody>
</table>

```
[:SOURce]:FREQuency:CHANnels[:STATe] ON|OFF|1|0
[:SOURce]:FREQuency:CHANnels[:STATe]?
```

This command enables or disables the frequency channel and band selection. The signal generator frequency will be set to the channel frequency when the state is on. To set frequency channel bands refer to the :

```
:FREQuency:CHANnels:BAND command.
```
Basic Function Commands
Frequency Subsystem ([:SOURce])

Example

`:FREQ:CHAN ON`

The preceding example turns on the frequency channel.

*RST 0

Key Entry Freq Channels Off On

`:FREQuency[:CW]`

Supported All Models

[:SOURce]:FREQuency[:CW] <value><unit>

[:SOURce]:FREQuency[:CW]?

This command sets the signal generator output frequency.

*RST The preset value is model/option dependent. Refer to the instrument's Data Sheet.

Range The range is model/option dependent. Refer to the instrument's Data Sheet.

Remarks A frequency change may affect the current output power. Refer to the [:LEVEL][:IMMediate][:AMPLitude] command for the correct specified frequency and amplitude settings. To set the frequency mode refer to the :FREQuency:MODE command.

`:FREQuency:FIXed`

Supported All Models

[:SOURce]:FREQuency:FIXed <val><unit>|UP|DOWN

[:SOURce]:FREQuency:FIXed?

This command sets the signal generator output frequency, or increments or decrements the current RF frequency setting.

*<val> A frequency value.

*UP Increases the current frequency setting by the value set with the front-panel up-arrow key.

*DOWN Decreases the current frequency setting by the value set with the front-panel down-arrow key.

*RST 0

Option 501: +10000000000000E+09

Option 503: +30000000000000E+09

Option 506: +60000000000000E+09
Basic Function Commands
Frequency Subsystem ([:SOURce])

Range

Option 501: 9kHz–1GHz
Option 503: 9kHz–3GHz
Option 506: 9kHz–6GHz

Remarks
To set the frequency mode to FIXed, refer to [:FREQuency:MODE].
A frequency change may affect the current output power. Refer to [:LEVel][:IMMediate][:AMPLitude] for the correct specified frequency and amplitude settings.

:FREQuency:LSPurs:STATe

Supported All Models

[:SOURce]:FREQuency:LSPurs:STATe ON|OFF|1|0
[:SOURce]:FREQuency:LSPurs:STATe?

This command enables the mode to improve non-harmonics performance (low spurs mode). Enabling this mode affects switching speed.

1 This choice enables the mode to improve non-harmonics.
0 This choice disables the mode to improve non-harmonics.
*RST 0

Key Entry Improve non-harmonics

:FREQuency:MODE

Supported All Models

[:SOURce]:FREQuency:MODE CW|FIXed|LIST
[:SOURce]:FREQuency:MODE?

This command sets the frequency mode of the signal generator to CW or swept.

CW and FIXed These choices are synonymous with one another and stops a frequency sweep, allowing the Keysight MXG to operate at a set frequency. Refer to the :FREQuency[:CW] command for setting the frequency in the CW mode and to the :FREQuency:FIXed command for setting the frequency in the FIXed mode.
Basic Function Commands
Frequency Subsystem ([SOURce])

LIST

This choice selects the swept frequency mode. If sweep triggering is set to immediate along with continuous sweep mode, executing the command starts the LIST or STEP frequency sweep.

To perform a frequency and amplitude sweep, you must also select LIST as the power mode. See the :MODE command for selecting the list mode for an amplitude sweep.

<table>
<thead>
<tr>
<th>*RST</th>
<th>CW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Freq</td>
</tr>
</tbody>
</table>

:FREQuency:MULTiplier

Supported All Models

[:SOURce]:FREQuency:MULTiplier <value>
[:SOURce]:FREQuency:MULTiplier?

This command sets the multiplier for the signal generator carrier frequency. This displayed frequency equals the actual frequency times the multiplier.

*RST	+1.00000000E+000
Range	Negative values: -1000 to -0.001
	Positive values: 0.001 to 1000
Key Entry	Freq Multiplier
Remarks	For any multiplier other than one, the MULT indicator is shown in the frequency area of the display.

:FREQuency:OFFSet

Supported All Models

[:SOURce]:FREQuency:OFFSet <value><unit>
[:SOURce]:FREQuency:OFFSet?

This command sets the frequency offset.

The query of this command returns a value equal to the original output frequency times the multiplier value, plus the frequency offset value. This displayed frequency equals the actual frequency times the multiplier.

When an offset has been entered, the OFFS indicator is turned on in the frequency area of the display.

The frequency offset state is turned on when any non–zero value is entered; entering zero will turn it off. Refer to the :FREQuency:OFFSet:STATe command for setting the offset state independent of entering offset values.
Basic Function Commands
Frequency Subsystem ([:SOURce])

*RST +0.0000000000000E+00

Range −200 to 200 GHz

Key Entry Freq Offset

:FREQuency:OFFSet:STATe

Supported All Models

[:SOURce]:FREQuency:OFFSet:STATe ON|OFF|1|0

[:SOURce]:FREQuency:OFFSet:STATe?

This command enables or disables the offset frequency.

*RST 0

Key Entry Freq Offset

Remarks Entering OFF (0) will set the frequency offset to 0 Hz.

:FREQuency:REFerence

Supported All Models

[:SOURce]:FREQuency:REFerence <value><unit>

[:SOURce]:FREQuency:REFerence?

This command sets the output reference frequency.

*RST +0.0000000000000E+00

Range The range is model/option dependent. Refer to the instrument's Data Sheet.

Key Entry Freq Ref Set

:FREQuency:REFerence:SET

Supported All Models

[:SOURce]:FREQuency:REFerence:Set

This command sets the current CW output frequency, along with any offset, as a 0 hertz reference value.

*RST +0.0000000000000E+00

Key Entry Freq Ref Set

:FREQuency:REFerence:STATe

Supported All Models

[:SOURce]:FREQuency:REFerence:STATe ON|OFF|1|0

[:SOURce]:FREQuency:REFerence:STATe?
Basic Function Commands
Frequency Subsystem ([:SOURce])

This command enables or disables the frequency reference mode.
When the frequency reference mode is on, subsequent frequency parameters are set relative to the reference value.

```
*RST 0
Key Entry Freq Ref Off On
```

`:FREQuency:SPAN

Supported All Models

```
[:SOURce]:FREQuency:SPAN <num>[<freq_suffix>] |UP|DOWN
[:SOURce]:FREQuency:SPAN? [MAXimum|MINimum]
```

This command sets the length of the frequency range for a step sweep. Span setting is symmetrically divided by the selected center frequency and is coupled to the start and stop frequency settings. The span range is dependent on the signal generator model and option number.

Example

`:FREQ:SPAN 100MHz`

The preceding example sets the frequency span to 100 megahertz.

```
*RST +0.0000000000000E+00
Key Entry Freq Span
```

`:FREQuency:STARt

Supported All Models

```
[:SOURce]:FREQuency:STARt <value><unit>
[:SOURce]:FREQuency:STARt?
```

This command sets the first frequency point in a step sweep.

```
*RST The preset value is model/option dependent. Refer to the instrument's Data Sheet.
Range The range is model/option dependent. Refer to the instrument's Data Sheet.
Key Entry Freq Start
```

`:FREQuency:STOP

Supported All Models

```
[:SOURce]:FREQuency:STOP <value><unit>
[:SOURce]:FREQuency:STOP?
```

This command sets the last frequency point in a step sweep.
Basic Function Commands
Frequency Subsystem ([SOURce])

*RST
The preset value is model/option dependent. Refer to the instrument’s Data Sheet.

Range
The range is model/option dependent. Refer to the instrument’s Data Sheet.

Key Entry
Freq Stop

:PHASe:REFerence

Supported
All Models

[:SOURce]:PHASe:REFerence
This command sets the current output phase as a zero reference. Subsequent phase adjustments are set relative to the new reference.

Key Entry
Phase Ref Set

:PHASe[:ADJust]

Supported
All Models

[:SOURce]:PHASe[:ADJust] <value><unit>
[:SOURce]:PHASe[:ADJust]?
This command adjusts the phase of the modulating signal. The query will only return values in radians.

*RST
+0.00000000E+000

Range

Key Entry
Adjust Phase

:ROSCillator:BANDwidth:EXTernal

Supported
All Models

[:SOURce]:ROSCillator:BANDwidth:EXTernal <value>[<units>]|NARRow|WIDE|MINimum|MAXimum|DEFault
[:SOURce]:ROSCillator:BANDwidth:EXTernal? |MINimum|MAXimum|
This command selects the external frequency bandwidth as the source for the measurement.
For values greater than 9.5 Hz, 73 Hz is used.

*RST
+9.50000000E+000

Range
.5 or 73 Hz

Key Entry
Ref Oscillator Ext Bandwidth
Basic Function Commands
Frequency Subsystem ([:SOURce])

:ROSCillator:FREQuency:BBG

Supported All Models

[:SOURce]:ROSCillator:FREQuency:EXTernal <value>
[:SOURce]:ROSCillator:FREQuency:EXTernal?

This command sets the frequency of the internal baseband generator reference oscillator.

*RST +1.0000000000000E+07 Hz
Range +1.0000000000000E+06 to +5.0000000000000E+07 Hz

Key Entry Ref Oscillator Ext Freq

:ROSCillator:FREQuency:EXTernal

Supported All Models

[:SOURce]:ROSCillator:FREQuency:EXTernal <value>
[:SOURce]:ROSCillator:FREQuency:EXTernal?

This command makes External Ref Frequency the active function. The value that you enter sets the frequency of the external reference oscillator.

*RST +1.0000000000000E+07 Hz
Range +1.0000000000000E+06 to +5.0000000000000E+07 Hz

Key Entry Ref Oscillator Ext Freq

Remarks If the entered frequency does not match the frequency of the entered reference, an unlocked condition will occur and an error message will appear.

:ROSCillator:OVEN:STATe

Supported All Models

[:SOURce]:ROSCillator:OVEN:STATe ON|OFF|1|0
[:SOURce]:ROSCillator:OVEN:STATe?

This command turns the 10 MHz oven oscillator on or off.

*RST 1

Key Entry Oven Oscillator On Off
Basic Function Commands
Frequency Subsystem ([:SOURce])

:ROSCillator:OVEN:TUNE

Supported All Models
[:SOURce]:ROSCillator:OVEN:TUNE <value>
[:SOURce]:ROSCillator:OVEN:TUNE?

This command tunes the internal oven oscillator frequency.
The user value offsets the factory tuned value (the value is added to the factory calibrated DAC value). The tune value of 0 sets the factory calibrated value.

*RST +0.00000000E+000
Range −4096 to +4096
Key Entry Oven Oscillator Tune

:ROSCillator:SOURce

Supported All Models
[:SOURce]:ROSCillator:SOURce INTernal|EXTernal|BBG
[:SOURce]:ROSCillator:SOURce?

This command sets the current reference oscillator source: INT (internal), EXT (external), or BBG (internal baseband generator).

:ROSCillator:SOURce:AUTO

Supported All Models
[:SOURce]:ROSCillator:SOURce:AUTO ON|OFF|1|0
[:SOURce]:ROSCillator:SOURce:AUTO?

This command enables or disables the ability of the signal generator to automatically select between the internal and an external reference oscillator.

ON (1) This choice enables the signal generator to detect when a valid reference signal is present at the 10 MHz IN connector and automatically switches from internal to external frequency reference.

OFF (0) This choice selects the internal reference oscillator and disables the automatic switching capability between the internal and an external frequency reference.

*RST 1
Key Entry Ref Oscillator Source Auto Off On
:ROSCillator:OVEN:TUNE

Supported All Models

```
[:SOURce]:ROSCillator:OVEN:TUNE <value>
[:SOURce]:ROSCillator:OVEN:TUNE?
```

This command tunes the internal VCTXCO oscillator frequency.

The user value offsets the factory tuned value (the value is added to the factory calibrated DAC value). The tune value of 0 sets the factory calibrated value.

- **RST** +0.00000000E+000
- **Range** -8192 to +8191
- **Key Entry** Ref Oscillator Tune
Basic Function Commands
List/Sweep Subsystem ([SOURce])

List/Sweep Subsystem ([SOURce])

A complete sweep setup requires commands from other subsystems. Table 2-1 shows the function and location of these other commands.

Table 2-1: Location of Commands from the other Subsystems

<table>
<thead>
<tr>
<th>Sweep Type</th>
<th>Function</th>
<th>Command Location</th>
<th>Key Entry under Sweep/List key</th>
</tr>
</thead>
<tbody>
<tr>
<td>List and Step</td>
<td>Configuring frequency sweep</td>
<td>page 75</td>
<td>Freq Off On</td>
</tr>
<tr>
<td></td>
<td>Configuring amplitude sweep</td>
<td>page 114</td>
<td>Amptd Off On</td>
</tr>
<tr>
<td></td>
<td>Configuring frequency and amplitude sweepa</td>
<td>page 75</td>
<td>Freq & Amptd Off On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>page 114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enables or Disables the waveform sweep</td>
<td>page 390</td>
<td>Waveform Off On</td>
</tr>
<tr>
<td></td>
<td>Set up and control sweep triggeringb</td>
<td>page 242</td>
<td>See the “Trigger Subsystem”</td>
</tr>
<tr>
<td>List</td>
<td>Load a list sweep file</td>
<td>page 186</td>
<td>Load From Selected File</td>
</tr>
<tr>
<td></td>
<td>Store list sweep data to a file</td>
<td>page 182</td>
<td>Store To File</td>
</tr>
<tr>
<td></td>
<td>Selects the waveform for the current waveform sequence</td>
<td>page 75</td>
<td>no softkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>page 84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>page 91</td>
<td></td>
</tr>
<tr>
<td>List Sweep Options</td>
<td>This command enables specific options during a list sweep.</td>
<td>page 86</td>
<td>no softkey. Refer to Table 2-2 on page 87</td>
</tr>
<tr>
<td>Options Flags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Start frequency sweep</td>
<td>page 78</td>
<td>Freq Start</td>
</tr>
<tr>
<td></td>
<td>Store list sweep data to a file</td>
<td>page 182</td>
<td>Store To File</td>
</tr>
<tr>
<td></td>
<td>Start amplitude sweep</td>
<td>page 116</td>
<td>Amptd Start</td>
</tr>
<tr>
<td></td>
<td>Stop amplitude sweep</td>
<td>page 116</td>
<td>Amptd Stop</td>
</tr>
</tbody>
</table>

a. Execute both commands to start or stop a frequency and amplitude sweep.
b. For point to point triggering, see “:LIST:TRIGger:SOURce” on page 90.

:LIST:CPOint?

Supported: All Models

[[SOURce]]:LIST:CPOint?

This query returns the current sweep point.
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

:LIST:DIREc tion

Supported: All Models

[:SOURce]:LIST:DIREc tion UP|DOWN
[:SOURce]:LIST:DIREc tion?

This command sets the direction of a list or step sweep.

UP: This choice enables a sweep in an ascending order:
– first to last point for a list sweep
– start to stop for a step sweep

DOWN: This choice reverses the direction of the sweep.

*RST: UP
Key Entry: Sweep Direction Down Up

:LIST:DWEL1

Supported: All Models

[:SOURce]:LIST:DWEL1 <value>,<value>
[:SOURce]:LIST:DWEL1?

This command sets the dwell time for the current list sweep points.

Dwell time is used when IMMEDIATE is the trigger source. Refer to the
:LIST:TRIGger:SOURce command for the trigger setting.

The dwell time is the amount of time the sweep is guaranteed to pause after
setting the frequency and/or power for the current point.

The setting enabled by this command is not affected by signal generator
power-on, preset, or *RST.

The variable <value> is expressed in units of seconds with a 0.000001 (mS).

NOTE

The dwell time (<value>) does not begin until the signal generator has
settled for the current frequency and/or amplitude change.

Range: 100E–6

:LIST:DWEL1:POINts?

Supported: All Models

[:SOURce]:LIST:DWEL1:POINts?

This command queries the signal generator for the number of dwell points in
the current list sweep file.
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

:LIST:DWELL:TYPE

Supported All Models

[:SOURce]:LIST:DWELL:TYPE LIST|STEP
[:SOURce]:LIST:DWELL:TYPE?

This command toggles the dwell time for the list sweep points between the values defined in the list sweep and the value for the step sweep.

LIST This choice selects the dwell times from the list sweep. Refer to the :LIST:DWELL command for setting the list dwell points.

STEP This choice selects the dwell time from the step sweep. Refer to the :SWEep:DWELL command for setting the step dwell.

*RST LIST

Key Entry Dwell Type List Step

:LIST:FREQuency

Supported All Models

[:SOURce]:LIST:FREQuency <value>,<value>
[:SOURce]:LIST:FREQuency?

This command sets the frequency values for the current list sweep points.
The maximum number of list sweep points is 3,201.
The variable <value> is expressed in units of hertz (Hz).
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

Range The range is model/option dependent. Refer to the instrument’s Data Sheet.

:LIST:FREQuency:POINts

Supported All Models

[:SOURce]:LIST:FREQuency:POINts?

This command queries the current list sweep file for the number of frequency points.

:LIST:MANual

Supported All Models

[:SOURce]:LIST:MANual <value>|UP|DOWN
[:SOURce]:LIST:MANual?

Key Entry Dwell Type List Step
Basic Function Commands
List/Sweep Subsystem ([SOURce])

This command sets a list or step sweep point as the current sweep point controlling the frequency and power output.

If list or step mode is controlling frequency or power, or both, then the indexed point in the respective list(s) will be used.

Entering a value with this command will have no effect, unless MANual is the selected mode. Refer to the :LIST:MODE command for setting the proper mode.

If the point selected is beyond the length of the longest enabled list, then the point will be set to the maximum possible point, and an error will be generated.

<table>
<thead>
<tr>
<th>Range</th>
<th>List Sweep: 1 to 3,201</th>
<th>Step Sweep: 2 to 65535</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Manual Point</td>
<td></td>
</tr>
</tbody>
</table>

:LIST:MODE

Supported All Models

[:SOURce]:LIST:MODE AUTO|MANual
[:SOURce]:LIST:MODE?

This command sets the operating mode for the current list or step sweep.

AUTO This choice enables the selected sweep type to perform a sweep of all points.

MANual This choice enables you to select a single sweep point. The selected point controls the frequency and/or amplitude according to the sweep type. Refer to the :LIST:MANual command for selecting a sweep point.

*RST AUTO

Key Entry Manual Mode Off On

:LIST:OPTions

Supported All Models

[:SOURce]:LIST:OPTions <val>,<val>
[:SOURce]:LIST:OPTions?
[:SOURce]:LIST:OPTions:POINts?

This command enables specific options during a list sweep. The command adds the capability to suppress FM, fM, and AM on any list sweep point. Additionally, frequency, power, and/or a waveform transition can be suppressed resulting in no synthesizer, no output, or no waveform playing interruption during a transition.
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

This is a SCPI command only feature. There is no signal generator user interface displayed indication that these option flags are in use. The option flag list is preset to empty when list sweep is preset with the defaults. Otherwise, the option flag changes are persistent.

See also “:LIST:TYPE:LIST:INITialize:PRESet” on page 91.

Table 2-2 List Sweep Options Flag.

<table>
<thead>
<tr>
<th>Bit #</th>
<th>Bit Value</th>
<th>Option if set</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Suppress Frequency Change</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Suppress Power Change</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Suppress Waveform Change</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Suppress FM and fM</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Suppress AM</td>
</tr>
</tbody>
</table>

The table represents the value of a bit flag.
If a bit is not set, then the option is ignored (not applied).
If FM, fM is not turned on, the FM, fM suppression does nothing.
The FM, fM should be typically as in CW mode.
The AM suppressing is accomplished by grounding the input to the AM modulator, no other reconfiguration of HW is performed.
The AM should be set up in CW mode.

Example
FM:DEV 1E6
FM:STAT ON
LIST:FREQ 1E9,2E9,3E9,4E9
LIST:OPT 8,0,8,0

The preceding example sets up FM then a frequency list of 1, 2, 3, 4 GHz and suppresses FM on every other list sweep point (points 1 and 3 will have FM suppressed, points 2 & 4 will have FM enabled).

:LIST:POWer

Supported All Models

[:SOURce]:LIST:POWer <value>,<value>
[:SOURce]:LIST:POWer?

This command sets the amplitude for the current list sweep points.
The maximum number of list sweep points is 3,201.
Basic Function Commands
List/Sweep Subsystem ([SOURce])

Range
See also [:LEVel][:IMMediate][:AMPLitude] command for output power ranges.

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

[:LIST:POWer:POINts]

Supported All Models

[:SOURce]:LIST:POWer:POINts?
This command queries the number of power points in the current list sweep file.

[:LIST:RETRace]

Supported All Models

[:SOURce]:LIST:RETRace ON|OFF|1|0
[:SOURce]:LIST:RETRace?
This command configures the sweep to retrace to the first sweep point, or stop at the last sweep point upon completion of each sweep.

ON (1) The sweep retraces to the first sweep point.

OFF (0) The sweep stays at the last sweep point of the completed sweep and stays there until sweep is initiated and triggered again. When sweep is initiated and triggered again, the sweep point moves to the first point of the sweep.

*RST 1

Key Entry Sweep Retrace Off On

[:LIST:TRIGger:EXTernal:SOURce]

Supported All Models

:LIST:TRIGger:EXTernal:SOURce?
This command selects the external trigger source. With external triggering, the selected bi-directional BNC is configured as an input.

TRIGger1 This choice selects the TRIG 1 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

TRIGger2 This choice selects the TRIG 2 BNC as the external trigger source for triggering sweep, point and function generator sweeps.
Basic Function Commands
List/Sweep Subsystem ([SOURce])

PULSe
This choice selects the PULSE BNC as the external trigger source for triggering sweep, point and function generator sweeps.

Example

:LIST:TRIG:EXT:SOUR PULS
The preceding example sets the external trigger source to the PULSE BNC.

RST TRIGger1

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Trigger 1</th>
<th>Trigger 2</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:LIST:TRIGger:INTernal:SOURce

Supported All Models

:LIST:TRIGger:INTernal:SOURce PVIDeo|PSYNc
:LIST:TRIGger:INTernal:SOURce?

This command selects the internal trigger source.

PVIDeo
This choice selects Pulse Video as the internal trigger source for triggering sweep, point and function generator sweeps.

PSYNc
This choice selects Pulse Sync as the internal trigger source for triggering sweep, point and function generator sweeps.

Example

:LIST:TRIG:INT:SOUR PVID
The preceding example sets the internal trigger source to Pulse Video.

RST PSYN

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Pulse Video</th>
<th>Pulse Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pulse Video</td>
<td>Pulse Sync</td>
</tr>
</tbody>
</table>

:LIST:TRIGger:SLOPe

Supported All Models

:LIST:TRIGger:SLOPe POSitive|NEGative
:LIST:TRIGger:SLOPe?

This command sets the polarity of an external signal at the TRIG 1, TRIG 2, or PULSE BNC (see :LIST:TRIGger:EXTernal:SOURce) or internal Pulse Video or Pulse Sync signal (see :LIST:TRIGger:INTernal:SOURce) that will trigger a list or step sweep.

POSitive
The signal generator triggers an event when it detects a rising edge on the source signal
Basic Function Commands
List/Sweep Subsystem ([SOURce])

NEGative The signal generator triggers an event when it detects a falling edge on the source signal

*RST POS

Key Entry Int/Ext Trigger Polarity Neg Pos

:LIST:TRIGger:SOURce

Supported All Models

[SOURce]:LIST:TRIGger:SOURce BUS|IMMediate|EXTernal|INTernal|KEY|TIMer|MANual
[:SOURce]:LIST:TRIGger:SOURce?

This command sets the point trigger source for a list or step sweep event.

BUS This choice enables GPIB triggering using the *TRG or GET command, or LAN and USB triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIGGER IN connector.

INTernal This choice enables the triggering of a sweep event by an internal Pulse Video or Pulse Sync signal.

KEY This choice enables triggering by pressing the front-panel Trigger key.

TIMer This choice enables the trigger timer.

Example

:LIST:TRIG:SOUR BUS

The preceding example sets the trigger source to the instrument BUS.

*RST IMM

Key Entry Bus Free Ext Int Trigger Timer
Run

:LIST:TYPE

Supported All Models

[SOURce]:LIST:TYPE LIST|STEP
[:SOURce]:LIST:TYPE?

This command toggles between the two types of sweep.
Basic Function Commands
List/Sweep Subsystem ([SOURce])

LIST This type of sweep has arbitrary frequencies and amplitudes.
STEP This type of sweep has equally spaced frequencies and amplitudes.

*RST STEP
Key Entry Sweep Type List Step

:LIST:TYPE:LIST:INITialize:FSTep
Supported All Models

CAUTION The current list sweep data will be overwritten once this command is executed. If needed, save the current data. Refer to the ":STORe:LIST" command for storing list sweep files.

[:SOURce]:LIST:TYPE:LIST:INITialize:FSTep
This command replaces the loaded list sweep data with the settings from the current step sweep data points.
You can load only one sweep list at a time.
The maximum number of list sweep points is 3,201. When copying the step sweep settings over to a list sweep, ensure that the number of points in the step sweep do not exceed the maximum list sweep points.

Key Entry Load List From Step Sweep

:LIST:TYPE:LIST:INITialize:PRESet
Supported All Models

CAUTION The current list sweep data will be overwritten once this command is executed. If needed, save the current data. Refer to the ":STORe:LIST" command for storing list sweep files.

[:SOURce]:LIST:TYPE:LIST:INITialize:PRESet
This command replaces the current list sweep data with a factory–defined file consisting of one point at a frequency, amplitude, and dwell time.

Key Entry Preset List

:LIST:WAVeform
Supported N5166B/72B/82B

CAUTION The current list sweep data will be overwritten once this command is executed. If needed, save the current data. Refer to the ":STORe:LIST" command for storing list sweep files.
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

```plaintext
[:SOURce]:LIST:WAVeform <name>,<name>
[:SOURce]:LIST:WAVeform?
```

This command sets the waveform values for the current list waveform sequence.

NOTE

Except for the sample clock rate, unspecified fields in the header result in the default settings of the dual arb's settings being used (i.e. not the current arb's settings). The sample clock rate must be specified for the file header of the waveform file being played. If the sample clock rate is unspecified in the file header, the instrument generates a header error.

Example

```plaintext
:LIST:WAV "WFM1:RAMP_TEST_WFM","WFM1:SINE_TEST_WFM"
```

The preceding example loads the waveforms RAMP_TEST_WFM and SINE_TEST_WFM into the waveform section of the List Table.

Remarks

The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

```plaintext
:LIST:WAVeform:POINts
```

Supported

N5166B/72B/82B

```plaintext
[:SOURce]:LIST:WAVeform:POINts?
```

This query returns the number of waveform points in the current list sweep file.

```plaintext
:SWEep:ATTen:PROTection[:STATe]
```

Supported

All Models

```plaintext
[:SOURce]:SWEep:ATTen:PROTection[:STATe] ON|OFF|1|0
[:SOURce]:SWEep:ATTen:PROTection[:STATe]?
```

This command enables protection for the mechanical attenuator by automatically turning on Atten Hold during frequency and/or power step sweeps.

This may cause unleveled RF output to occur for certain sweep configurations. Disabling this attenuator protection will allow the sweep to optimally set both the automatic leveling control (ALC) and output attenuation at each sweep point.

- **ON (1)** This choice enables attenuator protection.
- **OFF (0)** This choice disables attenuator protection. When the attenuator protection is disabled, the step dwell time will be set to a minimum of 50 ms as a precaution.

Example

```plaintext
:SWE:ATT:PROT 0
```
Basic Function Commands
List/Sweep Subsystem ([:SOURce])

The preceding example disables attenuator protection.

*RST

Key Entry Step Atten Protection On Off

:SWEep:CPOINt?

Supported All Models

[:SOURce]:SWEep:CPOINt?

This query returns the current sweep point in any mode.

:SWEep:DWELl

Supported All Models

[:SOURce]:SWEep:DWELl <value>

[:SOURce]:SWEep:DWELl?

This command enables you to set the dwell time for a step sweep.

The variable <value> is expressed in units of seconds with a 0.001 resolution.

The dwell time is the amount of time the sweep is guaranteed to pause after setting the frequency and/or power for the current point.

The dwell time (<value>) does not begin until the signal generator has settled for the current frequency and/or amplitude change.

*RST +2.00000000E–003

Range 0.0001 to 100

Key Entry Step Dwell

Remarks Dwell time is used when the trigger source is set to IMMEDIATE. Refer to the :LIST:TRIGger:SOURce command for the trigger setting.

:SWEep[:FREQuency]:STEP[:LINear]

Supported All Models

[:SOURce]:SWEep[:FREQuency]:STEP[:LINear] <value><unit>

[:SOURce]:SWEep[:FREQuency]:STEP[:LINear]?

This command sets the step size for a linear step sweep in frequency (difference between frequency points).

The variable <value> is expressed in units of frequency, specifies by the variable <unit> (as Hz, kHz, MHz, or GHz).
Basic Function Commands
List/Sweep Subsystem ([SOURce])

NOTE: Setting the step size will determine the number of points in the step sweep based on the current start and stop frequencies. Due to the integer number of step points, the step size may be adjusted in order to yield a true linear sweep between the start and stop frequencies.

*RST 0.00 Hz
Key Entry LIN Freq Step

:SWEep[:FREQuency]:STEP:LOGarithmic

Supported All Models

[:SOURce]:SWEep[:FREQuency]:STEP:LOGarithmic <value>
[:SOURce]:SWEep[:FREQuency]:STEP:LOGarithmic?

This command sets the step size for a logarithmic step sweep in frequency (ratio between frequency points).

The variable <value> is expressed as a percentage (%).

NOTE: Setting the step size will determine the number of points in the step sweep based on the current start and stop frequencies. Due to the integer number of step points, the step size may be adjusted in order to yield a true linear sweep between the start and stop frequencies.

*RST 0.00 Hz
Key Entry LOG Freq Step

:SWEep:POINts

Supported All Models

[:SOURce]:SWEep:POINts <value>
[:SOURce]:SWEep:POINts?

This command defines the number of step sweep points.

*RST 101
Range 2 to 65535
Key Entry # Points

:SWEep:SPACing

Supported All Models

[:SOURce]:SWEep:SPACing LINear|LOGarithmic
[:SOURce]:SWEep:SPACing?

This command enables the signal generator linear or logarithmic sweep modes. These commands require the signal generator to be in step mode.
Basic Function Commands
List/Sweep Subsystem ([SOURce])

The instrument uses the specified start frequency, stop frequency, and number of points for both linear and log sweeps.

*RST LIN

Key Entry Step Spacing LIN LOG
Marker Subsystem–N5173B/83B ([:SOURce])

:MARKer:AMPLitude[:STATe]

Supported N5173B/83B

[[:SOURce]:MARKer:AMPLitude[:STATe] ON|OFF|1|0

[[:SOURce]:MARKer:AMPLitude[:STATe]?]

This command sets the amplitude marker state for the currently activated markers. When the state is switched on, the RF output signal exhibits a spike with a magnitude relative to the power level at each marker’s set frequency. (To set the magnitude of the spike, refer to the :MARKer:AMPLitude:VALue command.)

Example

:MARK:AMPL ON

The preceding example enables amplitude markers.

*RST 0

Key Entry Amplitude Markers Off On

:MARKer:AMPLitude:VALue

Supported N5173B/83B

[[:SOURce]:MARKer:AMPLitude:VALue <num>[DB]

[[:SOURce]:MARKer:AMPLitude:VALue?]

This command sets the relative power for the amplitude spikes at each marker’s set frequency when the amplitude marker mode is activated. (To activate the amplitude markers, refer to the :MARKer:AMPLitude[:STATe] command.)

Example

:MARK:AMPL:VAL 4DB

The preceding example sets the relative marker power to 4 dB for all markers.

*RST 2 dB

Range –10 to +10 dB

Key Entry Marker Value

:MARKer:AOFF

Supported N5173B/83B

[[:SOURce]:MARKer:AOFF]

This command turns off all active markers.
Basic Function Commands
Marker Subsystem–N5173B/83B ([:SOURce])

Key Entry Turn Off Markers

:MARKer:DELTa

Supported N5173B/83B

[:SOURce]:MARKer:DELTa? <num>,<num>

This query returns the frequency difference between two amplitude markers. The variables <num> are used to designate the marker numbers.

Example

:MARK:DELT? 1,2

The preceding example returns the frequency difference between amplitude markers 1 and 2.

Range 0 to 19

:MARKer:MODE

Supported N5173B/83B

[:SOURce]:MARKer:MODE FREQuency|DELTa
[:SOURce]:MARKer:MODE?

This command sets the frequency mode for all markers.

FREQuency The frequency values for the markers are absolute.
DELTa The frequency values for the markers are relative to the designated reference marker. The reference marker must be designated before this mode is selected. (See the :MARKer:REFerence command to select a reference marker.)

Example

:MARK:MODE DELT

The preceding example sets the marker mode to delta.

*RST FREQuency

Key Entry Marker Delta Off On

:MARKer:REFerence

Supported N5173B/83B

[:SOURce]:MARKer:REFerence <marker>
[:SOURce]:MARKer:REFerence?

This command designates the reference marker when using markers in delta mode. The variable <marker> designates the marker number.
Basic Function Commands
Marker Subsystem–N5173B/83B [:SOURce]

Example
:MARK:REF 6
The preceding example sets marker 6 as the reference marker.

*RST 0
Range 0 to 19
Key Entry Delta Ref Set

:MARKer[0]|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19:FREQuency
Supported N5173B/83B
[:SOURce]:MARKer[0]|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19:FREQuency <freq>|MAXimum|MINimum
[:SOURce]:MARKer[0]|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19:FREQuency? [MAXimum|MINimum]
This command sets the marker frequency. The frequency value must be between the start and stop frequencies set for the sweep.

Example
:MARK6 ON
The preceding example turns marker 6 on.

*RST 0
Key Entry Marker On Off

:MARKer[0]|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19[:STATe]
Supported N5173B/83B
[:SOURce]:MARKer[0]|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19[:STATe] ON|OFF|1|0
[:SOURce]:MARKer[0]|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19[:STATe]?
This command turns a marker on or off. Marker 0 is the default if the marker designator [n] is not specified.

Example
:MARK6 ON
The preceding example turns marker 6 on.

*RST 0
Key Entry Marker On Off
Power Subsystem ([:SOURce]:POWer)

:ALC:BANDwidth

Supported All Models

[:SOURce]:POWer:ALC:BANDwidth|BWIDth <num>freq suffix]
[:SOURce]:POWer:ALC:BANDwidth|BWIDth?

This command overrides the signal generator’s automatic ALC bandwidth selection with the user’s specific selection. For waveforms with varying amplitudes, high crest factors, or both, the recommended ALC loop bandwidth is the low bandwidth setting of the generator. Limiting the loop bandwidth of the ALC circuit will prevent the ALC from sampling the fast rising edges of pulsed waveforms. A limited, or narrow bandwidth will result in a longer ALC sample time and a more accurate representation of the signal’s level.

*RST 200 (2kHz when ALC:BAND:BWID is set to AUTO)

Key Entry Auto 200 Hz 2 kHz 20 kHz

Remarks Use this command when the ALC state is set to On. This command will override the automatic ALC bandwidth selection set by the :ALC:BANDwidth|BWIDth:AUTO command.

:ALC:BANDwidth|BWIDth:AUTO

Supported All Models

[:SOURce]:POWer:ALC:BANDwidth|BWIDth:AUTO ON|OFF|1|0
[:SOURce]:POWer:ALC:BANDwidth|BWIDth:AUTO?

This command turns the bandwidth (BW) auto state on or off.

The bandwidth auto function allows the signal generator to automatically select a bandwidth for the automatic leveling control (ALC) circuit.

ON (1) This choice allows the signal generator to automatically select an ALC BW. The selection of the ALC BW depends on the signal generator modulation type.

OFF (0) This choice disables automatic selection of the ALC BW.

*RST 1

Key Entry Auto

Remarks For more information on ALC bandwidth, refer to the User’s Guide.
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

:ALC:LEVel

Supported All Models

[:SOURce]:POWer:ALC:LEVel <value><unit>
[:SOURce]:POWer:ALC:LEVel?

This command sets the automatic leveling control (ALC) level. Use this command after setting the attenuation auto mode to On. Refer to :ATTenuation:AUTO command for setting the attenuation auto mode.

The ALC is used to maintain the signal generator’s output power level by compensating for power fluctuations due to drift, band changes, or load variations. After you set the ALC level, the signal generator’s output power is monitored and corrected so that the power level setting is maintained.

Example

:POW:ALC:LEV 10DB

The preceding example sets the ALC to 10 dB.

*RST +1.00000000E+000
Range –20 to 20
Key Entry Set ALC Level

:ALC:SEARch

Supported All Models

[:SOURce]:POWer:ALC:SEARch ON|OFF|1|0|ONCE
[:SOURce]:POWer:ALC:SEARch?

This command executes a power search routine that temporarily activates the ALC, calibrates the power of the current RF output, and then disconnects the ALC circuitry. The power search mode is active only when the ALC state is Off, and the RF output is On.

ON (1) This choice sets the power search mode to automatic (Auto). In automatic mode, the power search calibration routine is executed whenever an instrument setting is modified that affects RF output power. This includes changes to frequency, amplitude and modulation.

OFF (0) This choice sets the power search mode to Manual and disables the automatic power search calibration routine. The power level must be calibrated by explicitly sending the ONCE command. If there is a change in frequency or amplitude the ONCE command must be sent again.
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

ONCE

This choice executes a single power search calibration at the current RF output frequency and amplitude setting. This command can be used when the power search mode is in automatic or manual.

*RST 1

Remarks

If power search fails, the output power of the instrument will be set to minimum and must be recovered with an instrument preset.

Refer to the :ALC[:STATe] command for setting the ALC state.

:ALC:SEARch:REFerence

Supported All Models

[:SOURce]:POWer:ALC:SEARch:REFerence

RMS|FIXed|MANual|MODulated

[:SOURce]:POWer:ALC:SEARch:REFerence?

This command sets the reference source used by the power search calibration routine. The reference source provides a steady state signal during the power search calibration.

RMS

This choice uses the I/Q system as the reference source for the power search calibration. When the power search calibration routine is executing, the I/Q system provides a DC bias on the I/Q modulator equivalent to the rms value of the current I/Q data. The rms value is derived from the waveform file header or calculated using the current I/Q data.

FIXed

This choice uses the I/Q system as the reference source for the power search calibration. When FIXed is active, the I/Q system uses a fixed level of 1.0 volt to provide a DC bias on the I/Q modulator during the power search calibration.

MANual

This choice uses the I/Q system as the reference source for the power search calibration. When MANual is selected, the user can specify the DC bias on the I/Q modulator during the power search calibration. The level is chosen using the :ALC:SEARch:REFerence:LEVel command.
Basic Function Commands

Power Subsystem ([:SOURce]:POWer)

MODulated This choice disables the power search reference source. During the power search calibration, the current RF output signal is measured to calibrate the output level. If the output signal is amplitude modulated at a slow rate or is bursted, power errors can be introduced at the RF output. For CW signals the power search reference is disabled.

RST FIXED (With BBG License only.)

Key Entry Power Search Reference Fixed Mode

Remarks MXG without the BBG license are defaulted to MOD mode.

:ALC:SEARch:REFerence:LEVel

Supported All Models

[:SOURce]:POWer:ALC:SEARch:REFerence:LEVel <value>
[:SOURce]:POWer:ALC:SEARch:REFerence:LEVel?

This command sets the DC bias voltage value for a manual power search.

RST +1.00000000+000

Range 0 to 1.414 V

Key Entry Power Search Manual Level

:ALC:SEARch:SPAN:START

Supported All Models

[:SOURce]:POWer:ALC:SEARch:SPAN:START <value><units>
[:SOURce]:POWer:ALC:SEARch:SPAN:START?

This command sets the start frequency for a span power search over a user specified range.

The start frequency has no default value. The start frequency value will be the last value set before powering off the instrument.

Key Entry Start Frequency

:ALC:SEARch:SPAN:STOP

Supported All Models

[:SOURce]:POWer:ALC:SEARch:SPAN:STOP <value><units>
[:SOURce]:POWer:ALC:SEARch:SPAN:STOP?

This command sets the stop frequency for a span power search over a user specified range.
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

The stop frequency has no default value. The stop frequency value will be the last value set before powering off the instrument.

Key Entry Stop Frequency

:ALC:SEARch:SPAN:TYPE

Supported All Models

[:SOURce]:POWer:ALC:SEARch:SPAN:TYPE FULL|USER
[:SOURce]:POWer:ALC:SEARch:SPAN:TYPE?

This command enables you to select the frequency range for a span power search. You can specify the range (USER) or you can select the full range (FULL) of the signal generator.

Key Entry Span Type User Full

:ALC:SEARch:SPAN[:STATe]

Supported All Models

[:SOURce]:POWer:ALC:SEARch:SPAN[:STATe] ON|OFF|1|0
[:SOURce]:POWer:ALC:SEARch:SPAN[:STATe]?

This command enables (1) or disables (0) the span mode, allowing you to perform power searches over a selected range of frequencies. The power search corrections are then stored and used whenever the signal generator is tuned within the selected range.

Key Entry Span

:ALC:SOURce

Supported All Models

[:SOURce]:POWer:ALC:SOURce INTernal|DIODe
[:SOURce]:POWer:ALC:SOURce?

This command enables you to select an automatic level control (ALC) source. You can select the internal ALC source, an external detector source, or a millimeter–wave source module. Refer to the User’s Guide for more information on ALC leveling, bandwidth, and the power search function.

Example

:POW:ALC:SOUR DIOD

The preceding example selects an external detector as the source (the unit must be connected to the signal generator).

*RST INT

Key Entry Leveling Mode
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

:[SOURce]:POWer:ALC:SOUR:EXT:COUPling

Supported All Models

[:SOURce]:POWer:ALC:SOUR:EXT:COUPling <value>DB
[:SOURce]:POWer:ALC:SOUR:EXT:COUPling?

This command sets the external detector coupling factor. Use this command when DIODe is the selected ALC source (Refer to the :ALC:SOURce command.)

Example

:POW:ALC:SOUR:EXT:COUP 20DB

The preceding example sets the external coupling factor to 20 dB.

*RST +1.60000000E+001
Range –200 to 200 dB.
Key Entry Ext Detector Coupling Factor

:[SOURce]:POWer:ALC:SOUR:PM:CHANnel

Supported All Models

[:SOURce]:POWer:ALC:SOUR:PM:CHANnel A|B
[:SOURce]:POWer:ALC:SOUR:PM:CHANnel?

This command sets the power meter channel used for servo mode

Example

:POW:ALC:SOUR:PM:CHAN A

*RST A
Range A/B
Key Entry Power Meter Channel (A|B)

:[SOURce]:POWer:ALC:SOUR:PM:INCRement

Supported All Models

[:SOURce]:POWer:ALC:SOUR:PM:INCRement <value>
[:SOURce]:POWer:ALC:SOUR:PM:INCRement?

This command sets the increment percentage of a measured power delta in the Power Meter Servo mode. By default this value is 100%, meaning that the system output power is adjusted by the measured value. This percentage can be lowered to assure that no overshoot takes place – at the cost of additional measurement/adjustment cycles. This command works in conjunction with the START and STOP commands.

Example

:POW:ALC:SOUR:PM:INCR 75
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

The preceding example sets the power increment to 75% of the measured delta.

*RST

Range: 10 to 100 in %

Key Entry: Power Meter Servo overshoot protection power increment

:ALC:SOURce:PMServo:MAXimum

Supported: All Models

[:SOURce]:POWer:ALC:SOURce:PMServo:MAXimum <value>
[:SOURce]:POWer:ALC:SOURce:PMServo:MAXimum?

This command adds device power protection by setting an RF output power protection limit while using the Power Meter Servo mode. The system restricts the actual RF output power to this value and will show UNLEVELED if the desired output power exceeds the value.

Example

:POW:ALC:SOUR:PMS:MAX 10 dBm

The preceding example limits the RF output power to a maximum of 10 dBm when in Power Meter Servo mode.

*RST: 30 dBm

Range: MIN to MAX RF output power of the system (option dependent)

Key Entry: Power Meter Servo mode RF Output power limit

:ALC:SOURce:PMServo:SERRor

Supported: All Models

[:SOURce]:POWer:ALC:SOURce:PMServo:SERRor <value>
[:SOURce]:POWer:ALC:SOURce:PMServo:SERRor?

This command sets the allowed settling error for the power meter servo mode. Measurement/adjustment cycles will be executed until this power delta is achieved.

Example

:POW:ALC:SOUR:PMS:SERR 0.2 dB

*RST: 0.2 dB

Range: 0.02 dB - 10 dB

Key Entry: Settling Error
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

:ALC:SOURce:PMServo:STARt

Supported All Models

[:SOURce]:POWer:ALC:SOURce:PMServo:STARt <value>
[:SOURce]:POWer:ALC:SOURce:PMServo:STARt?

This command sets the relative initial power when leveling with the Power Meter Servo mode. The default of 0 dB means that the system starts with the power it thinks is needed (based on output power, offset and reference) but this might lead to power overshoots in certain cases (especially when the offset is not set up correctly). This value allows to specify an additional safe-margin to start the measure/adjust cycles lower than the target power to protect the device from power overshoots. This command works in conjunction with the INCrement and STOP commands.

Example

The preceding example sets the relative initial power for power meter servo approach to -3 dB.

*RST 0 dB
Range -50 to 0 dB.

Key Entry Power Meter Servo overshoot protection relative start power

:ALC:SOURce:PMServo:STOP

Supported All Models

[:SOURce]:POWer:ALC:SOURce:PMServo:STOP <value>
[:SOURce]:POWer:ALC:SOURce:PMServo:STOP?

This command sets the final threshold for when the remaining measured power delta from the Power Meter Servo mode will be applied in full (100%) instead of the specified increment. This command works in conjunction with the STARt and INCrement commands.

Example

:POW:ALC:SOUR:PMS:STOP 3 dB

The preceding example sets the threshold from when on Power Meter Servo mode incremental iterations stop and the remaining power is adjusted in one jump to the size of the 3 dB.

*RST 1 dB
Range 0 to 50 dB.

Key Entry Power Meter Servo mode overshoot protection increment threshold
Basic Function Commands
Power Subsystem [:SOURce]:POWer

:ALC[:STATe]

Supported
All Models

[:SOURce]:POWer:ALC[:STATe] ON|OFF|1|0
[:SOURce]:POWer:ALC[:STATe]?

This command enables or disables the automatic leveling control (ALC) circuit. The query returns the current state of the ALC.

*RST
1

Key Entry
ALC Off On

Remarks
The purpose of the ALC circuit is to hold output power at a desired level by adjusting the signal generator’s power circuits to compensate for power drift. Power drift occurs over time and changes in temperature. Refer to the User’s Guide for more information on the ALC.

:ALC:TRANsition:REFe rence

Supported
N5166B/72B/82B

[:SOURce]:POWer:ALC:TRANsition:REFe rence RMS|MODulated|NBModulated
[:SOURce]:POWer:ALC:TRANsition:REFe rence?

This command determines the ALC settling mode during frequency transitions when the IQ modulator is on.

RMS
This choice is the default behavior. The IQ is set to an idle state and a CW only signal plays during frequency transitions.

Mod
This choice leaves the IQ on during frequency transition and also leaves the ALC in the default wide bandwidth mode for fast switching.

Although this choice results in switching times that are equivalent to RMS mode, there is the possibility of leveling at the wrong power level.

NBMod
This choice leaves the IQ on during frequency transitions but sets the ALC bandwidth to a narrow bandwidth. Doing this increases the switching time but allows for a more accurate amplitude level.

*RST
RMS

Key Entry
ALC Transition Reference RMS Mod NBMod

Remarks
RMS is the default behavior and in most cases is the best choice for this setting. Refer to the User’s Guide for more information on the ALC.
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

:ALCHold:EXTernal:SOURce

Supported All Models

[:SOURce]:POWer:ALCHold:EXTernal:SOURce TRIGger[1]|TRIGger2|PULSe

This command selects the external ALC Hold source. The ALC is held when the signal line is low (0V) and is not held (i.e. leveling) when the voltage is a TTL high (5V).

With external triggering, the selected bi-directional BNC is configured as an input.

TRIGger1 This choice selects the TRIG 1 BNC as the external source for the ALC Hold signal.
TRIGger2 This choice selects the TRIG 2 BNC as the external source for the ALC Hold signal.
PULSe This choice selects the PULSE BNC as the external source for the ALC Hold signal.

Example

:ALCH:EXT:SOUR PULS

The preceding example sets the external ALC Hold source to the PULSE BNC.

*RST TRIGger1

Key Entry Trigger 1 Trigger 2 Pulse

:ALCHold:EXTernal[:STATe]

Supported All Models

[:SOURce]:POWer:ALCHold:EXTernal[:STATe] ON|OFF|1|0

This command enables (1) or disables (0) the External ALC Hold control. If Ext ALC Hold is on, the external BNC input is selected using the :ALCHold:EXTernal:SOURce command.

*RST 0

Key Entry Ext ALC Hold Off On

:ALTernate:AMPLitude

Supported N5166B/72B/82B

[:SOURce]:POWer:ALTernate:AMPLitude <val><units>

This command sets the delta value for the alternate amplitude.
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

The variable <val> is expressed in units of decibels (dB).

*RST +0.00000000E+000
Range −174 to 174

Key Entry Desired Delta

Remarks The actual RF output amplitude is equal to the Alternate Amplitude Delta value plus the RF output amplitude; this sum cannot exceed the minimum and maximum amplitude limits of the signal generator. For example, if the Alternate Amplitude Delta is set to −174 dB and the RF output amplitude is set to 20 dB, the sum is equal to −154 dB.

:ALTerminate:TRIGger:EXTernal[[:SOURce]]

Supported N5166B/72B/82B

[:SOURce]:POWer:ALTerminate:TRIGger:EXTernal[[:SOURce]]
BBTRigger1|BBTRigger2|PTRig|EVENT1
[:SOURce]:POWer:ALTerminate:TRIGger:EXTernal[[:SOURce]]?

This command sets the external trigger source for the alternate amplitude signal when :ALTerminate:TRIGger[[:SOURce]] is set to External.

BBTRigger1 This choice requires an external trigger to the selected rear panel BB TRIG 1 BNC to toggle the RF output power between main and alternate amplitudes.

BBTRigger2 This choice requires an external trigger to the selected rear panel BB TRIG 2 BNC to toggle the RF output power between main and alternate amplitudes.

PTRig This choice requires an external trigger to the selected rear panel PAT TRIG BNC to toggle the RF output power between main and alternate amplitudes.

EVENT1 This choice requires an external trigger to the selected rear panel EVENT 1 BNC to toggle the RF output power between main and alternate amplitudes.

*RST BBTR1

Key Entry BB TRIG 1 BB TRIG 2 EVENT 1 PAT TRIG
BNC BNC BNC BNC

:ALTerminate:TRIGger[[:SOURce]]

Supported N5166B/72B/82B
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

`:SOURce]:POWer:ALTernate:TRIGger[:SOURce] INTernal|EXTernal
`:SOURce]:POWer:ALTernate:TRIGger[:SOURce]?

This command sets the trigger source for the alternate amplitude signal.

INTernal
The baseband generator triggers each timeslot to output a power level set with either the user-selected main or alternate amplitude parameter.

This choice requires a baseband generator option. Each timeslot is allowed to output power with a user-selected main or alternate amplitude.

EXTernal
This choice requires an external trigger to the selected rear panel connector (see :ALTernate:TRIGger:EXTernal[:SOURce]) to toggle the RF output power between main and alternate amplitudes.

*RST
MAN

Key Entry
Alt Ampl Trigger

`:ALTernate[:STATE]

Supported
N5166B/72B/82B

`:SOURce]:POWer:ALTernate:STATE ON|OFF|1|0
`:SOURce]:POWer:ALTernate:STATE?

This command enables or disables the alternate amplitude.

NOTE: Alternate amplitude should not be selected for more than 100ms at a time or the power may drift.

*RST
0

Key Entry
Alt Ampl Off On

`:ATTenuation

Supported
All Models

`:SOURce]:POWer:ATTenuation <value><unit>
`:SOURce]:POWer:ATTenuation?

This command sets the signal generator’s attenuator level. Before setting the attenuator level, set the “:ATTenuation:AUTO” function to Off which will disable ALC control.

In normal operation the attenuator level is selected by the signal generator’s automatic loop control (ALC) which maintains the output power by adjusting internal circuits to compensate for any power fluctuations due to drift, band
changes, or load variations. In some applications, such as fast pulse, the ALC may not respond quickly enough to compensate for the pulse rise times. In this case you can set the attenuator and override any ALC adjustments.

The output power is the ALC level minus the attenuator setting. The attenuator is set in increments of 5 dB.

Example

:POW:ATT 10DB

The preceding example sets the attenuator to 10 dB.

*RST +115
Range 0 to 130 dB
Key Entry Set Atten

:ATTenuation:AUTO

Supported All Models

[:SOURce]:POWer:ATTenuation:AUTO ON|OFF|1|0
[:SOURce]:POWer:ATTenuation:AUTO?

This command sets the state of the attenuator auto mode function.

ON (1) This selection allows the signal generator’s automatic level control (ALC) to adjust the attenuator so that a specified RF power level, at the Keysight MXG’s RF output connector, is maintained.

OFF (0) This choice allows for a user–selected attenuator setting that is not affected by the signal generator’s ALC circuitry. Other settings become available, see Remarks.

The OFF (0) selection can be used to eliminate power discontinuity normally associated with attenuator switching during power adjustments.

*RST 1
Key Entry Atten Hold Off On
Remarks When OFF is the command setting, refer to:
– “:ALC:LEVel” on page 100
– “:ATTenuation” on page 110
– “:ATTenuation:BYPass” on page 111

The SPCI is the inverse logic of the front-panel. For example, when the front panel is set to On, user-selected attenuator settings are allowed. In this state, the query above returns 0, and vice versa.
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

:ATTenuation:BYPass

Supported All Models

[:SOURce]:POWer:ATTenuation:BYPass ON|OFF|1|0
[:SOURce]:POWer:ATTenuation:BYPass?

This command enables or disables the attenuator bypass setting. The attenuator hold mode must be enabled to use this command.

ON (1) This selection allows the signal generator’s automatic level control (ALC) to adjust the attenuator hold mode. Output power is controlled solely by the ALC setting.

OFF (0) This choice allows for a user-selected attenuator setting combined with the ALC setting.

*RST 0

Key Entry Atten Bypass Off On

:HARMonics

Supported All Models

[:SOURce]:POWer:HARMonics[:STATe] ON|OFF|1|0
[:SOURce]:POWer:HARMonics?

This command enables or disables the optimize harmonics setting. The optimize harmonics mode modifies the attenuator and automatic level control (ALC) settings to give optimal harmonics performance. Optimize harmonics mode does not change the RF output power. The attenuator hold mode cannot be enabled while this mode is active, and modulations cannot be enabled while this mode is active.

ON (1) This selection allows the signal generator to optimize harmonics by modifying the attenuator and automatic level control settings.

OFF (0) This selection disables the optimize harmonics mode.

*RST 0

Key Entry Optimize Harmonics

[:LEVel][:IMMediate]:OFFSet

Supported All Models

[:SOURce]:POWer[:LEVel][:IMMediate]:OFFSet <value><unit>
[:SOURce]:POWer[:LEVel][:IMMediate]:OFFSet?

This command sets the power offset value.

*RST +0.00000000E+000

Range −200 to 200 dB
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

Key Entry
Amptd Offset

Remarks
This simulates a power level at a test point beyond the RF OUTPUT connector without changing the actual RF output power. The offset value only affects the displayed amplitude setting.

You can enter an amplitude offset any time in either normal operation or amplitude reference mode.

[:LEVel][:IMMediate][:AMPLitude]

Supported
All Models

This command sets the RF output power.

*RST
-1.10000000E+002 (Standard) or -1.44000000E+002 (Option 1EQ)

Key Entry
AMPTD

Remarks
For information on the ranges for this command and the specified values, refer to the instrument’s Data Sheet.

[:LEVel]:MINimum:LIMit

Supported
All Models w/Option HAL

[:SOURce] :POWer [:LEVel] :MINimum:LIMit LOW|HIGH
[:SOURce] :POWer [:LEVel] :MINimum:LIMit ?

This command selects the RF Off power minimum level to LOW or HIGH. When set to HIGH, the RF Output Attenuator is set for maximum attenuation. When set to LOW, the internal RF modulators are biased off further reducing the output signal level.

Key Entry
Minimum Power

Remarks
Option HAL is a special operating mode that does not use the ALC modulator to shut off the RF output when the RF is off. When option HAL is active the pulse and ALC modulators are left on. The RF output attenuator is used to shut off the output level. The result being the output power will not decrease as much when the RF is off. Command reports undefined header error if option is not enabled.
Basic Function Commands
Power Subsystem [:SOURce]:POWer

:MODE

Supported All Models

[:SOURce]:POWer:MODE FIXed|LIST
[:SOURce]:POWer:MODE?

This command sets the signal generator power mode to fixed or swept.

FIXed This choice stops a power sweep, allowing the signal generator to operate at a fixed power level. Refer to the [:LEVEL][:IMMediate][:AMPLitude] command for setting the output power level.

LIST This choice selects the swept power mode. If sweep triggering is set to immediate along with continuous sweep mode, executing the command starts the LIST or STEP power sweep.

NOTE To perform a frequency and amplitude sweep, you must also select LIST as the frequency mode. See also the :FREQuency:MODE command for selecting the list mode for a frequency sweep.

*RST

FIX

Key Entry SWEEP Amptd Off On

NOISe:[STATe]

Supported All Models

[:SOURce]:POWer:NOISe:[STATe] ON|OFF|1|0
[:SOURce]:POWer:NOISe:[STATe]?

This command enables the optimize signal to noise (S/N) ratio state. The command optimizes the attenuator and ALC setting to give the optimal signal to noise performance. It does not change the RF output power. The query returns an integer.

Default S/N Off

Key Entry Optimize S/N Off On

Remarks An example of this feature is when the S/N is off, and the output power is set to –10 dBm, the ALC rises to 0 dBm. The resulting attenuation is 10 dB.

When the Optimize S/N is enabled (on), and the output power is set to –10 dBm, the ALC increases to maximum (i.e. 20 dBm). The attenuator increases to 30 dB, resulting in a 20 dB increased S/N for better dynamic range.

Can not go beyond maximum ALC.

It is limited to CW operation.
Basic Function Commands
Power Subsystem ([:SOURCE]:POWER)

This mode is mutually exclusive with Attenuator Hold, and any modulation type. A settings conflict error will be generated if Attenuator Hold or any modulation is activated when Optimize S/N is enabled.

:SOURce:POWER

This command enables or disables the power search protection function. The power search protection function sets the attenuator to its maximum level whenever a power search is initiated. This can be used to protect devices that are sensitive to high average power or high power changes. The trade off on using the power protection function is decreased attenuator life, as the attenuator will switch to its maximum setting during a power search.

NOTE

Continual or excessive use of the power search protection function can decrease attenuator life.

- **ON (1)** Causes the attenuator to switch to and hold its maximum level setting during a power search.
- **OFF (0)** Sets the attenuator to normal mode. The attenuator is not used during power search.

Example

:POWER:PROT ON

The preceding example enables the power inhibit function.

RST

:POWER

This command sets the power level for the signal generator RF output reference.

The RF output power is referenced to the value entered in this command.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>RF During Power Search Normal Minimum</th>
</tr>
</thead>
</table>

:REference

This command sets the power level for the signal generator RF output reference.

The RF output power is referenced to the value entered in this command.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>AmpTd Ref Set</th>
</tr>
</thead>
</table>
Basic Function Commands
Power Subsystem ([:SOURce]:POWer)

:**REFerence:**STATe

Supported All Models

[:SOURce]:POWer:**REFerence:**STATe ON|OFF|1|0
[:SOURce]:POWer:**REFerence:**STATe?

This command enables or disables the RF output reference.

Once the reference state is ON, all subsequent output power settings are set relative to the reference value.

- **ON** (1) This choice will set the power reference state to ON. The unit displayed for commands, ":ANNotation:AMPLitude:UNIT" and ":POWer" will be expressed in dB.

- **OFF** (0) This choice will set the power reference state to OFF.

 RST 0

Key Entry Amptd Ref Off On

Remarks Amplitude offsets can be used with the amplitude reference mode.

:**STAIt**

Supported All Models

[:SOURce]:POWer:**STAIt** <value><unit>
[:SOURce]:POWer:**STAIt**?

This command sets the first amplitude point in a step sweep.

- **RST** \(-1.10000000E+002\) (Standard) and \(-1.44000000E+002\) (Option 1EQ)

Range Refer to the [:LEVel][:IMMediate][:AMPLitude] command for the output power ranges.

Key Entry Amptd Start

:**STOP**

Supported All Models

[:SOURce]:POWer:**STOP** <value><unit>
[:SOURce]:POWer:**STOP**?

This command sets the last amplitude point in a step sweep.

- **RST** \(-1.10000000E+002\) (Standard) and \(-1.44000000E+002\) (Option 1EQ)

Range Refer to the [:LEVel][:IMMediate][:AMPLitude] command for the output power ranges.
Basic Function Commands
Power Subsystem ([SOURce]:POWer)

Key Entry Amptd Stop

:USER:MAX

Supported All Models

[:SOURce] :POWer :USER :MAX ?

This command enables the user to specify a maximum output power level that is lower than the instrument’s normal maximum output power. This affects all modes of power operation. The query returns the value of the output power level.

Key Entry User Power Max

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:USER:ENABLe

Supported All Models

[:SOURce] :POWer :USER :ENABLe ON|OFF|1|0
[:SOURce] :POWer :USER :ENABLe ?

This command enables or disables the user settable maximum output power limit.

Key Entry User Power Max Enable:
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

:AUX:INPut:STRobe[:MODE]

This command sets the mode that is used for latching AUX port input data.
If the signal generator is in serial (vs. parallel) mode, the input strobe mode will always be free-run. If parallel mode is selected, user can choose either free-run or user-input-strobe mode.

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:AUX:INPut:STRobe[:MODE] FREE|USER
[:SOURce]:IQ:AUX:INPut:STRobe[:MODE]? *

FREE Input data to AUX port is in free-run mode (the signal generator latches new input data on its own internal schedule).

USER Input data to AUX port is in user external input strobe mode (user supplies some strobe signal to let the signal generator know when to latch data).

*RST FREE

Key Entry Input Strobe Free Run User

:AUX:INPut:STRobe:SLOPe

This command controls the polarity of the user external input strobe signal.
The external-input-strobe signal must be at least 200ns wide, and user must hold assert 16 input data bits stable 20ns before the active edge of the user input strobe and hold the data stable for at least 100ns after the active edge of the user input strobe.

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:AUX:INPut:STRobe:SLOPe POSitive|NEGative
[:SOURce]:IQ:AUX:INPut:STRobe:SLOPe?

POSitive The signal generator looks for a rising edge of the external strobe signal to latch the data.

NEGative The signal generator looks for a falling edge of the external strobe signal to latch the data.

*RST POS

Key Entry Input Strobe Polarity Neg Pos
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

:AUX:OPERating:MODE

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:AUX:OPERating:MODE DEDicated|MULTiplexed

This command sets the operating mode for real-time applications.

NOTE: This command is not supported by all real-time applications

DEDicated Configures the AUX I/O port operating mode to Dedicated for real-time applications.

MULTiplexed Configures the AUX I/O port operating mode to Multiplexed for real-time applications.

*RST DED

Key Entry

Operating Mode Dedicated Multiplexed

:AUX:OUTPut:STRobe:SLOPe

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:AUX:OUTPut:STRobe:SLOPe POSitive|NEGative

[:SOURce]:IQ:AUX:OUTPut:STRobe:SLOPe?

This command controls the polarity of the AUX output sample clock.

The output sample clock indicates that the signal generator has latched the 16 input data bits. The signal generator will output this signal in either free-run or external-input-strobe mode. The user can select the polarity of the output-strobe signal using this command.

POSitive The signal generator will assert a pulse with a rising edge to indicate when it has latched the 16 input data bits.

NEGative The signal generator will assert a pulse with a falling edge to indicate when it has latched the 16 input bits. The output pulse will be at least 200 ns wide.

*RST POS

Key Entry

Output Strobe Polarity Neg Pos
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([SOURce]:IQ)

:SOURce:OPERating:MODE

Supported N5172B or N5182B with Option N5180UN7B or 003 or 004

When the Baseband Operating Mode is changed, the current contents of volatile waveform memory are erased

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIMary</td>
<td>All signal generator features are available in this mode except BERT and N5102A functionality. This choice selects the PXB Input ARB FPGA image. For backwards compatibility, selecting the Primary Baseband Operating Mode sets the I/Q Digital Bus Connectivity to PXB.</td>
</tr>
<tr>
<td>BERT</td>
<td>Requires Keysight N5172B EXG or N5182B MXG X-Series signal generators with Option N5180UN7B. All signal generator features are available in this mode; all BERT features are also available, but N5102A is not available in this mode. This choice selects the BERT ARB FPGA image and contains all functionality and features from the B.01.65 PXB Input FPGA image. For backwards compatibility, selecting the BERT Baseband Operating Mode sets the I/Q Digital Bus Connectivity to PXB.</td>
</tr>
<tr>
<td>N5102A</td>
<td>Requires Keysight N5172B EXG or N5182B MXG X-Series signal generators with Option 003 or 004 or both. All signal generator features are available in this mode; all N5102A features are also available, but BERT is not available in this mode. For backwards compatibility, selecting the N5102A Baseband Operating Mode sets the I/Q Digital Bus Connectivity to N5102A.</td>
</tr>
</tbody>
</table>

RST N/A
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([SOURce]:IQ)

Remarks
The selected Baseband Operating Mode is a persistent instrument setting and its value is maintained through power cycles, Preset, or *RST.

[:OUTPut:IMPairments:AWGN:BANDwidth|BWIDth]

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:BANDwidth|BWIDth <value>
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:BANDwidth|BWIDth?

This command sets the flat noise bandwidth, which is typically set wider than the signal bandwidth. There will be roll-off of the noise outside of this bandwidth.

*RST 1 Hz

Range
Option 653: 1 Hz–60 MHz
Option 655: 1 Hz–120 MHz
Option 656: 1 Hz–80 MHz
Option 657: 1 Hz–160 MHz

Key Entry
Flat Noise Bandwidth

[:OUTPut:IMPairments:AWGN:EBNO]

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:EBNO <value>
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:EBNO?

This command allows the signal to noise ratio to be set using the Eb/No (energy per bit over noise power density at the receiver) form. This requires the signal bit rate to be set properly.

\[(\text{SNR})_{\text{dB}} = (\text{Eb}/\text{No})_{\text{dB}} + 10\log(\text{bitRate}/\text{signalBandwidth})\]

*RST 0 dBm

Range
–100 to 100 dBm

Key Entry
Eb/No
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

:OUTPut:IMPairments:AWGN:IBWidth

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:IBWidth <value>
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:IBWidth?

This value determines the non-AUTO value of the noise integration bandwidth. This is the bandwidth over which to sum the noise for the purposes of SNR (or Eb/No). Often, it is the symbol rate or chip rate of the signal in question.

*RST 1 Hz
Range 1 Hz–200 MHz
Key Entry Integration Bandwidth

:OUTPut:IMPairments:AWGN:IBWidth:AUTO

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:IBWidth:AUTO ON|OFF|1|0
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:IBWidth:AUTO?

This is a new feature that allows the currently ON application to control the noise integration bandwidth. For applications that have no clear noise integration bandwidth, such as Dual Arb, the auto mode is effectively OFF.

*RST 1
Key Entry Integration Bandwidth Manual Auto

:OUTPut:IMPairments:AWGN:MUX SUM|SIGNal|NOISe

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:MUX SUM|SIGNal|NOISe
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:MUX?

This value allows diagnostic control of additive noise. The intended purpose of this feature is to allow direct measurement of just the signal or noise contribution to the total power (assuming that the ALC is off). The system will still behave as if both the noise and the signal are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

SUM The sum of both the noise and the signal will be output from the internal baseband generator.
SIGNal Only the signal will be output from the internal baseband generator.
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

NOISE

Only noise will be output from the internal baseband generator.

:*RST

SUM

Key Entry

Output Mux

:OUTPut:IMPairments:AWGN:POWer:CONTrol[:MODE]

Supported

N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:OUTPut:IMPairments:AWGN:POWer:CONTrol[:MODE]

TOTal|SIGNal|NOISe|NCHannel

:OUTPut:IMPairments:AWGN:POWer:CONTrol[:MODE]?

Sets the mode of power control while noise is on.

TOTal

The total power and SNR are independent variables and the signal power, channel noise power, and total noise power are dependent variables set by the total power, SNR and the rest of the noise settings. The signal power, channel noise power, and total noise power will change as any noise parameter is adjusted to keep the total power and the SNR at their last specified values.

SIGNal

The signal power and SNR are independent variables and the total power, channel noise power, and total noise power are dependent variables set by the signal power, SNR and the rest of the noise settings. The total power, channel noise power, and total noise power will change as any noise parameter is adjusted to keep the signal power and the SNR at their last specified values.

NOISe

The total noise power and SNR are independent variables and the total power, channel noise power, and signal power are dependent variables set by the total noise power, SNR and the rest of the noise settings. The total power, channel noise power, and signal power will change as any noise parameter is adjusted to keep the total noise power and the SNR at their last specified values.

NCHannel

The channel noise power and SNR are independent variables and the total power, total noise power, and signal power are dependent variables set by the channel noise power, SNR and the rest of the noise settings. The total power, total noise power, and signal power will change as any noise parameter is adjusted to keep the channel noise power and the SNR at their last specified values.

:*RST

TOT
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([SOURce]:IQ)

Key Entry Power Control Mode
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([SOURce]:IQ)

:OUTPut:IMPairments:AWGN:POWer:NOISe:CHANnel

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:POWer:NOISe:CHANnel <value>

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:POWer:NOISe:CHANnel?

Set the current channel noise power level if noise is on. In the "Channel Noise" control mode, the total power will be adjusted to achieve the specified channel noise power and the channel noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the channel noise power setting appropriately to maintain the SNR.

In the other control modes, this will adjust the total power once for the specified channel noise power level, after which the channel noise power could change if any noise parameters are adjusted.

The range varies based on the bounds of the total power that results from the noise settings.

*RST -110 dBm

Range Varies based on the bounds of the total power that results from the noise settings

Key Entry Noise Power In Channel

:OUTPut:IMPairments:AWGN:POWer:NOISe:TOTal

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:POWer:NOISe:TOTal <value>

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:POWer:NOISe:TOTal?

Set the current channel noise power level if noise is on. In the "Channel Noise" control mode, the total power will be adjusted to achieve the specified channel noise power and the channel noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the channel noise power setting appropriately to maintain the SNR.

In the other control modes, this will adjust the total power once for the specified channel noise power level, after which the channel noise power could change if any noise parameters are adjusted.

The range varies based on the bounds of the total power that results from the noise settings.

*RST -169.03 dBm

Range Varies based on the bounds of the total power that results from the noise settings
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B [:SOURce]:IQ

Key Entry
Total Noise Power

:OUTPut:IMPairments:AWGN:POWer:SIGNal

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:POWer:SIGNal <value>
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:POWer:SIGNal?

Sets the current signal power level if noise is on. In the "Signal" control mode, the total power will be adjusted to achieve the specified signal power and the signal power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the signal power setting appropriately to maintain the S/N ratio.

In the other control modes, this will adjust the total power once for the specified signal power level, after which the signal power could change if any noise parameters are adjusted.

The range varies based on the bounds of the total power that results from the noise settings.

Range
Varies based on the bounds of the total power that results from the noise settings

Key Entry
Signal Power

:OUTPut:IMPairments:AWGN:SBRate

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:SBRate <value>
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:SBRate?

This value adjusts the signal bit rate (gross bit rate) for purposes of calculating the Eb/No (energy per bit over noise power density at the receiver). Adjusting this parameter will have an immediate impact on the SNR as appropriate for the last specified Eb/No. The signal bit rate is a saved instrument state that is recorded in the waveform header for Arb waveforms.

This value is only used if [:SOURce]:IQ:OUTPut:IMPairments:AWGN:SNRFormat is EBNO and the application currently on does not define a reference channel for Eb/No.

Range
1 bps to 999 Mbps

Key Entry
Reference Signal Bit Rate
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B (:SOURce):IQ

:OUTPut:IMPairments:AWGN:SNR

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:SNR <value>
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:SNR?

This command sets the Signal to Noise Ratio (SNR). This is the value of the noise power as a ratio of signal power to noise power. Signal power equals the total modulated signal power before noise is added. When noise is added, the power output from the signal generator may not change; it is the sum of signal power and the added noise power. This value can be changed in real time while the waveform is playing.

*RST 0 dB

Range
-100 dB to 100 dB

Key Entry
Signal to Noise Ratio

:OUTPut:IMPairments:AWGN:SNRFormat

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN:SNRFormat SNR|EBNO
[:SOURce]:IQ:OUTPut:IMPairments:AWGN:SNRFormat?

This command sets the variable controlling the ratio of signal power to noise power in the noise integration bandwidth.

SNR Selects Signal to Noise Ratio (SNR) to control the ratio of signal power to noise power in the noise integration bandwidth.

EBNO Selects energy per chip over noise power density at the receiver (Ec/No) to control the ratio of signal power to noise power in the noise integration bandwidth.

*RST SNR

Key Entry
Signal to Noise Ratio Format

:OUTPut:IMPairments:AWGN[:STATe]

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:AWGN[:STATe] ON|OFF|1|0
[:SOURce]:IQ:OUTPut:IMPairments:AWGN[:STATe]?

This command enables or disables the additive white Gaussian noise.

*RST 0
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

Key Entry
Real-Time AWGN On Off

:OUTPut:IMPairments:PHASe:NOISe:F1

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISe:F1 <value>
[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISe:F1?

This command sets the desired start frequency offset of the flat phase noise. The actual value of f1 varies logarithmically depending on the value of the stop frequency (f2). As f2 increases in value, the adjustment becomes coarser. The effect of this value can only be determined by examining the graphic on the front panel or the actual output.

NOTE: This phase noise is added to the base phase noise of the instrument.

f1 must always be less than or equal to f2. Setting f1 higher than f2 will cause f2 to be set to the value of f1.

*RST 1 kHz
Range 0 Hz to 77.50052449 MHz
Key Entry Desired Start Freq(F1)

:OUTPut:IMPairments:PHASe:NOISe:F2

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISe:F2 <value>
[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISe:F2?

This command sets the desired stop frequency offset of the flat phase noise. The actual value of f2 varies logarithmically. As f2 increases in value, the adjustment becomes coarser. The effect of this value can only be determined by examining the graphic on the front panel or the actual output.

NOTE: This phase noise is added to the base phase noise of the instrument.

f2 must always be greater than or equal to f1. Setting f2 less than f1 will cause f1 to be set to the value of f2.

*RST 30 kHz
Range 0 Hz to 77.50052449 MHz
Key Entry Desired Start Freq(F2)
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

:OUTPut:IMPairments:PHASe:NOISE:LMID

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISE:LMID <value>
[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISE:LMID?

This command sets the desired flat phase noise power (Lmid). The actual value can vary by approximately 0.28 dBc/Hz. The effect of this value can only be determined by examining the graphic on the front panel or the actual output.

NOTE: This phase noise is added to the base phase noise of the instrument.

*RST
-70 dBc/Hz

Range
-300 dBc/Hz to 100 dBc/Hz
The range of Lmid varies depending on the value of the stop frequency (f2). The range decreases as f2 increases.

Key Entry
Desired Flat Amplitude(Lmid)

:OUTPut:IMPairments:PHASe:NOISE[:STATe]

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISE[:STATe] ON|OFF|1|0
[:SOURce]:IQ:OUTPut:IMPairments:PHASe:NOISE[:STATe]?

This command enables or disables the real-time phase noise impairment.

NOTE: This phase noise is added to the base phase noise of the instrument.

The actual performance of the phase noise can only be determined by examining the graphic on the front panel or the actual output, as the parameters simply guide the phase noise response.

*RST
0

Key Entry
Phase Noise On Off

:OUTPut[1]:TRIGger:CONTinuous[:TYPE] FREE|TRIGger

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut[1]:TRIGger:CONTinuous[:TYPE] FREE|TRIGger
[:SOURce]:IQ:OUTPut[1]:TRIGger:CONTinuous[:TYPE]?

This SCPI command sets the behavior of the per output channel triggering.
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B [:SOURce]:IQ

FREE With this choice, the signal will flow freely through the output channel.

TRIGger With this choice, the output will start after a trigger is received.

*RST FREE

:OUTPut[1]:TRIGger:EXTernal:DELay

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut[1]:TRIGger:EXTernal:DELay <value>
[:SOURce]:IQ:OUTPut[1]:TRIGger:EXTernal:DELay?

This command adds an external trigger delay (in seconds). The value you enter sets a delay time between when an external trigger is received and when it is applied to the signal.

This key is active only if you select external (Ext) as the trigger source.

*RST 0 ns

Range 0 ns to 41 s

Key Entry Ext Delay Time

:OUTPut[1]:TRIGger:EXTernal:POLarity

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut[1]:TRIGger:EXTernal:POLarity POSitive|NEGative
[:SOURce]:IQ:OUTPut[1]:TRIGger:EXTernal:POLarity?

This command sets the polarity of the external trigger source to trigger on a positive edge or negative edge.

*RST POS

Key Entry Ext Polarity Neg Pos

:OUTPut[1]:TRIGger:EXTernal:SOURce

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut[1]:TRIGger:EXTernal:SOURce EPTrigger[1]|EPTrigger2
[:SOURce]:IQ:OUTPut[1]:TRIGger:EXTernal:SOURce?
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([:SOURce]:IQ)

Selects the trigger source for the external trigger.

EPTRigger1
This choice selects the PATT TRIG IN 1 rear panel connector (AUX I/O) as the external trigger source.

EPTRigger2
This choice selects the PATT TRIG IN 2 rear panel connector (AUX I/O) as the external trigger source.

RST

Key Entry

:OUTPut[1]:TRIGger:SOURce

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut[1]:TRIGger:SOURce KEY|BUS|EXTernal

[:SOURce]:IQ:OUTPut[1]:TRIGger:SOURce?

This command sets the source of a trigger to allow this output channel to play.

Key Entry

<table>
<thead>
<tr>
<th>Trigger Key</th>
<th>Bus</th>
<th>Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTernal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RST

Key Entry

:OUTPut[1]:TRIGger:STATus

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

[:SOURce]:IQ:OUTPut[1]:TRIGger:STATus?

This query reports the current play status of the output channel.

Table 2-3 Trigger Status Bit Description

<table>
<thead>
<tr>
<th>Bit 0 - Output is ON</th>
<th>Bit 1 - Output is waiting for a trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Output is off, triggering is inactive</td>
<td>Output is not waiting for a trigger (playing or stopped)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Output is on, triggering is active</td>
<td></td>
</tr>
</tbody>
</table>
Basic Function Commands
Vector Modulation Subsystem—N5166B/72B/82B ([SOURce]:IQ)

Table 2-3 Trigger Status Bit Description

<table>
<thead>
<tr>
<th>Bit</th>
<th>Output Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output is waiting for a trigger (shown as "ARMED" indicator where normally the name of the application is shown)</td>
</tr>
<tr>
<td>0</td>
<td>Output is currently paused or stopped</td>
</tr>
<tr>
<td>1</td>
<td>Output is currently playing</td>
</tr>
<tr>
<td>2</td>
<td>Output has received a trigger since last trigger setup</td>
</tr>
<tr>
<td>0</td>
<td>No trigger ever received</td>
</tr>
<tr>
<td>1</td>
<td>A trigger has been set in the past</td>
</tr>
<tr>
<td>3</td>
<td>External input clock is phase locked</td>
</tr>
<tr>
<td>0</td>
<td>Not phase locked</td>
</tr>
<tr>
<td>1</td>
<td>Phase locked</td>
</tr>
<tr>
<td>4</td>
<td>Synchronization (realignment) trigger</td>
</tr>
<tr>
<td>0</td>
<td>Out of Sync (shown as "NO SYNC" indicator where normally "UNLOCK" and "DAC OVER" is shown)</td>
</tr>
<tr>
<td>1</td>
<td>In Sync</td>
</tr>
<tr>
<td>5</td>
<td>MultiBoxSync waiting</td>
</tr>
<tr>
<td>0</td>
<td>Not awaiting sync</td>
</tr>
<tr>
<td>1</td>
<td>Awaiting sync</td>
</tr>
<tr>
<td>6</td>
<td>MultiBoxSync is synchronized</td>
</tr>
<tr>
<td>0</td>
<td>Out of sync</td>
</tr>
<tr>
<td>1</td>
<td>In sync</td>
</tr>
</tbody>
</table>
With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

This chapter describes SCPI commands for subsystems dedicated to peripheral signal generator operations common to all Keysight X-Series signal generators.

This chapter contains the following sections:

- Calibration Subsystem (:CALibration) on page 134
- Communication Subsystem (:SYSTem:COMMunicate) on page 138
- Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation) on page 144
- Display Subsystem (:DISPlay) on page 148
- IEEE 488.2 Common Commands on page 152
- Memory Subsystem (:MEMory) on page 158
- Output Subsystem (:OUTPut) on page 188
- Route Subsystem (:ROUTe) on page 190
- Status Subsystem (:STATus) on page 200
- System Subsystem (:SYSTem) on page 213
- Trigger Subsystem on page 242
- Unit Subsystem (:UNIT) on page 247
Calibration Subsystem (:CALibration)

:ALC:MODulator:BIAS

Supported All Models

:CALibration:ALC:MODulator:BIAS

This command performs the ALC modulator bias calibration. The adjustment compensates for ALC open loop power drift due to temperature and humidity.

Key Entry Execute ALC Modulator Bias Adjustment

Remarks Use this calibration when the instrument is being used in the ALC open loop mode.

:BBG:SKEW RFOut|EXTernal

Supported N5166B, N5172B, N5182B

:CALibration:BBG:SKEW EXTernal, <value in pS>

:CALibration:BBG:SKEW? EXTernal

This command enters a calibration value that will correct the inherent External Output I/Q skew due to differences in the I/Q physical paths.

EXTernal[1]|2:DC

Supported All Models

:CALibration:EXTernal[1]|2:DC

This command initiates a DC offset calibration for the external source specified.

NOTE If the calibration is performed with a DC signal applied, any deviation provided by the DC signal will be removed and the new zero reference point will be at the applied DC level.

Key Entry External DC Cal

Remarks Use this calibration for externally applied DC signals.

:IQ:DC

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:CALibration:IQ:DC

This command performs a one to two second adjustment that is not traceable to a standard. However, it will minimize errors associated with IQ gain, quadrature, and offset voltages. This adjustment minimizes errors for the current signal generator setting and at a single frequency. The DC adjustment
System Commands
Calibration Subsystem (:CALibration)

is volatile and must be repeated with each signal generator setting change. This command can be sent while the RF On/Off is set to Off and the adjustment will still be valid when the RF is enabled. IQ must be on to perform this adjustment.

The I/Q DC adjustment is dependent upon a number of instrument settings. If any of the instrument settings change, the adjustment will become invalid. The dependent instrument settings are:

- RF frequency
- I/Q attenuation level
- Baseband generator settings
- I/Q polarity settings
- Baseband filter settings
- I/Q calibration (the I/Q DC calibration will be invalidated if any other I/Q calibration is executed or if the Revert to Factory Default key is pressed)
- Temperature (±5 degrees Celsius)
- I/Q Off On set to On
- I/Q Correction Optimized Path (must be set to RF Output). Refer to ":DM:CORRection:OPTimization" on page 56.
- I/Q Source (must be set to Internal). Refer to ":DM:SOURce" on page 68.

The following instrument states will not invalidate the I/Q DC calibration:

- Power level changes
- I/Q Impairments

Key Entry
Execute Cal (with Calibration Type User Full set to DC)

:IQ:DEFault

Supported
N5166B/72B/82B

:IQ:DEFault

Supported
N5166B/72B/82B

:IQ:FULL

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:IQ:FULL

Key Entry
Revert to Default Cal Settings
System Commands

Calibration Subsystem (:CALibration)

This command performs an adjustment to the I/Q offset, gain and quadrature for the full–frequency range (regardless of the start and stop frequency settings) and stores the results in the signal generator's firmware.

This calibration should be run when the ambient temperature has varied by at least ±5 degrees Celsius from the ambient temperature at which the previous calibration was run.

Key Entry
- Execute Cal (with Calibration Type User Full set to Full)

Remarks
Start and stop frequencies will default to the full frequency range of the signal generator.

`:IQ:STARt`

Supported
- N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

`:CALibration:IQ:STARt <value><unit>`
`:CALibration:IQ:STARt?`

This command sets the start frequency and automatically sets the calibration type to User for an I/Q calibration.

The start frequency must be less than the current value of the stop frequency.

Range
- Option 503: 5 MHz to 3 GHz
- Option 506: 5 MHz to 6 GHz

Key Entry
- Start Frequency

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

`:IQ:STOP`

Supported
- N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

`:CALibration:IQ:STOP <value><unit>`
`:CALibration:IQ:STOP?`

This command sets the stop frequency and automatically sets the calibration type to User for an I/Q calibration.

The stop frequency must be greater than the current value of the start frequency.

Range
- Option 503: 5 MHz to 3 GHz
- Option 506: 5 MHz to 6 GHz
System Commands
Calibration Subsystem (:CALibration)

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Stop Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td>The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.</td>
</tr>
</tbody>
</table>

IQ:TYPE

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657</th>
</tr>
</thead>
</table>

The command sets the IQ calibration type.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Calibration Type DC User Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td>The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.</td>
</tr>
</tbody>
</table>

IQ[:USER]

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657</th>
</tr>
</thead>
</table>

This command performs an IQ calibration according to the IQ calibration type. For information on selecting the type of IQ calibration, refer to “:IQ:TYPE” on page 137.

This calibration should be run when the ambient temperature has varied by at least ±5 degrees Celsius from the ambient temperature at which the previous calibration was run.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Execute Cal</th>
</tr>
</thead>
</table>
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

Communication Subsystem (:SYSTem:COMMunicate)

NOTE

The settings enabled by the LAN commands are not affected by signal generator power–on, preset, or *RST.

:**GPIB:ADDReSS**

Supported All Models

:SYSTem:COMMunicate:GPIB:ADDReSS <number>
:SYSTem:COMMunicate:GPIB:ADDReSS?

This command sets the signal generator’s GPIB address.

Range 0 to 30

Key Entry GPIB Address

:**GTLocal**

Supported All Models

:SYSTem:COMMunicate:GTLocal

This command sets the signal generator to local mode which enables front panel operation.

Key Entry Local

:**LAN:CONFig**

Supported All Models

:SYSTem:COMMunicate:LAN:CONFig MANual|AUTO
:SYSTem:COMMunicate:LAN:CONFig?

NOTE

The SCPI query for the LAN setup returns the last power on state setting, which may or may not be the currently displayed setting.

This command sets the signal generator’s Internet protocol (IP) address.

MANual The user assigns an IP address to the signal generator.

AUTO The network assigns an IP address to the signal generator with a fall back to Auto–IP if DHCP fails. If both DHCP and Auto–IP fail, manual configuration will be used.

Example

:SYST:COMM:LAN:CONF DHCP
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

The preceding example sets up the signal generator LAN configuration to use a DHCP IP address.

Key Entry
LAN Config

Remarks
The SCPI query returns the current setting, not the saved setting.

:LAN:DEFaults

Supported
All Models

:SYSTem:COMMunicate:LAN:DEFaults

This command restores the instrument’s LAN settings to their factory default values.

Key Entry
Restore LAN Settings to Default Values

Key Path
Utility > I/O Config > Lan Setup > Advanced Settings > More 2 of 2 > Restore LAN Settings to Default Values

:LAN:DESCription

Supported
All Models

:SYSTem:COMMunicate:LAN:DESCription <string>
:SYSTem:COMMunicate:LAN:DESCription?

This command defines the instrument’s web description. The query returns the current saved setting.

Remarks
If queried and there is no current LAN description the default web description value is returned.

LAN description is displayed on the homepage for the Keysight MXG.

:LAN:DHCP:EXPires

Supported
All Models

:SYSTem:COMMunicate:LAN:DHCP:EXPires

This command returns a string indicating the time at which the current DHCP lease expires or an empty string if no DHCP lease was acquired.

Remarks
Only relevant when the instrument’s LAN configuration type has been set to Auto.
System Commands
Communication Subsystem (:SYStem:COMMunicate)

:SYStem:COMMunicate:LAN:DHCP:OBTained
This command returns a string indicating the time at which the current DHCP lease was obtained or an empty string if no DHCP lease was acquired.

Remarks Only relevant when the instrument’s LAN configuration type has been set to Auto.

:LAN:DHCP:SERVer
Supported All Models.

:SYStem:COMMunicate:LAN:DHCP:SERVer
This command returns a string containing the IP address of the DHCP server that has provided the current lease or an empty string if no DHCP lease was acquired.

Remarks Only relevant when the instrument’s LAN configuration type has been set to Auto.

:LAN:DNS:DYNamic
Supported All Models

:SYStem:COMMunicate:LAN:DNS:DYNamic ON|OFF|1|0
:SYStem:COMMunicate:LAN:DNS:DYNamic?
This command turns dynamic Domain Name System (DNS) on/off. The query returns the current setting, not the saved setting.

Default On

Key Entry Dynamic DNS On
Key Path Utility > I/O Config > LAN Setup > Advanced Settings > Dynamic Hostname Services > Dynamic DNS Off On

:LAN:DNS[::SERVer]
Supported All Models

:SYStem:COMMunicate:LAN:DNS[::SERVer] <ipstring>
:SYStem:COMMunicate:LAN:DNS[::SERVer]?
This command defines the IP address of the signal generator DNS server. This entry defines the DNS server for the signal generator LAN connection. The query returns the current setting, not the saved setting.

Key Entry DNS Server

:LAN:DOMain
Supported All Models
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

:SYSTem:COMMunicate:LAN:DOMain <string>
:SYSTem:COMMunicate:LAN:DOMain?

This command defines the domain name of the signal generator's DNS server. This entry defines the DNS server for the signal generator LAN connection. The query returns the current setting, not the saved setting.

Key Entry Domain Name

:LAN:GATeway

Supported All Models

:SYSTem:COMMunicate:LAN:GATeway "<ipstring>"
:SYSTem:COMMunicate:LAN:GATeway?

This command sets the gateway for local area network (LAN) access to the signal generator from outside the current sub-network. The query returns the current setting, not the saved setting.

Key Entry Default Gateway
Remarks Using an empty string restricts access to the signal generator to local hosts on the LAN.

:LAN:HOSTname

Supported All Models

:SYSTem:COMMunicate:LAN:HOSTname "<string>"
:SYSTem:COMMunicate:LAN:HOSTname?

This command sets the signal generator's local area network (LAN) connection hostname. The query returns the current setting, not the saved setting.

Key Entry Hostname

:LAN:IDENtify

Supported All Models

:SYSTem:COMMunicate:LAN:IDENtify ON|OFF|1|0

This command controls the LAN identify feature.

ON (1) The command enables device identification by displaying the full-screen message "Identify: <IP Address>" on the signal generator's front panel; the LAN Status indicator will also show "IDENTIFY". For more information, refer to the Programming Guide.
System Commands
Communication Subsystem (:SYSTem:COMMunicate)

OFF (0) This command disables device identification by clearing the message on the signal generator's front panel and returning the LAN Status indicator to display the current network state. For more information, refer to the Programming Guide.

:LAN:IP

Supported All Models

:SYSTem:COMMunicate:LAN:IP "<ipstring>"
:SYSTem:COMMunicate:LAN:IP?

This command sets the signal generator's local area network (LAN) internet protocol (IP) address for your IP network connection.

Key Entry IP Address

:LAN:MDNS

Supported All Models

:SYSTem:COMMunicate:LAN:MDNS ON|OFF|1|0
:SYSTem:COMMunicate:LAN:MDNS?

This command enables or disables the multicast (mDNS) and DNS service discovery (DNS-SD) services. The query returns the current setting.

Default On

Key Entry mDNS/DNS-SD Off On

Key Path Utility > I/O Config > LAN Setup > Advanced Settings > Dynamic Hostname Services > mDNS/DNS-SD Off On
System Commands
Communication Subsystem (:SYStem:COMMunicate)

:LAN:RESTart

Supported All Models
:SYStem:COMMunicate:LAN:RESTart

This command restarts the network to enable changes that have been made to the LAN setup.

Key Entry Proceed With Reconfiguration
Key Path Utility > I/O Config > Lan Setup > Proceed With Reconfiguration

:LAN:SUBNet

Supported All Models
:SYStem:COMMunicate:LAN:SUBNet "<ipstring>"
:SYStem:COMMunicate:LAN:SUBNet?

This command sets the signal generator’s local area network (LAN) subnet mask address for your internet protocol (IP) network connection.

NOTE
An error will occur if the IP address, Gateway, and subnet mask have conflicting settings.

Key Entry Subnet Mask
Remarks The SCPI query returns the current setting, not the saved setting.
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)

:CCOunt:ATTenuator

Supported All Models

:DIAGnostic[:CPU]:INFormation:CCOunt:ATTenuator?

This query returns the cumulative number of times that the attenuator has been switched.

Key Entry Diagnostic Info

:CCOunt:PON

Supported All Models

:DIAGnostic[:CPU]:INFormation:CCOunt:PON?

This query returns the cumulative number of times the signal generator has been powered–on.

Key Entry Diagnostic Info

:CCOunt:PROTection

Supported All Models

:DIAGnostic[:CPU]:INFormation:CCOunt:PROTection?

This query returns the cumulative number of times the reverse power protection has been cycled.

Key Entry Diagnostic Info

:DISPlay:OTIMe

Supported All Models

:DIAGnostic[:CPU]:INFormation:DISPlay:OTIMe?

This query returns the cumulative number of hours the display has been on.

Key Entry Diagnostic Info

:LICense:AUXiliary

Supported All Models

:DIAGnostic[:CPU]:INFormation:LICense:AUXiliary?
This query returns a list of licenses for software applications associated with the signal generator that have the software license file installed on the PC, as opposed to a license key installed on the signal generator. This query includes calibration software licenses but does not return demo licenses for Arb–based applications.

Key Entry Auxiliary Software Options

Remarks If you use the signal generator with a PC that has a copy of a software application for which a license shows with this query, the software automatically accesses and installs the license on the PC.

To access Arb–based demo software licenses, see :LICense:WAVEform. To view option numbers for software applications that use license keys, see “:OPTions” on page 146.

:LICense:WAVEform

Supported

N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:DIAGnostic[:CPU]:INFormation:LICense:WAVEform?

This query returns a list of Arb–based licenses (including demo) for software applications associated with the signal generator that have the software license file installed on the PC, as opposed to a license key installed on the signal generator. These waveform licenses are created by the software application in a license file on the PC. Refer to “:WLIocene[:VALue]” on page 147 for more information.

The response format is a series of comma separated entries enclosed in quotation marks. The first field is the waveform type number and the second is a text description of the license.

Key Entry Waveform Licenses

Remarks If a license appears in this list, this means that you can transfer waveform files, created with the associated Arb–based software application to another signal generator if the other signal generator has the same license.

For a list of option numbers for software applications that use license keys, see “:OPTions”.
System Commands
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)

:OPTions

Supported All Models

:DIAGnostic[:CPU]:INFormation:OPTions?

This query returns a comma separated list of internally installed signal generator options.

Key Entry Instrument Options

:OPTions:DETail

Supported All Models

:DIAGnostic[:CPU]:INFormation:OPTions:DETail?

This query returns the options that are installed along with the option revision and DSP version if applicable.

Key Entry Options Info

:OTIMe

Supported All Models

:DIAGnostic[:CPU]:INFormation:OTIMe?

This query returns the cumulative number of hours that the signal generator has been on.

Key Entry Diagnostic Info

:REVision

Supported All Models

:DIAGnostic[:CPU]:INFormation:REVision?

This query returns the CPU bootstrap read only memory (boot ROM) revision date. In addition, the query returns the revision, creation date, and creation time of the main firmware.

Key Entry Diagnostic Info

:SDATe?

Supported All Models

:DIAGnostic[:CPU]:INFormation:SDATe?

This query returns the date and time of the firmware revision.

Key Entry Diagnostic Info
System Commands
Diagnostic Subsystem (:DIAGnostic[:CPU]:INFormation)

:WLICence[:VA]ue

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:DIAGnostic[:CPU]:INFormation:WLICense[:VALue]? <type_num>

This query returns the number of seconds remaining on the waveform license for the type of waveform designated by the `<type_num>` variable number. The type variable number is obtained using the :LiCense:WAveform command shown on page 145. Zero is returned for non-existent and expired licenses. The value 2^32 – 1 (4,294,967,295) is returned for licenses that do not expire.
Display Subsystem (:DISPlay)

:ANNotation:AMPLitude[:STATe]

Supported All Models

:DISplay:ANNotation:AMPLitude[:STATe] ON|OFF|1|0
:DISplay:ANNotation:AMPLitude[:STATe]?

This command enables or disables the amplitude annotation secure display mode. See also, “:ANNotation:FREQuency[:STATe]” on page 148 and “:SECurity:DISplay:RESTricted” on page 238.

ON(1) This selection turns off the displayed amplitude security, and the amplitude annotation is visible.

OFF(0) This selection turns on the displayed amplitude security and the amplitude annotation is blanked on the signal generator's display. Also, the keys that access the amplitude, sweep, and user flatness information are disabled.

For more information about security functions, refer to the User's Guide.

:ANNotation:AMPLitude:UNIT

Supported All Models

:DISplay:ANNotation:AMPLitude:UNIT
DBM|DBUV|DBUVEMF|V|VEMF|DB
:DISplay:ANNotation:AMPLitude:UNIT?

This command sets the displayed front-panel amplitude units.

If the amplitude reference state is set to on, the query returns units expressed in dB. Setting any other unit will cause a setting conflict error stating that the amplitude reference state must be set to off. Refer to, “:REFerence:STATe” on page 116 for more information.

*RST DBM

:ANNotation:FREQuency[:STATe]

Supported All Models

:DISplay:ANNotation:FREQuency[:STATe] ON|OFF|1|0
:DISplay:ANNotation:FREQuency[:STATe]?

This command enables or disables the frequency annotation secure display mode. See also, “:ANNotation:AMPLitude[:STATe]” on page 148 and “:SECurity:DISplay:RESTricted” on page 238.

ON (1) This selection turns off the displayed frequency security, and the frequency annotation is visible.
System Commands
Display Subsystem (:DISPlay)

OFF (0) This selection turns on the displayed frequency security and the frequency annotation is blanked on the signal generator’s display. Also, the keys that access the frequency, sweep, and user flatness information are disabled.

For more information about security functions, refer to the User's Guide.

*RST Activate Restricted Display

:ANNotation:CLOCk:DATE:FORMat

Supported All Models

:DISPlay:ANNotation:CLOCk:DATE:FORMat MDY|DMY
:DISPlay:ANNotation:CLOCk:DATE:FORMat?

This command enables the selection of the date format. The choices are month–day–year (MDY) or day–month–year (DMY) format.

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:ANNotation:CLOCk[:STATe]

Supported All Models

:DISPlay:ANNotation:CLOCk[:STATe] ON|OFF|1|0
:DISPlay:ANNotation:CLOCk[:STATe]?

This command enables or disables the digital clock view in the lower right side of the front-panel display.

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:BRIghtness

Supported All Models

:DISPlay:BRIghtness <value>
:DISPlay:BRIghtness?

This command sets the display brightness (intensity). The brightness can be set to the minimum level (0.02), maximum level (1), or in between by using fractional numeric values (0.03–0.99).

Range 0.02 to 1
Key Entry Brightness
Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
System Commands
Display Subsystem (:DISPlay)

:CAPTure

Supported All Models

:DISPlay:CAPTure

This event command enables the user to capture the current display and store it in the signal generator’s memory.

Remarks The display capture is stored as DISPLAY.BMP in the Binary Directory file system. This file is overwritten with each subsequent display capture. The file can be downloaded in the following manner:

1. Log on to the signal generator using ftp.
2. Change (cd) to the BIN directory.
3. Retrieve the file by using the **GET** command or by using the :MEM:DATA query on page 165.

:CMAP:DEFault

Supported All Models

:DISPlay:CMAP:DEFault [<palette:BRIGht|DARK|MONOchrome>]

This command selects the color palette for the instrument display.

Key Entry Bright Color Dark Color Monochrome

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:REMoTe

Supported All Models

:DISPlay:REMoTe ON|OFF|1|0

:DISPlay:REMoTe?

This command enables or disables the display updating when the signal generator is remotely controlled.

ON (1) This choice updates the signal generator display (Text Area) so you can see the settings as the commands are executed, however, this will degrade the signal generator speed. Frequency Area, Amplitude Area, and status LEDs continue to update. For more information on the front-panel display description, refer to the **User’s Guide**.
Keysight CXG, EXG, and MXG X-Series Signal Generators SCPI Command Reference

System Commands
Display Subsystem (:DISPlay)

OFF (0) This choice turns off the display (Text Area) updating while further optimizing the signal generator for speed. No Text Area updates occur but the Frequency Area, Amplitude Area, and status LEDs continue to update. For more information on the front-panel display description, refer to the User's Guide.

Key Entry Update in Remote Off On

Remarks The setting enabled by this command is not affected by signal generator preset or *RST. However, cycling the signal generator power will reset it to zero.

[:WINDow][:STATe]

Supported All Models

:DISPlay[:WINDow][:STATe] ON|OFF|1|0
:DISPlay[:WINDow][:STATe]?

This command is used to either blank out (OFF or 0) the display screen or turn it on (ON or 1).

Remarks *RST and presetting the signal generator or cycling the power will turn the display on.
IEEE 488.2 Common Commands

*CLS

Supported All Models

The Clear Status (CLS) command clears the status byte by emptying the error queue and clearing all the event registers including the Data Questionable Event Register, the Standard Event Status Register, the Standard Operation Status Register and any other registers that are summarized in the status byte.

*ESE

Supported All Models

*ESE <data>

The Standard Event Status Enable (ESE) command sets the Standard Event Status Enable Register.

The variable <data> represents the sum of the bits that will be enabled.

Range 0 to 255

Remarks The setting enabled by this command is not affected by signal generator preset or *RST. However, cycling the signal generator power will reset this register to zero.

Refer to the Programming Guide for more information.

*ESE?

Supported All Models

*ESE?

The Standard Event Status Enable (ESE) query returns the value of the Standard Event Status Enable Register.

Remarks Refer to the Programming Guide for more information.

*ESR?

Supported All Models

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

*ESR?

The Standard Event Status Register (ESR) query returns the value of the Standard Event Status Status Register.
System Commands
IEEE 488.2 Common Commands

Remarks Refer to the Programming Guide for more information.

*IDN?

Supported All Models

*IDN?
The Identification (IDN) query outputs an identifying string. The response will show the following information:

<company name>, <model number>, <serial number>, <firmware revision>

Key Entry Diagnostic Info
Remarks The identification information can be modified. Refer to :SYST:IDN on page 216 for more information.

*OPC

Supported All Models

*OPC?
The Operation Complete (OPC) command sets bit 0 in the Standard Event Status Register when all pending operations have finished.

*OPC?

Supported All Models

*OPC?
The Operation Complete (OPC) query returns the ASCII character 1 in the Standard Event Status register indicating completion of all pending operations.

This query stops any new commands from being processed until the current processing is complete. This command blocks the controller until all operations are complete (i.e. the timeout setting should be longer than the longest sweep).

CAUTION

The *OPC? query is not recommended for checking if a previous command has been completed by the SCPI parser. (e.g. If the *OPC? query is waiting for a sweep or arb generation that is pending, it could potentially hang the *OPC? query for an undefined extended or even indefinite period of time.)

*OPT?

Supported All Models

*OPT?
System Commands
IEEE 488.2 Common Commands

The options (OPT) query returns a comma separated list of all of the instrument options currently installed on the signal generator.

| Key Entry | Instrument Options |

PSC

Supported All Models

PSC ON|OFF|1|0

The Power–On Status Clear (PSC) command controls the automatic power–on clearing of the Service Request Enable Register, the Standard Event Status Enable Register, and device–specific event enable registers.

- **ON (1)** This choice enables the power–on clearing of the listed registers.
- **OFF (0)** This choice disables the clearing of the listed registers and they retain their status when a power–on condition occurs.

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.*

PSC?

Supported All Models

PSC?

The Power–On Status Clear (PSC) query returns the flag setting as enabled by the **PSC** command.

RCL

Supported All Models

RCL <reg>,<seq>

The Recall (RCL) command recalls the state from the specified memory register <reg> of the specified sequence <seq>.

Range

Registers: 0 to 99
Sequences: 0 to 9

Key Entry **RECALL Reg** **Select Seq:**

RST

Supported All Models

RST
The Reset (RST) command resets most signal generator functions to factory-defined conditions.

Remarks

Each command shows the *RST value if the setting is affected.

The settings enabled by this command is not affected by a signal generator power-on, preset, or *RST.

*RST uses the factory preset state which is better for automated testing, for example sweep mode is set to single.

For a comparison of the SCPI preset commands, refer to Table, “The defined conditions are either factory- or user-defined.,” on page 231.

SAV

Supported All Models

S<reg>,<seq>

The Save (SAV) command saves signal generator settings to the specified memory register <reg> of the specified sequence <seq>.

Range

Registers: 0 to 99

Sequences: 0 to 9

Key Entry

Save Reg

Save Seq[n] Reg[nn]

Remarks
The save function does not save all signal generator settings. Refer to the User's Guide for more information on the save function. Refer to “*RCL” on page 154 for information on recalling saved signal generator settings.

SRE

Supported All Models

S<data>

The Service Request Enable (SRE) command sets the value of the Service Request Enable Register.

The variable <data> is the decimal sum of the bits that will be enabled. Bit 6 (value 64) is ignored and cannot be set by this command.

Range

0 to 255

Remarks

Refer to the Programming Guide for more information.

Entering values from 64 to 127 is equivalent to entering values from 0 to 63.
The setting enabled by this command is not affected by signal generator preset or *RST. However, cycling the signal generator power will reset it to zero.

*SRE?

Supported
All Models

*SRE?

The Service Request Enable (SRE) query returns the value of the Service Request Enable Register.

Range
0 to 63 or 128 to 191

Remarks
Refer to the Programming Guide for more information.

*STB?

Supported
All Models

*STB?

The Read Status Byte (STB) query returns the value of the status byte including the master summary status (MSS) bit.

Range
0 to 255

Remarks
Refer to the Programming Guide for more information.

*TRG

Supported
All Models

*TRG

The Trigger (TRG) command triggers the device if BUS is the selected trigger source, otherwise, *TRG is ignored.
System Commands

IEEE 488.2 Common Commands

TST?

Supported All Models

TST?

The Self-Test (TST) query initiates the internal self-test and returns one of the following results:

- 0 This shows that all tests passed.
- 1 This shows that one or more tests failed.

Key Entry Run Complete Self Test

WAI

Supported All Models

WAI

The Wait-to-Continue (WAI) command causes the signal generator to wait until all pending commands are completed, before executing any other commands.
Memory Subsystem (:MEMory)

:CATalog:BINary?

Supported All Models

This query outputs a list of the binary files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name>,<file type>,<file size>"

Example Output

1818624,519962624,"GEN_FILE11,BIN,5"

Key Entry Binary
Remarks Refer to "File Name Variables" on page 43 for information on the file name syntax.

:CATalog:BIT

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

This command outputs a list of the bit files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Key Entry Bit
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

:CATalog:DMOD

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:DMOD?

This command outputs a list of the arbitrary waveform digital modulation files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name, file type, file size>"

Key Entry DMOD
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:FIR

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:FIR?

This command outputs a list of the finite impulse response filter (FIR) files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name, file type, file size>"

Key Entry FIR
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:FSK?

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:FSK?

This command outputs a list of the frequency shift keying (FSK) files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"
System Commands
Memory Subsystem (:MEMory)

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name, file type, file size>"

Key Entry FSK
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:IQ?

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:IQ?

This query outputs a list of the Inphase and Quadrature (I/Q) files. The return data will be in the following form:

<mem used>, <mem free>, "<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name>, <file type>, <file size>"

Key Entry I/Q
Remarks Refer to File Name Variables for information on the file name syntax.

:CATalog:LIST?

Supported All Models

:MEMory:CATalog:LIST?

This query outputs a list of the list sweep files. The return data will be in the following form:

<mem used>, <mem free>, "<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name>, <file type>, <file size>"

Example Output

1818624, 519962624, "LAST, LIST, 122", "LIST10, LIST, 69"

Key Entry List
System Commands
Memory Subsystem (:MEMory)

Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:MDMod

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:MDMod?

This command outputs a list of the arbitrary waveform multi carrier digital modulation files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Key Entry MDMOD
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:MTONE

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:MTONE?

This command outputs a list of the arbitrary waveform multitone files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Key Entry MTONE
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

:CATalog:PTRain?

Supported: All with Options UNW and N5180320B

:MEMory:CATalog:PTRain?

This command lists all files of the pulse train files stored in the non-volatile storage.

:CATalog:SEQ?

Supported: N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:SEQ?

This query outputs a list of the arbitrary waveform sequence files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name>,<file type>,<file size>"

Example Output
1818624,519962624,"SEQ1_TEST,SEQ,206","SEQ_TEST,SEQ,169"

Key Entry: SEQ
Remarks: Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:SHAPE?

Supported: N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:CATalog:SHAPE?

This command outputs a list of the burst shape files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Key Entry: SHAPE
System Commands
Memory Subsystem (:MEMory)

Remarks
Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog:STATe?

Supported All Models

:MEMory:CATalog:STATe?

This query outputs a list of the state files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Example Output

1818624,519962624,"0_00,STAT,641"

Key Entry

State

Remarks
Refer to File Name Variables for information on the file name syntax.

The :MEM:CAT:STAT command requires the use of registry number and sequence number variables. The ranges are 0 to 99 for <reg_num> and 0 to 9 for <seq_num>.

:CATalog:UFLT?

Supported All Models

:MEMory:CATalog:UFLT?

This query outputs a list of the user-flatness correction files. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the directory list. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Example Output

1818624,519962624,"FLAT_1,UFLT,16","LAST,UFLT,16"

Key Entry

User Flatness
System Commands
Memory Subsystem (:MEMory)

Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:CATalog[:ALL]?

Supported All Models

:MEMory:CATalog[:ALL]?

This query outputs a list of all the files in the memory subsystem. However it does not include files stored on the Option 653, 655, 656, or 657 baseband generator. The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"

The signal generator will return the two memory usage parameters and as many file listings as there are files in the memory subsystem. Each file listing parameter will be in the following form:

"<file name,file type,file size>"

Example Output

1818624,519962624,0_00@STATE,STAT,641","0_01@STATE,STAT,669","A@NVHDR,NVHDR,132","A@NVMKR,NVMKR,0","A@NVWFM,NVWFM,9","COPY12@STATE,STAT,669","FLAT_1@USERFLAT,UFLT,16","GEN_FILE11@BINARY,BIN,5","LAST@LIST,LIST,122","LAST@USERFLAT,UFLT,16","PERSISTENT@STATE,STAT,1056","SEQ1_TEST@SEQ,SEQ,206

Key Entry All
Remarks Refer to the Table 1-3 on page 45 for a listing of the file types and the table on page 46 for information on the "<file name>" syntax.

:COPY[:NAME]

Supported All Models

:MEMory:COPY[:NAME] "<file name>" ,"<file name>"

This command makes a duplicate of the requested file.

Key Entry Copy File
Remarks Refer to File Name Variables for information on the file name syntax.

When copying a waveform file from volatile to non–volatile memory, the marker file and file header, associated with the waveform file, will automatically be copied at the same time.
:DATA

Supported All Models

:MEMory:DATA "<file_name>"",<data_block>
:MEMory:DATA? "<file_name>"

This command loads data into signal generator memory using the <data_block> parameter and saves the data to a file designated by the "<file_name>" variable. The query returns the file contents of the file as a datablock.

A waveform file must be located in volatile waveform memory (WFM1) before it can be played by the signal generator’s dual ARB player.

For downloads directly into volatile waveform memory (WFM1) use the path "WFM1:<file_name>". For downloads to non–volatile waveform memory, use the path "NVWFM:<file_name>".

"<file_name>" This variable names the destination file, including the directory path.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable.

Refer to the Programming Guide for more information on programming the status registers.

Example

:MEM:DATA "NVWFM:IQ_Data",#210Qaz37pY9oL

The preceding example downloads 10 bytes of data to a file, IQ_Data, in the signal generator’s non–volatile memory. The table shown below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NVWFM:IQ_Data"</td>
<td>IQ_Data is the file name. The directory path is not needed. The path /USER/WAVEFORM/ is implied.</td>
</tr>
<tr>
<td>#210Qaz37pY9oL</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>2</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>10</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qaz37pY9oL</td>
<td>10 bytes of data</td>
</tr>
</tbody>
</table>

The data, Qaz37pY9oL, in the above command are not valid and are shown for example purposes only. Typically, ASCII characters representing data are unprintable.

Remarks See File Name Variables for information on the file name syntax.
:DATA:APPend

Supported All Models

```
:APPend "<file_name>";<data_block>
```

This command appends data to an existing file stored in signal generator memory.

- `<file_name>`: This variable names the destination file and directory path.
- `<data_block>`: This parameter represents the data and file length parameters. The data in the file is represented by the `<data_block>` variable. The file length parameters are used by the signal generator for allocating memory.

Refer to the Programming Guide for more information on downloading and using files.

Example

```
:MEM:DATA:APPend "NVWFM:IQ_Data",#14Y9oL
```

The preceding example downloads and appends the data, Y9oL, to an existing file named IQ_Data stored in the signal generator's non-volatile memory (NVWFM).

- "NVWFM:IQ_Data" IQ_Data the file name. The directory path is not needed. The path "*/USER/WAVEFORM/*" is implied.
- #14Y9oL Data block

<table>
<thead>
<tr>
<th>#</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Byte count</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 bytes of data</td>
<td></td>
</tr>
</tbody>
</table>

Remarks Refer to File Name Variables for information on the file name syntax.

:DATA:BIT

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

```
:MEM:DATA:BIT "<filename>";<bit_count>;<datablock>
:MEM:DATA:BIT? "<filename>
```

This command loads bit data into signal generator memory using the `<bit_count>` and `<datablock>` parameters and saves the data to a file designated by the `<filename>` variable. The query returns the bit count, file length information, and the data.
System Commands
Memory Subsystem (:MEMory)

"filename" This variable names the destination file and the
directory path.

<bit_count> This number represents the number of bits in the data
block.

<datablock> This parameter represents the data and file length
parameters. The data in the file is represented by the
<datablock> variable. The file length parameters are
used
by the signal generator for allocating memory.

Refer to the Programming Guide for more information on downloading and
using files.

Example

:MEM:DATA:BIT "Test_Data",16,#12Qz

The preceding example downloads bit data to the file, Test_Data. The table
below describes the command parameters.

- "Test_Data" Test_Data is the file name. The directory path is not needed.
The path "/USER/BIT/" is implied.
- 16 Number of bits in the data block
- #12Qz Data block
 # This character indicates the beginning of the data block
 1 Number of digits in the byte count
 2 Byte count
 Qz 16 bits of data (ascii representation of bit data)

Remarks Refer to "File Name Variables" on page 43 for
information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

:DATA:BIT:INSert

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DATA:BIT:INSert

"<filename>",<bitOffset>,<bitCount>,<datablock>

This command inserts a specified number of bits at a specified bit offset in a bit file.

"<filename>" This variable names the destination file and the directory path.

<bitOffset> This number represents a value between 0 and a value that will fill all of the available memory. This is where the <bitCount> bits of the data in the <datablock> will be inserted. If the <bitOffset> is greater than the current file length, then zero bits will fill the file from the current length in bits to the <bitOffset>.

<bitCount> This number represents the number of bits in the data block.

<datablock> This parameter represents the data to be inserted into the file.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:BIT:INS "Test_Data",7,16,#12Qz

The preceding example inserts bit data at the 7th bit of the file, Test_Data. The table below describes the command parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Test_Data"</td>
<td>Test_Data is the file name. The directory path is not needed. The path /USER/BIT/ is implied.</td>
</tr>
<tr>
<td>7</td>
<td>The offset in bits to insert the data in the data block</td>
</tr>
<tr>
<td>16</td>
<td>Number of bits in the data block</td>
</tr>
<tr>
<td>#12Qz</td>
<td>Data block</td>
</tr>
<tr>
<td>#</td>
<td>This character indicates the beginning of the data block</td>
</tr>
<tr>
<td>1</td>
<td>Number of digits in the byte count</td>
</tr>
<tr>
<td>2</td>
<td>Byte count</td>
</tr>
<tr>
<td>Qz</td>
<td>16 bits of data (ascii representation of bit data)</td>
</tr>
</tbody>
</table>

Remarks
Refer to “File Name Variables” on page 43 for information on the file name syntax.
System Commands

Memory Subsystem (MEMory)

:DATA:FIR

Supported

N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DATA:FIR

"<file_name">,[REAL|COMplex],osr,coefficients

**:MEMory:DATA:FIR?"<file_name>"

This command loads user–defined finite impulse response (FIR) coefficient data, with a given oversample ratio (OSR), into a file in the signal generator’s non–volatile memory. The query returns the oversample ratio and coefficient data.

"<file_name>" This variable is the file name of the destination file. The directory path, /USER/FIR is not required as it is implied by the command.

REAL Filter with real coefficients which are applied to I and Q equally. These coefficients are in the time domain and are supplied by the user. This type of filter is selectable as either a modulation filter or an equalization filter.

COMPLEX Filter with complex I and Q samples (I + jQ) that are applied to the I/Q signal in a complex manner, as in (I + jQ)*(I + jQ). These coefficients are in the time domain and are supplied by the user. This type of filter is only selectable by the equalization filter feature.

osr The OSR is the number of filter taps per symbol. For an equalization filter, the OSR must always be 1 and the filter coefficients must be sampled at 200MHz. For a modulation filter, the OSR must be ≥2 and the filter rate must be sampled at 2 times the OSR.

coefficients This variable is the set of FIR coefficients. The maximum number of taps is 1024. For COMPLEX filters, the coefficients alternate between the real and imaginary values. There can be 2048 coefficients for COMPLEX filters. The equalization filter is limited to 256 taps.

Refer to the Programming Guide for more information on downloading and using files.

Example

`:MEM:DATA:FIR
"FIR_1",4,0,0,0,0,0.000001,0.000012,0.000132,0.001101,0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,0,0,0
System Commands
Memory Subsystem (:MEMory)

The preceding example downloads real FIR coefficients with an oversampling ratio of 4 to the signal generator's non-volatile memory in a file named FIR_1. Notice that the signal generator directory path, /USER/FIR, is not needed as it is implied by the command. Refer to File Name Variables for information on the file name syntax.

Example 2

:MEM:DATA:FIR "EQ_1",COMP,1,0,0.000001,0.000145,0.000035,1,0,-0.000256,0.000016,0.000001,0

The preceding example downloads complex FIR coefficients with an OSR 1 as file "EQ_1". This file is suitable for use as an equalization filter.

Range osr: 1 to 32

Coefficient: -1000 to 1000

Key Entry Oversample Ratio

:DATA:FSK

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEM:DATA:FSK
"<file_name>";<num_states>;<f0>;<f1>,...;<f(n)>[,<diff_state>;<num_diff_states>;<diff1>,...;<diff(n)>]

:MEM:DATA:FSK? "<file_name>"

This command loads custom frequency shift keying (FSK) data into a file in the signal generator's non-volatile memory.

The query returns data in the following form:

<num_states>;<f0>;<f1>,...;<f(n)>;<diff_state>;<num_diff_states>;<diff1>,...;<diff(n)>

"<file_name>" This variable string identifies the name of the FSK file. The filename must be enclosed with quotation marks.

<num_states> This variable identifies the number of frequency states.

<f0> This variable identifies the value of the first frequency state.

<f1>,...;<f(n)> This variable identifies the value of the second and subsequent frequency states with a frequency resolution of 0.1Hz.

<diff_state> This variable enables or disables differential encoding.

<num_diff_states> This variable identifies the number of differential states.
System Commands
Memory Subsystem (:MEMory)

<diff0> This variable identifies the value of the first differential state.
<diff1>,...,<diff(n)> This variable identifies the value of the second and subsequent differential states.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:FSK "4FSK",4,−2kHz,−1kHz,2kHz,1kHz,ON,2,1,0

The preceding example downloads a four-level FSK data to a file named 4FSK. There are four states (frequencies): -2kHz, -1kHz, 2kHz, 1kHz; differential encoding is toggled ON, and there are two differential states 1 and 0. The table shown below describes the command parameters.

- "4FSK" 4FSK is the FSK file name. The directory path is not needed. The path "USER/FSK" is implied.
- 4 Number of states
- -2kHz First frequency state
- -1kHz Second frequency state
- 2kHz Third frequency state
- 1kHz Fourth frequency state
- ON Differential encoding is on
- 2 Number of differential states
- 1 Value of the first differential state.
- 0 Value of the second differential state.

Range num_diff_states: 0–256
num_states: 2–16
f0–f(n): -20MHz to 20MHz (For ARB custom modulation, the range values vary with the symbol rate values.)
diff0–diff(n): -128 to 127

Remarks Refer to File Name Variables for information on the file name syntax.

:DATA:IQ

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657
System Commands
Memory Subsystem (:MEMory)

:MEMory:DATA:IQ
"<file_name>"","<offsetQ>,<num_states>,<i0>,<q0>,<i1>,
<i1>,...<i(n)>,<q(n)>,[,"<diff_state>,<num_diff_states>,<diff0
>,<diff1>,...<diff(n)>]
:MEMory:DATA:IQ? "<file_name>"

This command loads custom I/Q data into a file in the signal generator's non-volatile memory.

The query returns data in the following form:

"<offsetQ>,<num_states>,<i0>,<q0>,<i1>,<q1>,...<i(n)>,<q(n)>
,<diff_state>,<num_diff_states>,<diff0>,<diff1>,...<diff(n)>

"<file_name>" This variable string identifies the name of the I/Q file. The filename must be enclosed with quotation marks.
[offsetQ] This variable enables (1) or disables (0) the Q output delay by 1/2 symbol from the I output.
[num_states] This is the number of symbols.
<i0>...<i(n)> This is the I value of the first and subsequent I symbols.
<i0>...<i(n)> This is the Q value of the first and subsequent Q symbols.
[diff_state] This variable enables and disables differential encoding.
[num_diff_states] This variable identifies the number of differential states.
[diff0] This variable identifies the value of the first differential state.
[diff1,...diff(n)] This variable identifies the value of the second and subsequent differential states.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:IQ "Test_BPSK",1,2,1,0,0,0

The preceding example loads and stores a two-symbol I/Q file named Test_BPSK that has a Q offset. The table shown below describes the command parameters.

- "Test_BPSK" Test_BPSK is the file name. The directory path is not needed. The path "/USER/IQ" is implied.
- 1 Q Offset. The Q output delay is enabled.
- 2 Number of symbols
- 1 Value of the first I symbol
- 0 Value of the first Q symbol.
System Commands
Memory Subsystem (:MEMory)

- "Test_BPSK"
 Test_BPSK is the file name. The directory path is not needed. The path "/USER/IQ" is implied.
- 0
 Value of the second I symbol
- 0
 Value of the second Q symbol

Range

<table>
<thead>
<tr>
<th>num_states:</th>
<th>2–1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>i0–i(n):</td>
<td>-1 to 1</td>
</tr>
<tr>
<td>q0–q(n):</td>
<td>-1 to 1</td>
</tr>
<tr>
<td>num_diff_states:</td>
<td>0–256</td>
</tr>
<tr>
<td>diff0–diff(n):</td>
<td>-128 to 127</td>
</tr>
</tbody>
</table>

Remarks
Refer to "File Name Variables" on page 43 for information on the file name syntax.

:DATA:PRAM:FILE:BLOCk

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

This command loads block-formatted data directly into pattern RAM volatile memory (WFM1). Pattern RAM memory describes how memory (WFM1) is used and is not a distinct piece of memory. A PRAM file is specified as an array of bytes.

"<file_name>" This variable names the destination file. No directory path name is needed.

<data_block> This parameter represents the data and file length parameters. The data in the file is represented by the <data_block> variable. The file length parameters are used by the signal generator for allocating memory.

Pattern Ram files are binary files downloaded directly into waveform memory as an array of bytes. Each byte specifies a data bit (LSB 0), a burst bit (BIT 2), and an Event 1 output bit (BIT 6). Refer to the Programming Guide for more information on pattern RAM downloading.

Example

:MEM:DATA:PRAM:FILE:BLOC "PRAM_Data", #14Yq8L
System Commands
Memory Subsystem (:MEMory)

The preceding example downloads PRAM data to a file named PRAM_Data into the signal generator’s volatile memory (WFM1).

- "PRAM_Data"
 PRAM_Data is the file name. PRAM files are saved to the signal generator's volatile memory (WFM1).
- #14Yq8L
 Data block

 #
 This character indicates the beginning of the data block

 1
 Number of digits in the byte count

 4
 Byte count

 Yq8L
 4 bytes of data

NOTE

The data, Yq8L, in the above command is not valid and is used for example purposes only. Typically, ASCII characters representing data are unprintable.

Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:DATA:PRAM:FILE:LIST

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

MEMory:DATA:PRAM:FILE:LIST
"<file_name>",<uint8>[,<uint8>,<...>]

This command loads list-formatted data directly into pattern RAM volatile memory (WFM1). Pattern RAM memory describes how memory (WFM1) is used and is not a distinct piece of memory. A PRAM file is specified as an array of bytes.

This command should be preceded by a *WAI (Wait-to-Continue) command to ensure that all pending operations are completed, before loading the list.

"<file_name>" This variable names the destination file.

<uint8> This variable is any of the valid 8-bit, unsigned integer values between 0 and 255.

[,<uint8>,<...>] This variable identifies the value of the second and subsequent 8-bit unsigned integer variables.

Pattern Ram files are binary files downloaded directly into waveform memory as an array of bytes. Each byte specifies a data bit (LSB 0), a burst bit (BIT 2), and an Event 1 output bit (BIT 6). Refer to the Programming Guide for more information on pattern RAM downloading.

Example

System Commands
Memory Subsystem (:MEMory)

The preceding example downloads PRAM data, in list format, to a file named Pram_Data in the signal generator’s volatile memory (WFM1).

- "Pram_Data" Pram_Data is the file name. PRAM files are saved to the signal generator’s volatile memory (WFM1).
- 85 The first 8-bit integer value
- 21,21,20,20,100 Subsequent 8-bit integer values.

Range 0–255
Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:DATA:SHAPE

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEM:DATA:SHAPE
"<file_name>",<rise_pnts>,<rp0>,<rp1>,...<fall_points>,<fp0>,
,<fp1>,...<fp(n)>
:MEM:DATA:SHAPE? "<file_name>"

This command loads a burst shape file into the signal generator’s non–volatile memory (NVWFM).

"<file_name>" This variable names the destination file and directory path.
rise_pnts This variable indicates the number of rise points used to describe the burst shape rising slope.
rp0,...rp(n) This variable defines each successive rise point, where 0 is no power and 1 is full power.
fall_points This variable indicates the number of fall points used to describe the burst shape falling slope.
fp0,...fp(n) This variable defines each successive fall point, where 1 is full power and 0 is no power.

Refer to the Programming Guide for more information on downloading and using files.

Example

:MEM:DATA:SHAPE "Shape_File",6,0,0.2,0.4,0.6,0.8,1.0,2,0.5,0
System Commands
Memory Subsystem (:MEMory)

The preceding example loads shape data to a file named Shape_File in the signal generator’s non-volatile memory.

- "Shape_File"
 Shape_File is the shape data filename. The directory path is not needed. The path "/USER/SHAPE/" is implied.

- 6
 Number of rise points describing the burst shape.
- 0.0, 0.4, 0.6, 0.8, 1.0
 Rise point values.
- 2
 Number of fall points describing the burst shape.
- 0.5, 0
 Fall point values.

Range
num_rise_points: 2–256
num_fall_points: 2–256
rp0–rp(n): 0.0–1.0
fp0–fp(n): 0.0–1.0

:DELe:ALL

Supported All Models

Using this command deletes all non-volatile user files including binary, list, state, and flatness correction files, and any saved setups which use the front-panel table editor. However, this does not include files stored on the Option 653, 655, 656, or 657 ARB generator. You cannot recover the files after executing this command.

:MEM:DELe:ALL

This command clears the file system of all non-volatile user files.

Key Entry Delete All Files

:DELe:BINary

Supported All Models

:MEM:DELe:BINary

This command deletes all binary files.

Key Entry Delete All Binary Files

:DELe:BIT

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657
System Commands
Memory Subsystem (:MEMory)

:MEMory:DELete:BIT
This command deletes all bit files.

Key Entry Delete All Bit Files

:DELete:DMOD
Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:DMOD
This command deletes all arbitrary waveform digital modulation files.

Key Entry Delete All ARB DMOD Files

:DELete:FIR
Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:FIR
This command deletes all finite impulse response filter files.

Key Entry Delete All FIR Files

:DELete:FSK
Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:FSK
This command deletes all FSK files.

Key Entry Delete All FSK Files

:DELete:IQ
Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:IQ
This command deletes all I/Q files.

Key Entry Delete All I/Q Files

:DELete:LIST
Supported All Models

:MEMory:DELete:LIST
System Commands
Memory Subsystem (:MEMory)

This command deletes all List files.

Key Entry Delete All List Files

:DELete:MDMod

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:MDMod

This command deletes all arbitrary waveform multicarrier digital modulation files.

Key Entry Delete All ARB MDMOD Files

:DELete:MTONE

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:MTONE

This command deletes all arbitrary waveform multitone files.

Key Entry Delete All ARB MTONE Files

:DELete:PTRain

Supported All with Options UNW and N5180320B

:MEMory:DELete:PTRain

This command deletes all pulse train files.

:DELete:SEQ

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:SEQ

This command deletes all sequence files.

Key Entry Delete All Sequence Files

:DELete:SHAPE

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MEMory:DELete:SHAPE

This command deletes all burst shape files.

Key Entry Delete All Shape Files
System Commands
Memory Subsystem (:MEMory)

:DELeTe:STATe

Supported All Models

:MEMory:DELeTe:STATe
This command deletes all state files.

Key Entry Delete All State Files

:DELeTe:UFLT

Supported All Models

:MEMory:DELeTe:UFLT
This command deletes all user–flatness correction files.

Key Entry Delete All UFLT Files

:DELeTe[:NAME]

Supported All Models

:MEMory:DELeTe[:NAME] "<file name>"
This command clears the user file system of "<file name>".

Key Entry Delete File
Remarks Refer to File Name Variables for information on the file name syntax.
When deleting a waveform (WFM1) file from memory, the marker file and file header, associated with the waveform file, will also be deleted.

:EXPOrt[:ASCii]:PTRAin

Supported All with Options UNW and N5180320B

:MEMory:EXPOrt[:ASCii]:PTRAin "<filename>"
This command writes out a CSV/ASCII file to the BINARY directory. User may supply their own extender as part of the filename. Refer to :EXPOrt[:ASCii]:SEParator:COLumn and :EXPOrt[:ASCii]:SEParator:DECimal.

Example
:MEM:EXP:PTR "myfile.csv"
The preceding example saves a power train file to “myfile.csv”.

Key Entry Export To File
System Commands

Memory Subsystem (:MEMory)

:EXPort[:ASCii]:SEPArator:COLumn

Supported All with Options UNW and N5180320B

:MEMory:EXPort[:ASCii]:SEPArator:COLumn

TAB|Semicolon|COMma|SPACE

:MEMory:EXPort[:ASCii]:SEPArator:COLumn?

This command selects whether the column separator is a tab, ",", "," or a " " during export of CSV/ASCII files.

This value is persistent across preset/recall and power cycles. (At the factory the MXG is set to **COMma** (",").) Refer to :EXPort[:ASCii]:SEPArator:DECimal.

Key Entry Export Column Separator

:EXPort[:ASCii]:SEPArator:DECimal

Supported All with Options UNW and N5180320B

:MEMory:EXPort[:ASCii]:SEPArator:DECimal

DOT|COMma

:MEMory:EXPort[:ASCii]:SEPArator:DECimal?

This command selects whether the decimal point is a "." or a "," during export of CSV/ASCII files.

This value is persistent across preset/recall and power cycles. (At the factory the MXG is set to **DOT** (".").) Refer to :EXPort[:ASCii]:SEPArator:COLumn.

Key Entry Export Decimal Separator

:FREE[:ALL]

Supported All Models

:MEMory:FREE[:ALL]?

This command returns the number of bytes left in the non-volatile user file system.

Key Entry All

:IMPort[:ASCii]:PTRain

Supported All with Options UNW and N5180320B

:MEMory:IMPort[:ASCii]:PTRain <"filename">

This command reads a CSV/ASCII file from the BINARY directory. The user must specify any extender (such as .csv or .txt) used when placing the file into the instrument. Note that the form of these files must be **On Time<column separator>Off Time<column separator>Repetitions<newline>** or **On Time<column separator>Off Time<newline>** with repetition count assumed to always be 1 in the second case. Refer to :IMPort[:ASCii]:SEPArator:DECimal.
System Commands
Memory Subsystem (:MEMory)

Key Entry Import From Selected File

:IMPort[:ASCii]:SEPArator:DECimal

Supported All with Options UNW and N5180320B

:MEMory:IMPort[:ASCii]:SEPArator:DECimal DOT|COMMa
:MEMory:IMPort[:ASCii]:SEPArator:DECimal?

This command selects whether the decimal point is a "." or a ",," during import of CSV/ASCII files.

This value is persistent across preset/recall and power cycles. (At the factory the MXG is set to DOT (".").) Refer to :IMPort[:ASCii]:PTRain.

Key Entry Import Decimal Separator

:LOAD:LIST

Supported All Models

:MEMory:LOAD:LIST "<file name>"

This command loads a list sweep file.

Key Entry Load From Selected File

:LOAD:PTRain

Supported All with Options UNW and N5180320B

:MEMory:LOAD:PTRain <"filename">

This command reads the pulse train file specified. Refer to :STORe:PTRain.

Key Entry Confirm Load from File

:MOVE

Supported All Models

:MEMory:MOVE "<src_file>","<dest_file>"

This command renames the requested file in the memory catalog.

Key Entry Rename File

Remarks Refer to File Name Variables for information on the file name syntax.

:SIZE

Supported All Models

:MEMory:SIZE? <"filename">
System Commands
Memory Subsystem (:MEMory)

This command returns the size of the file named "filename" in bytes or a -1, if the file does not exist. If the MSUS or directory is invalid, an "ERROR: -257, File name error" will be reported.

:STATe:COMMent

Supported All Models
:MEMory:STATe:COMMent <reg_num>,<seq_num>,"<comment>"
:MEMory:STATe:COMMent? <reg_num>,<seq_num>

This command lets you to add a descriptive comment to the saved state <reg_num>,<seq_num>. Comments can be up to 55 characters long.

Key Entry Add Comment To Seq[n] Reg[nn]

:STORe:LIST

Supported All Models
:MEMory:STORe:LIST "<file name>"

This command stores the current list sweep data to a file.

Key Entry Store To File

:STORe:PTRain

Supported All with Options UNW and N5180320B
:MEMory:STORe:PTRain "<filename>"

Writes out the current pulse train list to the PTRAIN file specified. This operation will overwrite any existing file of the same name in the PTRAIN directory with a binary file. Refer to :LOAD:PTRain.

Key Entry Store To File

:CATalog

Supported All Models
:MMEMory:CATalog? "<msus>"

This command outputs a list of the files from the specified file system.

The variable "<msus>" (mass storage unit specifier) represents "<file system>".
The file systems and types are shown in Table 1-3 on page 45.
The return data will be in the following form:

<mem used>,<mem free>,"<file listing>"
The signal generator will return the two memory usage parameters and as many file listings as there are files in the specified file system. Each file listing will be in the following format:
System Commands
Memory Subsystem (:MEMory)

"<file name,file type,file size>"

Key Entry | Binary | List | State | User Flatness
Seq | BBG Segments | NVM | NVW
| KR | FM |

Remarks Refer to MSUS (Mass Storage Unit Specifier) Variable for information on the use of the "<msus>" variable.

:COPY

Supported All Models

:MMEMory:COPY "<file name>"","<file name>"

This command makes a duplicate of the requested file.

Key Entry Copy File

Remarks Refer to File Name Variables for information on the file name syntax.

When copying a waveform file from volatile to non–volatile memory, the marker file and file header, associated with the waveform file, will automatically be copied at the same time.

:DATA

Supported All Models

:MMEMory:DATA "<file name>",<datablock>
:MMEMory:DATA? "<file name>"

This command loads <datablock> into the memory location "<file name>".

The query returns the <datablock> associated with the "<file name>".

Remarks Refer to File Name Variables for information on the file name syntax.

:DELete:NVWFm

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MMEMory:DELete:NVWFm

This command clears the user file system of all non–volatile arbitrary waveform files.

Key Entry Delete All NVWFM Files
System Commands
Memory Subsystem (:MEMory)

:DELete:WFM

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MMEMory:DELete:WFM

This command clears the user file system of all volatile arbitrary waveform files stored on the WFM1.

Key Entry Delete All BBG Segments

:DELete[:NAME]

Supported All Models

On the

:MMEMory:DELete[:NAME] "<file name>",["<msus>"]

This command clears the user file system of "<file name>" with the option of specifying the file system separately. For a list of file systems refer to Table on page 45.

The variable "<msus>" (mass storage unit specifier) represents the file system.

Key Entry Delete File

Remarks If the optional variable "<msus>" is omitted, the file name needs to include the file system extension. Refer to File Name Variables and MSUS (Mass Storage Unit Specifier) Variable for information on the use of the file variables.

When deleting a waveform file from memory, the marker file and file header, associated with the waveform file, will also be deleted.
System Commands
Memory Subsystem (:MEMory)

:HEADer:CLEar

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MMEMory:HEADer:CLEar "<file name>"

This command sets the file header field settings to unspecified for the "<file name>" variable.

Key Entry Clear Header
Remarks In addition to waveforms currently running in the signal generator, it is possible to change or delete file header information on files that are not currently running but are stored in either the internal storage or USB media non–volatile memory (Example: :MMEMory:HEADer:CLEar "NVWFM:file_name").

Refer to File Name Variables for information on the file name syntax.

:HEADer:DESCription

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MMEMory:HEADer:DESCription "<file name>","<description>"
:MMEMory:HEADer:DESCription? "<file name>"

This command inserts a description for the file header.

Key Entry Edit Description
Remarks In addition to waveforms currently running in the signal generator, it is possible to change or delete file header information on files that are not currently running but are stored in either the internal storage or USB media non–volatile memory (Example: :MMEMory:HEADer:DESCription "NVWFM:file_name","example_file_name").

The header description is limited to 32 characters. Refer to File Name Variables for information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

:HEADer:ID?

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MMEMory:HEADer:ID? "<file name>"
This query returns the unique waveform ID of file "<file name>".
The command is ignored if the file name does not exist.

:LOAD:LIST

Supported All Models

:MMEMory:LOAD:LIST "<file name>"
This command loads a List sweep file.

Key Entry Load From Selected File

:LOAD:PTRain

Supported All with Options UNW and N5180320B

:MMEMory:LOAD:PTRain <"filename">
This command reads the pulse train file specified. Refer to :STORe:PTRain.

Key Entry Confirm Load from File

:LOAD:WFM:ALL

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:MMEMory:LOAD:WFM:ALL
This command loads all of the waveforms in the active media to the internal BBG memory. The active media is either internal non-volatile memory storage media or an external storage media connected to the front-panel USB port.

Key Entry Load All From Int Media

:MOVE

Supported All Models

:MMEMory:MOVE "<src_file>","<dest_file>"
This command renames the requested file in the memory catalog.

Key Entry Rename File

Remarks Refer to File Name Variables for information on the file name syntax.
System Commands
Memory Subsystem (:MEMory)

:STOR:LIST

Supported All Models
:MMEM:STOR:LIST "<file name>"
This command stores the current list sweep data to a file.

Key Entry Store To File

:STOR:PTRain

Supported All with Options UNW and N5180320B
:MMEM:STOR:PTRain "<filename>">
Writes out the current pulse train list to the PTRAIN file specified. This operation will overwrite any existing file of the same name in the PTRAIN directory with a binary file. Refer to :LOAD:PTRain.

Key Entry Store To File

:STOR:WFM:ALL

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657
:MMEM:STOR:WFM:ALL
This command stores from the internal BBG memory to the active media. The active media is either internal non-volatile memory storage media or an external storage media connected to the front-panel USB port.

Key Entry Store All To Int Media
Output Subsystem (:OUTPut)

:BLANking:AUTO

Supported All Models

:OUTPut:BLANking:AUTO ON|OFF|1|0

:OUTPut:BLANKing:AUTO?

This command turns the RF output on or off during frequency band changes. Frequency band changes can cause the signal generator’s RF output to fluctuate. The output blanking function, when active, turns off the RF output until the frequency and power settles.

ON (1) The RF output turns off when crossing a frequency band.

OFF (0) The RF output stays on, if possible, when crossing a frequency band. Refer to the Data sheet.

*RST 1

Key Entry Output Blanking Off On Auto

Remarks Refer to the signal generator’s data sheet for information on frequency switching speeds, settling times, and frequency band information.

:BLANking:STATe

Supported All Models

:OUTPut:BLANking:STATe ON|OFF|1|0

:OUTPut:BLANKing:STATe?

This command enables or disables the RF output blanking state.

ON (1) The RF output turns off during frequency changes.

OFF (0) The RF output stays on, if possible, during frequency changes. Refer to the Data sheet.

*RST 0

Remarks Refer to the signal generator’s data sheet for information on frequency switching speeds, settling times, and frequency band information.
System Commands
Output Subsystem (:OUTPut)

:MODulation[:STATe]

Supported All Models

:OUTPut:MODulation[:STATe] ON|OFF|1|0
:OUTPut:MODulation[:STATe]?

This command enables or disables the modulation of the RF output with the currently active modulation type(s).

*RST 1

Key Entry Mod On/Off

Remarks Some modulation types can be simultaneously enabled such as pulse and AM.

An annunciator on the signal generator is always displayed to indicate whether modulation is switched on or off.

[:STATe]

Supported All Models

:OUTPut [:STATe] ON|OFF|1|0
:OUTPut [:STATe]?

This command enables or disables the RF output.

*RST 0

Key Entry RF On/Off

Remarks Although you can configure and engage various modulations, no signal is available at the RF OUTPUT connector until this command is executed.

An annunciator is always displayed on the signal generator to indicate whether the RF output is switched on or off.
Route Subsystem (:ROUTe)

[:CONNectors]:EVENt[:OUTPut]

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe[:CONNectors]:EVENt[:OUTPut] M1|M2|M3|M4|AUX29|NONE

:ROUTe[:CONNectors]:EVENt[:OUTPut]?

This command selects a marker (M1–M4) signal to be routed to the rear panel EVENT 1 connector. AUX29 selects Aux I/O Pin 29. NONE indicates that the BNC connector is, or can be, input.

*RST M1

Key Entry Route to Event 1 BNC

HARDware:DGENerator:INPut:BPOLarity

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:INPut:BPOLarity POSitive|NEGative

:ROUTe:HARDware:DGENerator:INPut:BPOLarity?

This command configures the polarity of the TTL input signal at the BURST GATE IN connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS

Key Entry Burst Gate In Polarity Neg Pos

Remarks This command performs the same function as “HARDware:DGENerator:IPOLarity:BGATe” on page 191.

HARDware:DGENerator:INPut:CPOLarity

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:INPut:CPOLarity POSitive|NEGative

:ROUTe:HARDware:DGENerator:INPut:CPOLarity?

This command configures the polarity of the TTL input signal at the DATA CLOCK connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS

Key Entry Data Clock Polarity Neg Pos
System Commands
Route Subsystem (:ROUTe)

Remarks
This command performs the same function as
“HARDware:DGENerator:IPOLarity:CLOCk” on page
192.

HARDware:DGENerator:INPut:DPOLarity

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:INPut:DPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:DPOLarity?

This command configures the polarity of the TTL input signal at the DATA connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS

Key Entry Data Polarity Neg Pos

Remarks This command performs the same function as

HARDware:DGENerator:INPut:SPOLarity

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:INPut:SPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:INPut:SPOLarity?

This command configures the polarity of the TTL input signal at the SYMBOL SYNC connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS

Key Entry Symbol Sync Polarity Neg Pos

Remarks This command performs the same function as
“HARDware:DGENerator:IPOLarity:SSYNc” on page 193.

HARDware:DGENerator:IPOLarity:BGATe

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:IPOLarity:BGATe POSitive|NEGative
:ROUTe:HARDware:DGENerator:IPOLarity:BGATe?

This command configures the polarity of the input signal at the BURST GATE IN connector. POSitive refers to normal logic, while NEGative refers to inverted logic.
System Commands
Route Subsystem (:ROUTe)

*RST

Key Entry
Burst Gate In Polarity Neg Pos

Remarks
This command performs the same function as “HARDware:DGENerator:INPut:BPOLarity” on page 190.

HARDware:DGENerator:IPOLarity:CLOCk

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:*ROUTe:HARDware:DGENerator:IPOLarity:CLOCk POSitive|NEGative
:*ROUTe:HARDware:DGENerator:IPOLarity:CLOCk?

This command configures the polarity of the TTL input signal at the DATA CLOCK connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST

Key Entry
Data Clock Polarity Neg Pos

Remarks
This command performs the same function as “HARDware:DGENerator:INPut:CPOLarity” on page 190.

HARDware:DGENerator:IPOLarity:DATA

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:*ROUTe:HARDware:DGENerator:IPOLarity:DATA POSitive|NEGative
:*ROUTe:HARDware:DGENerator:IPOLarity:DATA?

This command configures the polarity of the TTL input signal at the DATA connector. POSitive refers to normal logic, while NEGative refers the inverted logic.

*RST

Key Entry
Data Polarity Neg Pos

Remarks
This command performs the same function as “HARDware:DGENerator:INPut:DPOLarity” on page 191.
System Commands
Route Subsystem (:ROUTE)

HARDware:DGENerator:IPOLarity:SSYNc

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTE:HARDware:DGENerator:IPOLarity:SSYNc POSitive|NEGative
:ROUTE:HARDware:DGENerator:IPOLarity:SSYNc?

This command configures the polarity of the TTL input signal at the SYMBOL SYNC connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS
Key Entry Symbol Sync Polarity Neg Pos
Remarks This command performs the same function as “HARDware:DGENerator:INPut:SPOLarity” on page 191.

HARDware:DGENerator:OPOLarity:CLOCk

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTE:HARDware:DGENerator:OPOLarity:CLOCk POSitive|NEGative
:ROUTE:HARDware:DGENerator:OPOLarity:CLOCk?

This command configures the polarity of the TTL output Data Clock Out signal at the DATA CLK OUT pin on the rear panel AUX I/O connector. POSitive refers to normal logic, while the NEGative refers to inverted logic.

*RST POS
Key Entry Data Clock Out Neg Pos
Remarks This command performs the same function as “HARDware:DGENerator:OUTPut:CPOLarity” on page 194.

HARDware:DGENerator:OPOLarity:DATA

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTE:HARDware:DGENerator:OPOLarity:DATA POSitive|NEGative
:ROUTE:HARDware:DGENerator:OPOLarity:DATA?

This command configures the polarity of the TTL output DATA OUT signal at the DATA OUT pin on the rear panel AUX I/O connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS
Key Entry Data Out Polarity Neg Pos
System Commands
Route Subsystem (:ROUTe)

Remarks
This command performs the same function as "HARDware:DGENerator:OUTPut:DPOLarity" on page 195.

HARDware:DGENerator:OPOLarity:SSYNc

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:OPOLarity:SSYNc POSitive|NEGative
:ROUTe:HARDware:DGENerator:OPOLarity:SSYNc?

This command configures the polarity of the TTL output SYMBOL SYNC signal at the SYM SYNC OUT pin on the rear panel AUX I/O connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST
POS

Key Entry
Symbol Sync Out Polarity Neg Pos

Remarks
This command performs the same function as “HARDware:DGENerator:OUTPut:SPOLarity” on page 195.

HARDware:DGENerator:OUTPut:CPOLarity

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:OUTPut:CPOLarity POSitive|NEGative
:ROUTe:HARDware:DGENerator:OUTPut:CPOLarity?

This command configures the polarity of the TTL output DATA CLOCK OUT signal at the DATA CLK OUT pin on the rear panel AUX I/O connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST
POS

Key Entry
Data Clock Polarity Neg Pos

Remarks
This command performs the same function as “HARDware:DGENerator:OPOLarity:CLOCK” on page 193.

HARDware:DGENerator:OUTPut:DCS[:STATe]

Supported
N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:OUTPut:DCS[:STATe] ON|OFF|1|0
:ROUTe:HARDware:DGENerator:OUTPut:DCS[:STATe]?
System Commands
Route Subsystem (:ROUTe)

This command is used to enable or disable the output DATA OUT, DATA CLK OUT, and SYM SYNC OUT signals from the rear panel AUX I/O connector. Normally, these output signals should be enabled (On). However, disabling these outputs will decrease the spurs that are sometimes present when operating at high symbol rates.

*RST 1

Key Entry DATA/CLK/SYNC Rear Outputs Off On

HARDware:DGENerator:OUTPut:DPOLarity

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:OUTPut:DPOLarity
POSitive|NEGative
:ROUTe:HARDware:DGENerator:OUTPut:DPOLarity?

This command configures the polarity of the TTL output signal at the DATA OUT connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS

Key Entry Data Out Polarity Neg Pos

Remarks This command performs the same function as “HARDware:DGENerator:OPOLarity:DATA” on page 193.

HARDware:DGENerator:OUTPut:SPOLarity

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTe:HARDware:DGENerator:OUTPut:SPOLarity
POSitive|NEGative
:ROUTe:HARDware:DGENerator:OUTPut:SPOLarity?

This command configures the polarity of the TTL input signal at the SYMBOL SYNC connector. POSitive refers to normal logic, while NEGative refers to inverted logic.

*RST POS

Key Entry Symbol Sync Out Polarity Neg Pos

LINE:PTRigger[1]|2:BNC:SOURce

Supported N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657
System Commands
Route Subsystem (:ROUTE)

This command selects a BNC connector to use as an input for the Pattern Trigger In source.

- **BBTRigger1**
 - This choice sets the BB TRIG 1 connector as the Pattern Trigger In source.
- **BBTRigger2**
 - This choice sets the BB TRIG 2 connector as the Pattern Trigger In source.
- **EVENT1**
 - This choice sets the EVENT 1 connector as the Pattern Trigger In source.
- **PTRigger**
 - This choice sets the PAT TRIG connector as the Pattern Trigger In source.
- **NONE**
 - This choice selects no Pattern Trigger In source.
- **:*RST**
 - PTR

Key Entry

Patt Trig Source

[:CONNectors]:BBTRigger[1]|2[:OUTPut]

Supported

N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTE[:CONNectors]:BBTRigger[1]|2[:OUTPut]?

This command selects a marker (M1–M4) signal to be routed to the specified rear panel BB TRIG 1 or BB TRIG 2 connector. AUX29 selects Aux I/O Pin 29. NONE indicates that the BNC connector is, or can be, an input.

- **:*RST**
 - BBTRigger1 - M2
 - BBTRigger2 - None

Key Entry

Route to BB TRIG 1, 2 BNC

[:CONNectors]:PTRig[:OUTPut]

Supported

N5166B/72B with Option 653 or 655, N5182B with Option 656 or 657

:ROUTE[:CONNectors]:PTRig[:OUTPut] M1|M2|M3|M4|AUX29|NONE
:ROUTE[:CONNectors]:PTRig[:OUTPut]?

This command selects a marker (M1–M4) signal to be routed to the rear panel PAT TRIG connector. AUX29 selects Aux I/O Pin 29. NONE indicates that the BNC connector is, or can be, an input.
System Commands
Route Subsystem (:ROUTe)

*RST None
Key Entry Route to PATT TRIG BNC

[:CONNectors]:SOUT

Supported All Models

:ROUTe[:CONNectors]:SOUT
SWEep|SETTled|PVIDeo|PSYNc|SW8757|SRUN|SFDone
:ROUTe:CONNectors:SOUT?

This command selects a signal to be routed to the rear panel SWEEP OUT connector.

SWEep This choice routes the sweep out signal to the SWEEP OUT connector.
SETTled This choice routes the source settled signal to the SWEEP OUT connector.
PVIDeo This choice routes the pulse video signal to the SWEEP OUT connector.
PSYNc This choice routes the pulse sync signal to the SWEEP OUT connector.
SW8757 This choice routes the sweep out signal to the SWEEP OUT connector for compatibility with the 8757D.
SRUN This choice routes the sweep run signal (the pulse at the start of each full sweep) to the SWEEP OUT connector.
SFDone This choice routes the swept function done signal (the pulse at the end of each full swept function) to the SWEEP OUT connector.

*RST SWE
Key Entry Route to Sweep Out BNC

[:CONNectors]:TRIGger1:OUTPut

Supported As indicated

:ROUTe[:CONNectors]:TRIGger1:OUTPut
SWEep|SRUN|SETTled|PVIDeo|PSYNc|LXI|PULSe|TRIGger2|SFDone|NONE
:ROUTe[:CONNectors]:TRIGger1:OUTPut?

This command selects a signal to be routed to the rear panel TRIG 1 connector.

SWEep This choice routes the sweep trigger out signal to the TRIG 1 connector.
System Commands
Route Subsystem (:ROUTE)

SETTled
This choice routes the source settled signal to the TRIG 1 connector.

PVIDeo
This choice routes the pulse video signal to the TRIG 1 connector.

PSYNC
This choice routes the pulse sync signal to the TRIG 1 connector.

LXI
This choice routes the LXI signal to the TRIG 1 connector.

PULSE
This choice routes the pulse sync signal to the TRIG 1 connector.

TRIGger2
This choice routes the TRIG 2 BNC signal to the TRIG 1 connector.

SFDone
This choice routes the swept function done signal (the pulse at the end of each full swept function) to the TRIG 1 connector.

NONE
This choice routes no signal to the <connector> connector, which allows the BNC to be an input.

RST
NONE

Key Entry
Route to Trig 1 BNC

[:CONNectors]:TRIGger[2]:OUTPut

Supported
As indicated

:ROUTE[:CONNectors]:TRIGger[2]:OUTPut
SWEep|SRUN|SETTled|PVIDeo|PSYNC|LXI|PULSe|TRIGger1|SFDone|NONE
:ROUTE[:CONNectors]:TRIGger[2]:OUTPut?

This command selects a signal to be routed to the rear panel TRIG 2 connector.

SWEep
This choice routes the sweep trigger out signal to the TRIG 2 connector.

SETTled
This choice routes the source settled signal to the TRIG 2 connector.

PVIDeo
This choice routes the pulse video signal to the TRIG 2 connector.

PSYNC
This choice routes the pulse sync signal to the TRIG 2 connector.

LXI
This choice routes the LXI signal to the TRIG2 connector.

PULSe
This choice routes the pulse sync signal to the TRIG 2 connector.
System Commands

Route Subsystem (:ROUTe)

<table>
<thead>
<tr>
<th>TRIGger1</th>
<th>This choice routes the TRIG 1 BNC signal to the TRIG 2 connector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFDone</td>
<td>This choice routes the swept function done signal (the pulse at the end of each full swept function) to the TRIG 2 connector.</td>
</tr>
<tr>
<td>NONE</td>
<td>This choice routes no signal to the <connector> connector, which allows the BNC to be an input.</td>
</tr>
<tr>
<td>*RST</td>
<td>SWE</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Route to Trig 2 BNC</td>
</tr>
</tbody>
</table>
Status Subsystem (:STATus)

:OPERation:CONDition?

Supported All Models

:STATus:OPERation:CONDition?

This query returns the decimal sum of the bits for the registers that are set to one and are part of the Standard Operation Status Group. For example, if a sweep is in progress (bit 3), the value 8 is returned.

Range 0 to 32767

Remarks The data in this register is continuously updated and reflects current conditions.

Refer to the **Programming Guide** for more information.

:OPERation:ENABle

Supported All Models

:STATus:OPERation:ENABle <value>

:STATus:OPERation:ENABle?

This command determines which bits in the Standard Operation Event Register will set the Standard Operation Status Summary bit (bit 7) in the Status Byte Register.

The variable `<value>` is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the **Programming Guide** for more information.

:OPERation:NTRansition

Supported All Models

:STATus:OPERation:NTRansition <value>

:STATus:OPERation:NTRansition?

This command determines which bits in the Standard Operation Condition Register will set the corresponding bit in the Standard Operation Event Register when that bit has a negative transition (1 to 0).

The variable `<value>` is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the **Programming Guide** for more information.
System Commands
Status Subsystem (:STATus)

:OPERation:PTRansition

Supported All Models

:STATus:OPERation:PTRansition <value>
:STATus:OPERation:PTRansition?

This command determines which bits in the Standard Operation Condition Register will set the corresponding bit in the Standard Operation Event Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.

:OPERation:SUPPress

Supported All Models

:STATus:OPERation:SUPPress 0|1|ON|OFF
:STATus:OPERation:SUPPress?

This command disables the instrument’s management of the Standard Operation Condition Register and saves 50 us of switching time.

*RST OFF
Remarks Refer to the Programming Guide for more information.

:OPERation[:EVENt]

Supported All Models

CAUTION This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:OPERation[:EVENt]?

This query returns the decimal sum of the bits in the Standard Operation Event Register.

Range 0 to 32767
Remarks The equivalent PTR or NTR filters must be set before the condition register can set the corresponding bit in the event register.

Refer to the Programming Guide for more information.

:PRESet

Supported All Models
System Commands
Status Subsystem (:STATus)

:STATus:PRESet
This command presets all transition filters, enable registers, and error/event queue enable registers.

Remarks Refer to the Programming Guide for more information.

:QUEStionable:BERT:CONDition

Supported N5172B/82B with Option N5180UN7B

:STATus:QUEStionable:BERT:CONDition?
This query returns the decimal sum of the bits in the Data Questionable BERT Condition Register. For example, if no clock signal has been input for more than three seconds during the bit error rate measurement (bit 0), then a value of 1 is returned.

Range 0–32767
Remarks The data in this register is continuously updated and reflects the current conditions.

Refer to the X-Series Signal Generators Programming Guide for more information.

:QUEStionable:BERT:ENABle

Supported N5172B/82B with Option N5180UN7B

:STATus:QUEStionable:BERT:ENABle <value>
:STATus:QUEStionable:BERT:ENABle?
This command determines which bits in the Data Questionable BERT Event Register will set the Data Questionable BERT Summary bit (bit 12) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits you want to enable.

Range 0–32767
Remarks Refer to the X-Series Signal Generators Programming Guide for more information.

:QUEStionable:BERT:NTRansition

Supported N5172B/82B with Option N5180UN7B

:STATus:QUEStionable:BERT:NTRansition <value>
:STATus:QUEStionable:BERT:NTRansition?
This command determines which bits in the Data Questionable BERT Condition Register will set the corresponding bit in the Data Questionable BERT Event Register when that bit has a negative transition (1 to 0).
System Commands
Status Subsystem (:STATus)

The variable <value> is the sum of the decimal values of the bits that you want to enable.

<table>
<thead>
<tr>
<th>Range</th>
<th>0–32767</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td>The data in this register is continuously updated and reflects the current conditions.</td>
</tr>
</tbody>
</table>

Refer to the X-Series Signal Generators Programming Guide for more information.

:QUESTionable:BERT:PTRansition

Supported N5172B/82B with Option N5180UN7B

:STATus:QUESTionable:BERT:PTRansition <value>
:STATus:QUESTionable:BERT:PTRansition?

This command determines which bits in the Data Questionable BERT Condition Register will set the corresponding bit in the Data Questionable BERT Event Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

<table>
<thead>
<tr>
<th>Range</th>
<th>0–32767</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td>Refer to the X-Series Signal Generators Programming Guide for more information.</td>
</tr>
</tbody>
</table>

:QUESTionable:BERT[:EVENt]

Supported N5172B/82B with Option N5180UN7B

CAUTION

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUESTionable:BERT[:EVENt]?

This command returns the decimal value of the sum of the bits in the Data Questionable BERT Event Register.

<table>
<thead>
<tr>
<th>Range</th>
<th>0–32767</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td>Note that the register requires that the equivalent PTR or NTR filters be set before a condition register bit can set a bit in the Event register. Refer to the X-Series Signal Generators Programming Guide for more information.</td>
</tr>
</tbody>
</table>

:QUESTionable:CALibration:CONDition?

Supported All Models
System Commands
Status Subsystem (:STATus)

:STATus:QUEStionable:CALibration:CONDition?
This query returns the decimal sum of the bits in the Data Questionable Calibration Condition Register.

Range 0 to 32767
Remarks The data in this register is continuously updated and reflects the current conditions.
Refer to the Programming Guide for more information.

:QUEStionable:CALibration:ENABle

Supported All Models
:STATus:QUEStionable:CALibration:ENABle <value>
:STATus:QUEStionable:CALibration:ENABle?
This command determines which bits in the Data Questionable Calibration Event Register will set the calibration summary bit (bit 8) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.

:QUEStionable:CALibration:NTRansition

Supported All Models
:STATus:QUEStionable:CALibration:NTRansition <value>
:STATus:QUEStionable:CALibration:NTRansition?
This command determines which bits in the Data Questionable Calibration Condition Register will set the corresponding bit in the Data Questionable Calibration Event Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.
System Commands
Status Subsystem (:STATus)

:QUESTionable:CALibration:PTRansition

Supported All Models

:STATus:QUESTionable:CALibration:PTRansition <value>
:STATus:QUESTionable:CALibration:PTRansition?

This command determines which bits in the Data Questionable Calibration Condition Register will set the corresponding bit in the Data Questionable Calibration Event Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.

:QUESTionable:CALibration[:EVENT]?

Supported All Models

CAUTION

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUESTionable:CALibration[:EVENT]?

This command returns the decimal sum of the bits in the Data Questionable Calibration Event Register.

Range 0 to 32767
Remarks The equivalent PTR or NTR filters must be set before the condition register can set the corresponding bit in the event register.
Refer to the Programming Guide for more information.

:QUESTionable:CONDition?

Supported All Models

:STATus:QUESTionable:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Condition Register. For example, if the ALC Heater Detector is cold (bit 4), a value of 16 is returned.

Range 0 to 32767
Remarks The data in this register is continuously updated and reflects current conditions.
Refer to the Programming Guide for more information.
System Commands
Status Subsystem (:STATus)

:QUESTIONable:ENABle

Supported All Models

:STATus:QUESTIONable:ENABle <value>
:STATus:QUESTIONable:ENABle?

This command determines which bits in the Data Questionable Event Register will set the Data Questionable Status Group Summary bit (bit 3) in the Status Byte Register.

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the *Programming Guide* for more information.

:QUESTIONable:FREQuency:CONDition?

Supported All Models

:STATus:QUESTIONable:FREQuency:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Frequency Condition Register. For example, if the 1 GHz internal reference clock is unlocked (bit 2), a value of 4 is returned.

Range 0 to 32767

Remarks The data in this register is continuously updated and reflects current conditions.

Refer to the *Programming Guide* for more information.

:QUESTIONable:FREQuency:ENABle

Supported All Models

:STATus:QUESTIONable:FREQuency:ENABle <value>
:STATus:QUESTIONable:FREQuency:ENABle?

This command determines which bits in the Data Questionable Frequency Event Register will set the frequency summary bit (bit 5) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the *Programming Guide* for more information.
System Commands
Status Subsystem (:STATus)

:QUESTionable:FREQuency:NTRansition

Supported All Models

:STATus:QUESTionable:FREQuency:NTRansition <value>
:STATus:QUESTionable:FREQuency:NTRansition?

This command determines which bits in the Data Questionable Frequency Condition Register will set the corresponding bit in the Data Questionable Frequency Event Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.

:QUESTionable:FREQuency:PTRansition

Supported All Models

:STATus:QUESTionable:FREQuency:PTRansition <value>
:STATus:QUESTionable:FREQuency:PTRansition?

This command determines which bits in the Data Questionable Frequency Condition Register will set the corresponding bit in the Data Questionable Frequency Event Register when that bit has a positive transition (0 to 1).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.

:QUESTionable:FREQuency[:EVENt]?

Supported All Models

CAUTION

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUESTionable:FREQuency[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Frequency Event Register.

Range 0 to 32767
Remarks The equivalent PTR or NTR filters must be set before the condition register can set the corresponding bit in the event register.

Refer to the Programming Guide for more information.
System Commands
Status Subsystem (:STATus)

:QUEStionable:MODulation:CONDition?

Supported All Models

:STATus:QUEStionable:MODulation:CONDition?

This command returns the decimal sum of the bits in the Data Questionable Modulation Condition Register. For example, if the modulation is uncalibrated (bit 4), a value of 16 is returned.

Range 0 to 32767
Remarks The data in this register is continuously updated and reflects current conditions.

Refer to the Programming Guide for more information.

:QUEStionable:MODulation:ENABle

Supported All Models

:STATus:QUEStionable:MODulation:ENABle <val>
:STATus:QUEStionable:MODulation:ENABle?

This command determines which bits in the Data Questionable Modulation Event Register will set the modulation summary bit (bit 7) in the Data Questionable Condition Register.

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.

:QUEStionable:MODulation:NTRansition

Supported All Models

:STATus:QUEStionable:MODulation:NTRansition <val>
:STATus:QUEStionable:MODulation:NTRansition?

This command determines which bits in the Data Questionable Modulation Condition Register will set the corresponding bit in the Data Questionable Modulation Event Register when that bit has a negative transition (1 to 0).

The variable <val> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767
Remarks Refer to the Programming Guide for more information.
System Commands
Status Subsystem (:STATus)

:QUEStionable:MODulation:PTRansition

Supported All Models

:STATus:QUEStionable:MODulation:PTRansition <val>
:STATus:QUEStionable:MODulation:PTRansition?

This command determines which bits in the Data Questionable Modulation Condition Register will set the corresponding bit in the Data Questionable Modulation Event Register when that bit has a positive transition (0 to 1).

The variable <val> is the sum of the decimal values of the bits that you want to enable.

- **Range** 0 to 32767
- **Remarks** Refer to the *Programming Guide* for more information.

:QUEStionable:MODulation[:EVENt]?

Supported All Models

CAUTION

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUEStionable:MODulation[:EVENt]?

This query returns the decimal sum of the bits in the Data Questionable Modulation Event Register.

- **Range** 0 to 32767
- **Remarks** The equivalent PTR or NTR filters must be set before the condition register can set the corresponding bit in the event register.

 Refer to the *Programming Guide* for more information.

:QUEStionable:NTRansition

Supported All Models

:STATus:QUEStionable:NTRansition <value>
:STATus:QUEStionable:NTRansition?

This command determines which bits in the Data Questionable Condition Register will set the corresponding bit in the Data Questionable Event Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

- **Range** 0 to 32767
- **Remarks** Refer to the *Programming Guide* for more information.
System Commands
Status Subsystem (:STATus)

:QUEStionable:POWer:CONDition?

Supported All Models

:STATus:QUEStionable:POWer:CONDition?

This query returns the decimal sum of the bits in the Data Questionable Power Condition Register. For example, if the RF output signal is unleveled (bit 1), a value of 2 is returned.

Range 0 to 32767

Remarks The data in this register is continuously updated and reflects current conditions.

Refer to the Programming Guide for more information.

:QUEStionable:POWer:ENABle

Supported All Models

:STATus:QUEStionable:POWer:ENABle <value>
:STATus:QUEStionable:POWer:ENABle?

This command determines which bits in the Data Questionable Power Event Register will set the power summary bit (bit 3) in the Data Questionable Condition Register.

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the Programming Guide for more information.

:QUEStionable:POWer:NTRansition

Supported All Models

:STATus:QUEStionable:POWer:NTRansition <value>
:STATus:QUEStionable:POWer:NTRansition?

This command determines which bits in the Data Questionable Power Event Register will set the corresponding bit in the Data Questionable Power Event Register when that bit has a negative transition (1 to 0).

The variable <value> is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the Programming Guide for more information.
System Commands
Status Subsystem (:STATus)

:QUEStionable:POWer:PTRansition

Supported All Models

:STATus:QUEStionable:POWer:PTRansition <value>
:STATus:QUEStionable:POWer:PTRansition?

This command determines which bits in the Data Questionable Power Condition Register will set the corresponding bit in the Data Questionable Power Event Register when that bit has a positive transition (0 to 1).

The variable `<value>` is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the *Programming Guide* for more information.

:QUEStionable:POWer[:EVENT]?

Supported All Models

This query returns the decimal sum of the bits in the Data Questionable Power Event Register.

Range 0 to 32767

Remarks The equivalent PTR or NTR filters must be set before the condition register can set the corresponding bit in the event register.

Refer to the *Programming Guide* for more information.

:QUEStionable:PTRansition

Supported All Models

:STATus:QUEStionable:PTRansition <value>
:STATus:QUEStionable:PTRansition?

This command determines which bits in the Data Questionable Condition Register will set the corresponding bit in the Data Questionable Event Register when that bit has a positive transition (0 to 1).

The variable `<value>` is the sum of the decimal values of the bits that you want to enable.

Range 0 to 32767

Remarks Refer to the *Programming Guide* for more information.
:QUESTionable[:EVENT]?

Supported

All Models

CAUTION

This is a destructive read. The data in the register is latched until it is queried. Once queried, the data is cleared.

:STATus:QUESTionable[:EVENT]?

This query returns the decimal sum of the bits in the Data Questionable Event Register.

<table>
<thead>
<tr>
<th>Range</th>
<th>0 to 32767</th>
</tr>
</thead>
</table>

Remarks

The equivalent PTR or NTR filters must be set before the condition register can set the corresponding bit in the event register.

Refer to the Programming Guide for more information.
System Subsystem (:SYSTem)

:CAPability

Supported All Models

:SYSTem:CAPability?

This query returns the signal generator’s capabilities and outputs the appropriate specifiers:

(RFSOURCE
WITH((AM|FM|PULM|PM)&(FSSWEEP|FLIST)&(PSSWEEP|PLIST)
&TRIGGER&REFERENCE))

This is a list of the SCPI–defined basic functionality of the signal generator and the additional capabilities it has in parallel (a&b) and singularly (a|b).

:DATE

Supported All Models

:SYSTem:DATE <year>,<month>,<day>

:SYSTem:DATE?

This command sets the date as shown in the lower right area of the signal generator display.

<year> This variable requires a four digit integer.

The query returns the date in the following format:

<+year>, <+month>, <+day>

Range <month>: 1 to 12 <day>: 1 to 31

Key Entry Time/Date

:ERRor:CODE[:NEXt]

Supported All Models

:SYSTem:ERRor:CODE[:NEXt]?

This query returns the next error message number from the signal generator SCPI error queue. If there are no error messages, the query returns the following output:

+0

When there is more than one error message, the query will need to be sent for each message.
System Commands
System Subsystem (:SYSTem)

The Keysight MXG deletes the error messages from the front-panel error queue after viewing the last message.

Key Entry	Error Info	View Next Error Message
:ERRor[:NEXt]

Supported All Models

:SYSTem:ERRor[:NEXt]?

This query returns the next error message from the signal generator SCPI error queue. If there are no error messages, the query returns the following output:

```
+0,"No error"
```

When there is more than one error message, the query will need to be sent for each message.

The Keysight MXG deletes the error messages from the front-panel error queue after viewing the last message.

Key Entry	Error Info	View Next Error Message
:ERRor:SCPI[:SYNTax]

Supported All Models

:SYSTem:ERRor:SCPI[:SYNTax] ON|OFF|1|0

:SYSTem:ERRor:SCPI[:SYNTax]?

This command enables or disables the reporting of SCPI syntax errors to the error queue.

The setting ON/1 is persistent through Preset and *RST. It is cleared to OFF/0 by sending SYST:PRES:ALL or cycling the power of the signal generator.

:FILesystem:STORage:EXTernal

Supported All Models

:SYSTem:FILesystem:STORage:EXTernal?

This query checks to see if the external USB port is actively being used for data storage and retrieval on the signal generator. A returned value of 1 means the external USB media is being used for data storage and retrieval. For more information on non–volatile storage media settings, refer to :FILesystem:STORage:EXTernal:PATH, :FILesystem:STORage:TYPE and :FILesystem:STORage:TYPE:AUTO commands.
System Commands
System Subsystem (:SYSTem)

:FIlesystem:STORage:EXTernal:PATH

Supported All Models

:SYSTem:FIlesystem:STORage:EXTernal:PATH <"USB media root path">
:SYSTem:FIlesystem:STORage:EXTernal:PATH?

This command selects the directory storage path on the USB media. For more information, refer to the signal generator’s softkey Help. For more information on non–volatile storage media settings, refer to :FIlesystem:STORage:EXTernal, :FIlesystem:STORage:TYPE and :FIlesystem:STORage:TYPE:AUTO commands.

Remarks When reading and writing files from or to the USB media, different memory subsystem file types are marked by having a particular extender on the filename. Refer to Table USB Media Path Options on page 215.

Files with unrecognized extenders are treated as binary (.bin) files.

<table>
<thead>
<tr>
<th>USB Media Path Options</th>
<th>Extender</th>
<th>File Type</th>
<th>Memory Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>.waveform</td>
<td>waveform</td>
<td>waveform</td>
<td>NVWFM</td>
</tr>
<tr>
<td>.markers</td>
<td>waveform marker</td>
<td>waveform marker</td>
<td>NVMKR</td>
</tr>
<tr>
<td>.header</td>
<td>waveform header</td>
<td>waveform header</td>
<td>NVHDR</td>
</tr>
<tr>
<td>.state</td>
<td>instrument state</td>
<td>instrument state</td>
<td>STATE</td>
</tr>
<tr>
<td>.list</td>
<td>list sweep</td>
<td>list sweep</td>
<td>LIST</td>
</tr>
<tr>
<td>.userflat</td>
<td>user flatness</td>
<td>user flatness</td>
<td>USERFLAT</td>
</tr>
<tr>
<td>.seq</td>
<td>waveform sequence</td>
<td>waveform sequence</td>
<td>SEQ</td>
</tr>
</tbody>
</table>

All others All others BIN
System Commands
System Subsystem (:SYSTem)

:FIleSystem:STORage:TYPE

Supported All Models

:SYSTem:FIleSystem:STORage:TYPE INTernal|EXTernal
:SYSTem:FIleSystem:STORage:TYPE?

This command selects the non–volatile storage location on the signal generator. For more information on non–volatile storage media settings, refer to :FIleSystem:STORage:EXTernal, :FIleSystem:STORage:EXTernal:PATH and :FIleSystem:STORage:TYPE:AUto commands.

Key Entry Storage Type Int Ext Auto

Example

:SYST:FIL:STOR:TYPE EXT

The preceding example selects the external USB port as the location for non-volatile file storage on the signal generator.

:FIleSystem:STORage:TYPE:AUTO

Supported All Models

:SYSTem:FIleSystem:STORage:TYPE:AUTO ON|OFF|1|0
:SYSTem:FIleSystem:STORage:TYPE:AUTO?

This command enables the signal generator to auto–detect when the USB media is connected. When AUTO (ON|1) is selected, the file system uses the USB media, if available. When the USB media is removed, the file system uses the internal media. For more information, refer to the signal generator’s softkey Help. For more information on non–volatile storage media settings, refer to :FIleSystem:STORage:EXTernal, :FIleSystem:STORage:EXTernal:PATH and :FIleSystem:STORage:TYPE commands.

*RST 1

Key Entry Storage Type Int Ext Auto

Example

:SYST:FIL:STOR:TYPE:AUTO ON

The preceding example selects AUTOmatic as the non–volatile storage setting and the signal generator will detect if the external USB port has a memory storage device connected.

Remarks When the USB media is removed, the USB non–volatile user file system effectively does not exist.

:IDN

Supported All Models

:SYSTem:IDN "string"
System Commands
System Subsystem (:SYSTem)

This command modifies the identification string that the *IDN? query returns. Sending an empty string sets the query output of *IDN? to its factory shipped setting. The maximum string length is 72 characters.

Remarks
Modification of the *IDN? query output enables the signal generator to identify itself as another signal generator when used as a replacement.

The display diagnostic information, shown by pressing the **Diagnostic Info** softkey, is not affected by this command.

:LANGuage

Supported
All

**:SYSTem:LANGuage
"SCPI" | "COMP" | "8648" | "E4428C" | "E4438C" | "E8257D" | "E8267D" | "E8663B" | "E8247C" | "E8257C" | "E8267C" | "N5181A" | "N5182A" | "E442XB" | "E443XB" | "E8241A" | "E8244A" | "E8251A" | "E8254A" | "SMU200A" | "SMA100A" | "SML" | "SMV" | "SMR" | "SMF100A" | "MG3691B" | "MG3692B" | "MG3693B" | "MG3694B" | "3410" | "8360" | "8371" | "83732" | "83752" | "8340" | "8644" | "8662" | "8663" | "8664" | "8665"

:SYSTem:LANGuage?
This command sets the remote language for the signal generator.

- **SCPI**
 This choice provides compatibility for SCPI commands.

- **COMP**
 This choice provides compatibility for the 8656B, 8657A/B signal generator which is supported only through the GPIB interface.

- **8648**
 This choice provides compatibility for the 8648A/B/C/D signal generator which is supported only through a GPIB interface.

- **E4428C** or **E4438C**
 This choice provides compatibility for the E4428C or E4438C signal generators which are supported through a GPIB, LAN, or USB interface.

- **E8257D**, **E8267D**, or **E8663B**
 This choice provides compatibility for the E8257D, E8267D, or E8663B signal generators which are supported through a GPIB, LAN, or USB interface.

- **E8247C**, **E8257C**, or **E8267C**
 This choice provides compatibility for the E8247C, E8257C, or E8267C signal generators which are supported through a GPIB, LAN, or USB interface.
System Subsystem (:SYSTem)

N5181A or N5182A This choice provides compatibility for the N5181A or N5182A signal generators which are supported through a GPIB, LAN, or USB interface.

E442XB or E443XB This choice provides compatibility for the E442XB or E443XB signal generators which are supported through a GPIB, LAN, or USB interface.

E8241A or E8244A This choice provides compatibility for the 8648A/B/C/D signal generator which is supported through a GPIB, LAN, or USB interface.

E8251A or E8254A This choice provides compatibility for the E8251A or E8254A signal generators which are supported through a GPIB, LAN or USB interface.

SMU200A, or SMATE200A, or SMJ100A, or SMIQ, or SML, or SMV, or SMR, or SMF100A This choice provides compatibility for the Rohde and Schwarz SMU200A, SMATE200A, SMJ100A, SMIQ, SML, SMV, SMR, or SMF100A signal generators which are supported through a GPIB, LAN or USB interface.

MG3691B, or MG3692B, or MG3693B, or MG3694B This choice provides compatibility for the Anritsu MG3691B, MG3692B, MG3693B, or MG3694B signal generators which are supported through a GPIB, LAN or USB interface.

3410 This choice provides compatibility for the Aeroflex 3410 series signal generator, which is supported through a GPIB, LAN, or USB interface.

8360 This choice provides compatibility for 8360 series signal generators.

83712, or 83732, or 83752 This choice provides compatibility for the 83712A/B, 83732A/B, or 83752A/B signal generator.
System Commands

System Subsystem (:SYSTem)

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>SCPI</th>
<th>SMJ100A</th>
<th>8648A/B/C/D</th>
<th>E8257D, E8267D, E8663B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SML</td>
<td>3410 Series</td>
<td>8656B, 8657A/B</td>
<td>E8241A, E8244A, E8251A, E8264A</td>
<td></td>
</tr>
<tr>
<td>SMV</td>
<td>E4428C, E4438C</td>
<td>SMU200A, SMATE200A</td>
<td>8662A</td>
<td></td>
</tr>
<tr>
<td>SMIQ</td>
<td>E442xB, E443xB</td>
<td>E8247C, E8257C, E8267C</td>
<td>8663A</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.*
System Commands
System Subsystem (:SYStem)

:LICense:AUS[:DATE]?

Supported All Models

This query retrieves the latest expiration date of the Keysight Upgrade Service license.

:LICense:[FPACK]:WAVeform:ADD

: SYSTem:LICense:[FPACK]:WAVeform:ADD "filename"

This command assigns a “filename” to the next available waveform slot. Filename should be just the filename, no path information. The file must reside in a non–volatile waveform memory (NVWFM) before it can be licensed.

Key Entry Add Waveform
Key Path Mode > Dual ARB > More 2 of 2 > Waveform Licensing > Add Waveform To Next Available Slot > Add Waveform

:LICense:[FPACK]:WAVeform:CLEar

Supported All Models

:SYSTem:LICense[:FPACK]:WAVeform:CLEar <slot_number>

This command clears the file currently assigned to the license waveform license slot. The specified slot cannot be locked.

Key Entry Clear Waveform From Slot
Key Path Mode > Dual ARB > More 2 of 2 > Waveform Licensing > Clear Waveform From Slot

:LICense:[FPACK]:WAVeform:FREE?

Supported All Models

:SYSTem:LICense[:FPACK]:WAVeform:FREE?

This queries the number of available slots open for waveforms to be licensed.

:LICense:[FPACK]:WAVeform:IDList?

Supported All Models

:SYSTem:LICense[:FPACK]:WAVeform:IDList?

This query returns a comma separated list of the licensed waveform IDs. The ID of a waveform in the instrument can be compared to this list to see if it is licensed.
System Commands
System Subsystem (:SYSTem)

:LICense:[FPACk]:WAVEform:LOCK

Supported All Models

:`SYSTem:LICense[:FPACk]:WAVEform:LOCK slot_number`

This command locks the file currently assigned to the waveform license slot specified by slot number. Once the slot is locked it can no longer be modified.

Key Entry Lock Waveform In Slot

Key Path Mode > Dual ARB > More 2 of 2 > Waveform Licensing > Lock Waveform In Slot >

:LICense:[FPACk]:WAVEform:REPLace

Supported All Models

:`SYSTem:LICense[:FPACk]:WAVEform:REPLace slot_number, "filename"

This command will overwrite the contents of the selected slot with the “filename”, providing the slot is in the trial period. If the slot is locked the command returns an error.

Key Entry Replace Waveform In Slot

Key Path Mode > Dual ARB > More 2 of 2 > Waveform Licensing > Replace Waveform In Slot >

:LICense:[FPACk]:WAVEform:STATus?

Supported All Models

:`SYSTem:LICense[:FPACk]:WAVEform:STATus? slot_number`

This query returns the same values that are indicated in the Status column display.

:LICense:[FPACk]:WAVEform:USED?

Supported All Models

:`SYSTem:LICense:FPACk:WAVEform:USED?`

This query returns the number of slots used by licensed waveforms.

:LICense:INSTall

Supported All Models

:`SYSTem:LICense:INSTall
<license_line>|<block_of_license_lines>`
System Commands
System Subsystem (:SYSTem)

This command installs the licenses into the signal generator.

<table>
<thead>
<tr>
<th><license_line></th>
<th>This choice installs a license line.</th>
</tr>
</thead>
<tbody>
<tr>
<td><block_of_license_lines></td>
<td>This choice installs a block of license lines.</td>
</tr>
</tbody>
</table>

Example

:SYST:LIC:INST "FEATURE 403 aspk 0 permanent 0 389D66FB107E9B02 HOSTID=N5182B,US00000068"

The preceding example installs license "FEATURE 403 aspk 0 permanent 0 389D66FB107E9B02 HOSTID=N5182B,US00000068", into the signal generator.

Example

:SYST:LIC:INST #210Qaz37pY9oL

The preceding is an example of the syntax for installing a block of licenses into the signal generator. For more on handling block data, refer to the Programming Guide.

NOTE

With firmware version ≥ B.01.75, the actual 'FEATURE' number (option number) may vary from three-digits to eight-digits.

NOTE

The data, Qaz37pY9oL, in the above command are not valid and are shown for example purposes only. Typically, ASCII characters representing data are unprintable.

For additional information on downloading and installing licenses for applications, refer to the Keysight License Manager at http://www.keysight.com/find/LicenseManager.

:LICense:LIST

Supported All Models

:SYSTem:LICense:LIST?

This query provides a listing of the current licenses installed on the signal generator.

:LICense:REMove

Supported All Models

:SYSTem:LICense:REMove <license_line>

This command removes a single license line.

Example

To remove a license line:
System Commands
System Subsystem (:SYSTem)

:SYST:LIC:REM "FEATURE 403 aspk 0 permanent 0 389D66FB107E9B02 HOSTID=N5182B,US00000068"

The preceding example removes a license "FEATURE 403 aspk 0 permanent 0 389D66FB107E9B02 HOSTID=N5182B,US00000068", from the signal generator.

NOTE

With firmware version ≥ B.01.75, the actual 'FEATURE' number (option number) may vary from three-digits to eight-digits.

Remarks
To remove multiple license lines: Repeat the process for removing a single license for each license line to be removed.

:LOG:SCPI ON/OFF/1/0

Supported All Models

:SYSTem:LOG:SCPI ON|OFF|1|0

This command toggles the state of SCPI logging. When toggled ON, a copy of every subsequent SCPI command executed will be placed in the log. Toggling the state to OFF suspends the logging, and toggling back to ON resumes the logging. Pressing the front-panel **Clear SCPI Log** softkey will clear the log.

Remarks
This log information is stored in a file the BIN directory called SCPI_LOG.TXT. You can use FTP to download the file from the instrument.

:OPT

Supported All Models

:SYSTem:OPT "string"

This command modifies the option string that the *OPT? query returns. Sending an empty string sets the query output of *OPT? to its factory shipped setting. The maximum string length is 72 characters.

Remarks
Modification of the *OPT? query output enables the signal generator, with a set of options, to identify itself as another signal generator when used as a replacement. The display diagnostic information, shown by pressing the **Diagnostic Info** softkey, is not affected by this command.
System Commands
System Subsystem (:SYSTem)

:PDOWn

Supported All Models

:SYSTem:PDOWn

This command turns off the instrument.

:PMETer[1]|2:CHANnel

Supported All Models

:SYSTem:PMETer[1]|2:CHANnel A|B

:SYSTem:PMETer[1]|2:CHANnel?

This command selects the external power meter channel that will be used by each channel’s power meter measurement. The query returns the selected channel.

Key Entry External Power Meter Channel A B

Default Channel A

Supported All Models

This command enters a VXI–11 name for a power meter that is being controlled by the signal generator for power meter measurements. If connecting directly to the power meter enter the name as specified on your power meter documentation. If connecting through a LAN–GPIB gateway, enter the SICL address of the power meter.

Key Entry PM VXI–11 Device Name

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

Supported All Models

This command sets the internet protocol (IP) address for a power meter that is controlled by the signal generator for power meter measurements. If connecting to a GPIB power meter through a LAN–GPIB gateway, this command sets the IP address of the gateway.
System Commands
System Subsystem (:SYSTem)

Key Entry | Power Meter IP Address
Remarks

The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
Ensure that the power meter IP address is different from the signal generator address.

Supported All Models

This command sets the IP port on the power meter that is controlled by the signal generator.

Key Entry | Power Meter IP Port

5025 Standard mode. The command enables standard mode for simple programming.

5024 Telnet mode. The command enables the telnet SCPI service for programming.

For firmware versions <A.01.51, the default telnet mode is 5023. For firmware versions A.01.51 and greater, telnet port 5023 is still available for backwards compatibility.

Remarks

The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
For more information on standard mode and telnet SCPI mode, refer to the Programming Guide.

Supported All Models

SOCKets|SOCKETS|VXI11|USB

This command sets the type of control connection for communication with the external power meter for power meter measurements. The query returns the connection type.

Key Entry | Connection Type

SOCK or SOCKETS The command enables the power meter for sockets LAN control through the signal generator.
System Commands
System Subsystem (:SYSTem)

VXI11 The command enables the power meter for VXI–11 control through the signal generator. A power meter with GPIB can be controlled through VXI–11 using a LAN–GPIB gateway.

USB The command enables the power meter for USB control through the signal generator.

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:PMETer[1]|2:COMMunicate:USB:DEVice

Supported All Models

This command selects the USB device to be used for power meter measurements for Channel A or B. The query returns the USB device identification.

Key Entry Connection Type > USB Devise

Supported All Models

This queries for the list of all connected USB devices.

:PMETer[1]|2:MEASure?

Supported All Models

:SYSTem:PMETer[1]|2:MEASure?

This query starts the measurement and returns the result for Channel A or B.

:PMETer[1]|2:SENSe:AVERage:COUNt

Supported All Models

This command sets the averaging count value for Channel A or B when automatic averaging is disabled (i.e. manual mode.) The query returns an integer.

Range: 1 to 2048

Key Entry Averaging Count
System Commands
System Subsystem (:SYSTem)

Default: 1024

:PMETer[1]|2:SENSe:AVERage:COUNt:AUTO

Supported All Models
:SYSTem:PMETer[1]|2:SENSe:AVERage:COUNt:AUTO ON|OFF|1|0

This command enables or disables the automatic averaging mode for Channel A or B. The query returns the state of the automatic averaging mode.

Key Entry Averaging Mode
Default: Auto

:PMETer[1]|2:SENSe:AVERage[:STATe]

Supported All Models
:SYSTem:PMETer[1]|2:SENSe:AVERage[:STATe] ON|OFF|1|0
:SYSTem:PMETer[1]|2:SENSe:AVERage[:STATe]?

This command enables or disables averaging for Channel A or B. The query returns the state of averaging.

Key Entry Averaging Mode

Supported All Models

This command sets channel frequency for channel A or B. The query returns the value.

Key Entry Channel Frequency
Default 50 MHz
System Commands
System Subsystem (:SYSTem)

:PMETer[1]|2:UNIT:POWer

Supported All Models

This command selects the power measurement units for Channel A or B. The query returns that value.

Key Entry Measurement Units dBm W

:PMETer[1]|2[:STATe]

Supported All Models
:SYSTem:PMETer[1]|2[:STATe] ON|OFF|1|0
:SYSTem:PMETer[1]|2[:STATe]?

This command enables or disables the power meter measurements for channel A or B.

Key Entry Averaging Mode > Off

:PMETer:PASSthrough

Supported All Models
:SYSTem:PMETer[1]|2:PASSthrough <"scpiCommand">

Provides a SCPI pass-through method of accessing attached power meters. In this mode, the MXG exposes commands that encapsulate power meter commands, allowing commands and query responses to pass through the MXG.

Remarks It is not possible to use the Power Meter Display and pass-through on the same channel at the same time.

:PMETer:PASSthrough:ENABle

Supported All Models
:SYSTem:PMETer[1]|2:PASSthrough:ENABle 0|1

This command enables/disables the pass-through feature.

Example
SYST:PMET1:PASS:ENAB

The preceding example enables the pass-through feature.
System Commands
System Subsystem (:SYSTem)

Remarks
It is not possible to use the Power Meter Display and pass-through on the same channel at the same time.

:PMETer:PASSt through:TI Meout

Supported All Models
:SYSTem:PMETer[1]|2:PASSt through:TI Meout <value>
:SYSTem:PMETer[1]|2:PASSt through:TI Meout?
This command sets the communication timeout value (seconds = S, milliseconds = MS, microseconds = US).

Example
SYST:PMET1:PASS:TIMEOUT 60S
The preceding example sets the timeout to 60 seconds.

Remarks
It is not possible to use the Power Meter Display and pass-through on the same channel at the same time.

:PMETer:SENSe:CORRection:GAIN2[:INPut][:MAGNitude]

Supported All Models
:SYSTem:PMETer:SENSe:CORRection:GAIN2[:INPut][:MAGNitude]
This command sets gain for channel A or B. The query returns the value.
*RST 0
Range -100 to 100 dB, but ultimately depends the range supported by the power meter/sensor

:PMETer:SENSe:FREQuency[:CW]:COUPling[:STATe]

Supported All Models
:SYSTem:PMETer:SENSe:FREQuency[:CW]:COUPling[:STATe]
This command sets the channel frequency for channel A or B. The channel frequency can be set explicitly (fixed frequency) or coupled to the front panel displayed frequency.
The coupling to the displayed frequency can be expressed as
FreqCh = FreqDisplayed * Multiplier + Offset
*RST OFF|0
Range ON|1 and OFF|0
System Commands
System Subsystem (:SYSTem)

:PMETer:SENSe:FREQuency[:CW]:MULTiplier

Supported All Models

:SYSTem:PMETer:SENSe:FREQuency[:CW]:MULTiplier

Sets the channel frequency for channel A or B.

The channel frequency can be set explicitly (fixed frequency) or coupled to the front panel displayed frequency.

The coupling to the displayed frequency can be expressed as

\[FreqCh = FreqDisplayed \times Multiplier + Offset \]

*RST 1.0

Range -1000 to 1000

:PMETer:SENSe:FREQuency[:CW]:OFFSet

Supported All Models

:SYSTem:PMETer:SENSe:FREQuency[:CW]:OFFSet

Sets the channel frequency for channel A or B.

The channel frequency can be set explicitly (fixed frequency) or coupled to the front panel displayed frequency.

The coupling to the displayed frequency can be expressed as

\[FreqCh = FreqDisplayed \times Multiplier + Offset \]

*RST 0

Range -200 GHz to 200 GHz

:PON:TYPE

Supported All

:SYSTem:PON:TYPE PRESet|LAST|USER

:SYSTem:PON:TYPE?

This command sets the defined conditions for the signal generator at power on.

PRESet This choice sets the conditions to factory- or user-defined as determined by the choice for the preset type.

LAST This choice retains the settings at the time the signal generator was last powered down.

USER This choice sets the power on state to be the user preset value.
System Commands
System Subsystem (:SYSTem)

Key Entry

Power On Last Preset

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

`:PRESet`

NOTE
If this SCPI command is not responding as expected, use the E4428C/38C compatibility command: :SYST:PRESet:TYPE:NORMal to return the front-panel Preset key to its factory default functionality.

Supported

All

SYSTem:PRESet

This command returns the signal generator to a set of defined conditions. It is equivalent to pressing the front-panel Preset key.

Key Entry

Preset

Remarks
The defined conditions are either factory– or user-defined.

Table 3-1 Preset SCPI Commands Overview

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>This IEEE 488.2 Common Command uses the factory preset settings for the instrument preset.</td>
<td>Optimized for automated testing</td>
</tr>
<tr>
<td>:SYSTem:PRESet:PERSistent</td>
<td>Only the instrument's persistent parameters are returned to factory default value.</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:PON:TYPE:PRESet</td>
<td>Sets the power on state (PON) to be the same as the front-panel green Preset key, or the last state, or to the user state.</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:PRESet</td>
<td>Performs the same preset as currently set for the front-panel green Preset key.</td>
<td></td>
</tr>
<tr>
<td>:SYSTem:PRESet:USER:SAVE</td>
<td>Saves the current instrument state as the user preset state.</td>
<td></td>
</tr>
</tbody>
</table>

`:PRESet:ALL`

Supported

All
System Commands
System Subsystem (:SYSTem)

:SYSTem:PRESet:ALL

This command sets all states of the signal generator back to their factory default settings, including states that are not normally affected by signal generator power–on, preset, or *RST.

:PRESet:LANGuage

Supported All

:SYSTem:PRESet:LANGuage

"SCPI" | "COMP" | "8648" | "E4428C" | "E4438C" | "E8257D" | "E8267D" | "E8663B" | "E8247C" | "E8257C" | "E8267C" | "N5181A" | "N5182A" | "E442XB" | "E443XB" | "E8241A" | "E8244A" | "E8251A" | "E8254A" | "SMU200A" | "SMAT E200A" | "SMJ100A" | "SMIQ" | "SML" | "SMV" | "SMR" | "SMF100A" | "MG3691B" | "MG3692B" | "MG3693B" | "MG3694B" | "3410" | "8360" | "8372" | "83732" | "83752" | "8340" | "8644" | "8662" | "8663" | "8664" | "8665"

:SYSTem:PRESet:LANGuage?

This command sets the remote language that is available when the signal generator is preset.

SCPI This choice provides compatibility for SCPI commands.
COMP This choice provides compatibility for the 8656B, 8657A/B signal generator which is supported only through the GPIB interface.
8648 This choice provides compatibility for the 8648A/B/C/D signal generator which is supported only through a GPIB interface.
E4428C or E4438C This choice provides compatibility for the E4428C or E4438C signal generators which are supported through a GPIB, LAN, or USB interface.
E8257D, or E8267D, or E88663B This choice provides compatibility for the E8257D, or E8267D or E8663B signal generators which are supported through a GPIB, LAN, or USB interface.
E8247C, or E8257C, or E8267C This choice provides compatibility for the E8247C, E257C, or E8267C signal generators which are supported through a GPIB, LAN, or USB interface.
N5181A or N5182A This choice provides compatibility for the N5181A or N5182A signal generators which are supported through a GPIB, LAN, or USB interface.
System Commands
System Subsystem (:SYSTem)

E442XB or E443XB
This choice provides compatibility for the E442XB or E443XB signal generators which are supported through a GPIB, LAN, or USB interface.

E8241A or E8244A
This choice provides compatibility for the 8648A/B/C/D signal generator which is supported through a GPIB, LAN, or USB interface.

E8251A or E8254A
This choice provides compatibility for the E8251A or E8254A signal generators which are supported through a GPIB, LAN, or USB interface.

SMU200A, or SMATE200A, or SMJ100A, or SMIQ, or SML, or SMV, or SMR, or SMF100A
This choice provides compatibility for the Rohde and Schwartz SMU200A, SMATE200A, SMJ100A, SMIQ, SML, SMV, SMR, or SMF100A signal generators which are supported through a GPIB, LAN, or USB interface.

MG3691B, or MG3692B, or MG3693B, or MG3694B
This choice provides compatibility for the Anritsu MG3691B, MG3692B, MG3693B, or MG3694B signal generators which are supported through a GPIB, LAN, or USB interface.

3410
This choice provides compatibility for the Aeroflex 3410 signal generator which are supported through a GPIB, LAN, or USB interface.

8360
This choice provides compatibility for 8360 series signal generators.

83712, or 83732, or 83752
This choice provides compatibility for the 83712A/B, 83732A/B, or 83752A/B signal generator.

8340
This choice provides compatibility for the 8340A/B signal generator.

8644
This choice provides compatibility for the 8644A/B signal generator.
System Commands
System Subsystem (:SYSTem)

8662, or
8663, or
8664, or
8665
This choice provides compatibility for the 8662A, 8663A, 8664A, or 8665A signal generator.

*RST
"SCPI"

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>SCPI</th>
<th>SMJ100A</th>
<th>8648A/B/C/D</th>
<th>E8257D, E8267D, E8663B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SML</td>
<td>3410 Series</td>
<td>8656B, 8657A/B</td>
<td>E8241A, E8244A, E8251A, E8264A</td>
<td></td>
</tr>
<tr>
<td>SMV</td>
<td>E4428C, E4438C</td>
<td>SMU200A, SMATE200A</td>
<td>8662A</td>
<td></td>
</tr>
<tr>
<td>SMIQ</td>
<td>E442xB, E443xB</td>
<td>E8247C, E8257C, E8267C</td>
<td>8663A</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
After setting a new preset language and presetting the instrument, some defaults may change to the preset values of the instrument indicated by the remote language.

:PRESet:PERSistent
Supported All

This command sets the states that are not affected by signal generator power–on, preset, or *RST to their factory default settings.

Key Entry Restore System Settings to Default Values
Remarks For a list of the persistent instrument factory default values refer to the Programming Guide.

:PRESet:TYPE
Supported All

This command defines the Preset key as either factory preset or as the user preset saved in memory.

NORMal This choice uses the factory–defined defaults when Preset is pressed.
System Commands
System Subsystem (:SYSTem)

COMP
This choice uses the user–defined preset saved in the instrument when Preset is pressed. Refer to :PRESet:USER and :PRESet:USER:SAVE commands.

Key Entry Preset

Remarks This command will return an error, if the USER parameter is sent without a user preset saved in the instrument.

:PRESet:USER

Supported All

:SYSTem:PRESet:USER
This command presets the signal generator to the user’s saved state.

Key Entry Execute User Preset

Remarks This command presets the signal generator to the saved user–defined state.

:PRESet:USER:SAVE

Supported All

This command saves your user–defined preset conditions to a state file.

Key Entry Save User Preset

Remarks Only one user–defined preset file can be saved. Subsequent saved user–defined preset files will overwrite the previously saved file.

:SANalyzer:COMMunicate:LAN:DEVice

Supported All Models

:SYSTem:SANalyzer:COMMunicate:LAN:DEVice <deviceName>
:SYSTem:SANalyzer:COMMunicate:LAN:DEVice?
This command enters a VXI–11 name for a signal analyzer that is being controlled by the signal generator for making spectral measurements. If connecting directly to the signal analyzer, enter the name as specified on your signal analyzer documentation. If connecting through a LAN–GPIB gateway, enter the SICL address of the signal analyzer.

Key Entry SA VXI–11 Device Name
Remarks

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.

:SAnalyze:COMMunicate:LAN:IP

Supported

All Models

:SYSTem:SAnalyze:COMMunicate:LAN:IP?

This command sets the internet protocol (IP) address for the spectrum analyzer that is controlled by the signal generator for making spectral measurements. If connecting to a GPIB signal analyzer through a LAN–GPIB gateway, this command sets the IP address of the gateway.

Key Entry

Signal Analyzer IP Address

Remarks

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.

Ensure that the signal analyzer IP address is different from the signal generator address.
System Commands
System Subsystem (:SYSTem)

:SANalyzer:COMMunicate:LAN:PORT

Supported All Models

:SYSTem:SANalyzer:COMMunicate:LAN:PORT <portNum>
:SYSTem:SANalyzer:COMMunicate:LAN:PORT?

This command...
This command sets the IP port on the signal analyzer that is controlled by the signal generator.

Key Entry Signal Analyzer IP Port
5025 Standard mode. The command enables standard mode for simple programming.
5024 Telnet mode. The command enables the telnet SCPI service for programming.

For firmware versions <A.01.51, the default telnet mode is 5023. For firmware versions A.01.51 and greater, telnet port 5023 is still available for backwards compatibility.

Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
For more information on standard mode and telnet SCPI mode, refer to the Programming Guide.

:SANalyzer:COMMunicate:TYPE

Supported All Models

:SYSTem:SANalyzer:COMMunicate:TYPE SOCKets|SOCKETS|VXI11
:SYSTem:SANalyzer:COMMunicate:TYPE?

This command sets the type of control connection for communication with the external signal analyzer for spectral measurements. The query returns the connection type.

Key Entry Connection Type
SOCK or SOCKETS The command enables the signal analyzer for sockets LAN control through the signal generator.
VXI11 The command enables the signal analyzer for VXI–11 control through the signal generator. A signal analyzer with GPIB can be controlled through VXI–11 using a LAN–GPIB gateway.
USB The command enables the signal analyzer for USB control through the signal generator.
System Commands
System Subsystem (:SYSTem)

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:SECurity:DISPlay

Supported
All Models with Option 006

:SYSTem:SECurity:DISPlay ON|OFF|1|0
:SYSTem:SECurity:DISPlay?

This command enables or disables the secure display mode.

ON (1) This selection turns the signal generator display back on, showing the current settings. Cycling the signal generator power also restores the display. Note that the current instrument state may be retained across reboots depending on the power-on configuration choice. See :PON:TYPE command for information on the power-on choices available.

OFF (0) This selection blanks the signal generator’s display, hiding the settings and disabling the front-panel keys. While in this mode, the display shows *** SECURE DISPLAY ACTIVATED ***.

For more information about security functions, refer to the User's Guide.

Example
:SYST:SEC:DISP OFF
The preceding example enables the secure display mode.

*RST 1

Range N/A

Key Entry Activate Security Display

:SECurity:DISPlay:RESTricted

Supported All Models

:SYSTem:SECurity:DISPlay:RESTricted ON|OFF|1|0
:SYSTem:SECurity:DISPlay:RESTricted?

This command enables or disables the secure restricted display mode. See also, :ANNotation:AMPLitude[:STATe] and :ANNotation:FREQuency[:STATe] commands.

ON (1) This selection turns on the secure restricted display, blanking the frequency. Also, the keys that access the frequency, sweep, and user flatness information are disabled.
System Commands
System Subsystem (:SYSTem)

OFF (0) This selection turns off the secure restricted display mode, allowing the signal generator's display to show the current frequency.

For more information about security functions, refer to the User's Guide.

Example

:SYST:SEC:DISP:REST ON

The preceding example enables the security restricted display mode.

*RST 0

Key Entry Activate Restricted Display

:SECurity:ERASeall

Supported All Models with Option 006

:SYSTem:SECurity:ERASeall

This command removes all user files, flatness correction files, and baseband generator files. In addition, all table editor files are returned to their original factory values.

This command differs from the :DELete:ALL command, which does not reset table editors to factory values. For more information about security functions, refer to the User's Guide.

Key Entry Erase All

:SECurity:SANitize

Supported All Models with Option 006

:SYSTem:SECurity:SANitize

This command removes all user files, table editor files values, flatness correction files, and baseband generator files. The memory is then overwritten with a sequence of data as described below. For more information about security functions, refer the User's Guide.

SrAM All addressable locations will be overwritten with random characters.

HARD DISK All addressable locations will be overwritten with a single character and then a random character.

FLASH MEMORY The flash blocks will be erased.

Key Entry Erase and Sanitize All
System Commands
System Subsystem (:SYSTem)

:SSAVer:DELa_y

Supported All
:SYSTem:SSAVer:DELa_y <value>
:SYSTem:SSAVer:DELa_y?

This command sets the amount of time before the display light or display light and text is switched off. This will occur if there is no input through the front panel during the delay period.

The variable <value> is a whole number measured in hours.

Range 1 to 12
Key Entry Screen Saver Delay:
Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.
Refer to :SSAVer:MODE command for selecting the screen saver mode.

:SSAVer:MODE

Supported All
:SYSTem:SSAVer:MODE LIGHT TEXT
:SYSTem:SSAVer:MODE?

This command toggles the screen saver mode between light only or light and text.

LIGHT This choice enables only the light to turn off during the screen saver operation while leaving the text visible on the darkened screen.

TEXT This choice enables both the display light and text to turn off during the screen saver operation.

Key Entry Screen Saver Mode
Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:SSAVer:STATe

Supported All
:SYSTem:SSAVer:STATe ON OFF 1 0
:SYSTem:SSAVer:STATe?

This command enables or disables the display screen saver.

Key Entry Screen Saver Off On
System Commands
System Subsystem (:SYSTem)

Remarks
The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

:TIME

Supported All

:SYSTem:TIME <hour>,<minute>,<second>
:SYSTem:TIME?

This command sets the time displayed in the lower right area of the signal generator's display.

Range
<hour>: 0 to 23 <minute>: 0 to 59 <second>: 0 to 59

Key Entry
Time/Date

:VERSion

Supported All

:SYSTem:VERSion?

This command returns the SCPI version number with which the signal generator complies.
Trigger Subsystem

:ABORt

Supported All

:ABORt

This command causes the List or Step sweep in progress to abort. If INIT:CONT[:ALL] is set to on, the sweep will immediately re-initiate. The pending operation flag affecting *OPC, *OPC?, and *WAI will undergo a transition once the sweep has been reset.

:INITiate:CONTinuous[:ALL]

Supported All

:INITiate:CONTinuous[:ALL] ON|OFF|1|0

:INITiate:CONTinuous[:ALL]?

This command selects either a continuous or single list or step sweep. Execution of this command does not affect a sweep in progress.

ON (1) This choice selects continuous sweep where, after the completion of the previous sweep, the current sweep will restart automatically or wait until the appropriate trigger source is received.

OFF (0) This choice selects a single sweep. Refer to :INITiate[:IMMediate][:ALL] for single sweep triggering information.

RST 0

Key Entry **Sweep Repeat Single Cont**

Remarks Execution of this command will not affect a sweep in progress.

:INITiate[:IMMediate][:ALL]

Supported All

:INITiate[:IMMediate][:ALL]

This command either sets or sets and starts a single List or Step sweep, depending on the trigger type. The command performs the following:

- arms a single sweep when BUS, EXternal, or KEY is the trigger source selection
- arms and starts a single sweep when IMMEDIATE is the trigger source selection
System Commands
Trigger Subsystem

This command is ignored if a sweep is in progress. See :INITiate:CONTinuous[:ALL] command for setting continuous or single sweep. See :TRIGger[:SEQUence]:SOURce command to select the trigger source.

Key Entry

<table>
<thead>
<tr>
<th>Single Sweep</th>
</tr>
</thead>
</table>

:TRIGger:EXTernal:SOURce

Supported

All

:TRIGger:EXTernal:SOURce TRIGger[1]|TRIGger2|PULSe

:TRIGger:EXTernal:SOURce?

This command selects the external trigger source. With external triggering, the selected bi-directional BNC is configured as an input.

TRIGger1

This choice selects the TRIG 1 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

TRIGger2

This choice selects the TRIG 2 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

PULSe

This choice selects the PULSE BNC as the external trigger source for triggering sweep, point and function generator sweeps.

Example

:TRIG:EXT:SOUR PULS

The preceding example sets the external trigger source to the PULSE BNC.

*RST TRIGger1

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Trigger 1</th>
<th>Trigger 2</th>
<th>Pulse</th>
</tr>
</thead>
</table>

:TRIGger:INTernal:SOURce

Supported

All

:TRIGger:INTernal:SOURce PVIDeo|PSYNc

:TRIGger:INTernal:SOURce?

This command selects the internal trigger source.

PVIDeo

This choice selects Pulse Video as the internal trigger source for triggering sweep, point and function generator sweeps.

PSYNc

This choice selects Pulse Sync as the internal trigger source for triggering sweep, point and function generator sweeps.
System Commands

Trigger Subsystem

Example

:TRIG:INT:SOUR PVID

The preceding example sets the internal trigger source to Pulse Video.

*RST PSYN

Key Entry Pulse Video Pulse Sync

Supported All

:TRIGger:OUTPut[1]|2:POLarity POSitive|NEGative
:TRIGger:OUTPut[1]|2:POLarity?

Sets the polarity of the TTL signal output at the selected (TRIG 1 or TRIG 2) output BNC.

Example

:TRIG:OUTP2:POL NEG

The preceding example sets the signal polarity to be reversed at the TRIG 2 BNC when the trigger is present.

*RST POS

Key Entry Trigger Out 1 Polarity Trigger Out 2 Polarity

Neg Pos

:TRIGger[:SEQuence]:SLOPe

Supported All

:TRIGger[:SEQuence]:SLOPe POSitive|NEGative
:TRIGger[:SEQuence]:SLOPe?

This command sets the polarity of an external signal at the TRIG 1, TRIG 2, or PULSE BNC (see :TRIGger:EXTernal:SOURce) or internal Pulse Video or Pulse Sync signal (see :TRIGger:INTernal:SOURce) that will trigger a list or step sweep.

Example

:TRIGger[:SEQuence]:SLOPe POSitive

The signal generator triggers an event when it detects a rising edge on the source signal.
System Commands
Trigger Subsystem

NEGative The signal generator triggers an event when it detects a falling edge on the source signal

*RST POS

Key Entry Int/Ext Trigger Polarity Neg Pos

:TRIGger[:SEQUence]:SOURce

Supported All

:TRIGger[:SEQUence]:SOURce
BUS|IMMediate|EXTernal|INTernal|KEY|TIMer|MANual
:TRIGger[:SEQUence]:SOURce?

This command sets the sweep trigger source for a list or step sweep.

BUS This choice enables GPIB triggering using the *TRG or GET command. The *TRG SCPI command can be used with any combination of GPIB, LAN, or USB. The GET command requires USB, GPIB, or LAN–VXI–11.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIG 1, TRIG 2 or PULSE connector (see :TRIGger:EXTernal:SOURce).

INTernal This choice enables the triggering of a sweep event by an internal Pulse Video or Pulse Sync signal (see :TRIGger:INTernal:SOURce).

KEY This choice enables triggering through front panel interaction by pressing the Trigger key.

TIMer This choice enables the sweep trigger timer.

MANual This choice enables manual sweep triggering.

*RST IMM

Remarks The wait for the BUS, EXTernal, or KEY trigger can be bypassed by sending the :TRIGger[:SEQUence][:IMMediate] command.

Example

:TRIG:SOUR BUS

The preceding example sets the sweep trigger source to BUS.

*RST IMM

Key Entry Bus Free EXT INT Trigger Key Timer
Run

Keysight CXG, EXG, and MXG X-Series Signal Generators SCPI Command Reference 245
System Commands
Trigger Subsystem

:TRIGger[:SEQuence]:TIMer

Supported All Models

:TRIGger[:SEQuence]:TIMer <period>
:TRIGger[:SEQuence]:TIMer?

This command sets the period of the timer trigger.

*RST 1 ms
Range .5 ms to 1000 seconds
Key Entry Trig Timer Period

:TRIGger[:SEQuence][:IMMediate]

Supported All Models

:TRIGger[:SEQuence][:IMMediate]

This event command causes an armed List or Step sweep to immediately start without the selected trigger occurring.

:TSWeep

Supported All Models

[:SOURce]:TSWeep

This command aborts the current sweep, then either arms or arms and starts a single list, depending on the trigger type.

The command performs the following:

– arms a single sweep when BUS, EXternal, or Trigger KEY is the trigger source selection

– arms and starts a single sweep when IMMediate is the trigger source selection

Key Entry Single Sweep
System Commands
Unit Subsystem (:UNIT)

Unit Subsystem (:UNIT)

:POWer

Supported

All

:UNIT:POWer DBM|DBUV|DBUVEMF|V|VEMF|DB

:UNIT:POWer?

This command terminates an amplitude value in the selected unit of measure.

If the amplitude reference state is set to on, the query returns units expressed in dB and the dB choice will be displayed. Setting any other unit will cause a setting conflict error stating that the amplitude reference state must be set to off. Refer to, :REFerence:STATe command for more information.

*RST DBM

Key Path

AMPTD > keypad entry > Power Units

Remarks

All power values in this chapter are shown with dBm as the unit of measure. If a different unit of measure is selected, replace dBm with the newly selected unit whenever it is indicated for the value.

:VOLT:TYPE

Supported

All

:UNIT:VOLT:TYPE PD|EMF

:UNIT:VOLT:TYPE?

This command scales the voltage values to display potential differences or electromagnetic force.

Potential Difference

This choice sets the instrument to PD mode where the output voltage assumes that a 50 ohm load is connected. PD is the default mode of the instrument.

Electro–motive Force

This choice sets the instrument to EMF mode where the output voltage assumes no load is connected. The EMF value is twice the PD value.

*RST PD
System Commands
Unit Subsystem (:UNIT)
4 Analog Modulation Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

This chapter describes SCPI commands for subsystems dedicated to analog commands common to all Keysight X-Series signal generators.

This chapter contains the following sections:

- **Amplitude Modulation Subsystem–Option UNT ([SOURce])** on page 250
- **Frequency Modulation Subsystem–Option UNT ([SOURce])** on page 263
- **Low Frequency Output Subsystem ([SOURce]:LFOutput)** on page 274
- **Phase Modulation Subsystem–Option UNT ([SOURce])** on page 286
- **Pulse Modulation Subsystem–Options UNW and N5180320B ([SOURce])** on page 298
Amplitude Modulation Subsystem–Option UNT ([:SOURce])

:AM[1]|2[:DEPTh]:EXPonential

Supported
All Models with Option UNT

[:SOURce]:AM[1]|2 [:DEPTh]:EXPonential <value>

[:SOURce]:AM[1]|2 [:DEPTh]:EXPonential?

This commands sets the amplitude modulation depth in dB.

*RST +4.00000000E+001

Range 0 to 40 dB

Key Entry AM Depth

Remarks Refer to :AM[:DEPTh]:STEP[:INCRement] command for setting the value associated with UP and DOWN choices.

:AM[1]|2[:DEPTh][:LINear]

Supported
All Models with Option UNT

[:SOURce]:AM[1]|2 [:DEPTh] [:LINear] <value><unit>|UP|DOWN

[:SOURce]:AM[1]|2 [:DEPTh] [:LINear]?

This commands sets the amplitude modulation depth in percent.

*RST +1.00000000E–001

Range 0.0 to 100%

Key Entry AM Depth

Remarks Refer to :AM[:DEPTh]:STEP[:INCRement] command for setting the value associated with UP and DOWN choices.

:AM[1]|2[:DEPTh][:LINear]:TRACk

Supported
All models with Option UNT

[:SOURce]:AM[1]|2 [:DEPTh] [:LINear]:TRACk ON|OFF|1|0

[:SOURce]:AM[1]|2 [:DEPTh] [:LINear]:TRACk?

This command enables or disables AM depth value coupling between AM paths 1 and 2. When the depth values are coupled, a change made to one path is applied to both. LINear must be the AM type for this command to have any affect. To set the AM measurement type, use the :AM[1]|2:TYPE command.

ON (1) This choice will link the depth value of AM[1] with AM2; AM2 will assume the AM[1] depth value. For example, if AM[1] depth is set to 15% and AM2 is set to 11%,
Analog Modulation Commands

Amplitude Modulation Subsystem–Option UNT ([SOURce])

enabling the depth tracking will cause the AM2 depth value to change to 15%. This applies regardless of the path (AM[1] or AM2) selected in this command.

OFF (0) This choice disables coupling and both paths will have independent depth values.

Example

:AM1:TRAC ON
The preceding example enables AM depth coupling between AM path 1 and AM path 2.

*RST 0
Key Entry AM Depth Couple Off On

:AM[:DEPTh]:STEP[:INCRement]

Supported All Models with Option UNT

[:SOURce]:AM[:DEPTh]:STEP[:INCRement] <value><unit>
[:SOURce]:AM[:DEPTh]:STEP[:INCRement]?

This command sets the AM depth step increment.

Range 0.1–100%
Key Entry Incr Set
Remarks The value set by this command is used with the UP and DOWN choices for the AM depth setting. Refer to :AM[1]|2[:DEPTh][:LINear] command for more information.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.

Supported All Models with Option UNT

This command sets the coupling for the amplitude modulation source through the selected external input connector.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC
Key Entry Ext Coupling DC AC
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

Remarks The command does not change the currently active source or switch the current modulation on or off. The modulating signal may be the sum of several signals, either internal or external sources.

:AM[:SOURce]:AM[:SOURce]:EXTernal[:SOURce]:IMPedance

Supported All Models with Option UNT

[:SOURce]:AM[:SOURce]:AM[:SOURce]:EXTernal[:SOURce]:IMPedance 50 | 600 | 1000000
[:SOURce]:AM[:SOURce]:AM[:SOURce]:EXTernal[:SOURce]:IMPedance?

This command sets the input impedance for the externally-applied AM input signal.

50 This choice selects 50 Ohm input impedance.
600 This choice selects 600 Ohm input impedance.
1000000 This choice selects 1 MOhm input impedance.
*RST 50 Ohm

Key Entry Ext Impedance 50 Ohm 600 Ohm 1 MOhm

:AM[:SOURce]:AM[:SOURce]:INTernal:DUAL:FUNCtion2:AMPLitude:PERCent

Supported All Models with Options UNT and 303

[:SOURce]:AM[:SOURce]:AM[:SOURce]:INTernal:DUAL:FUNCtion2:AMPLitude:PERCent <value><unit>
[:SOURce]:AM[:SOURce]:AM[:SOURce]:INTernal:DUAL:FUNCtion2:AMPLitude:PERCent?

This command sets the amplitude of tone 2 of the internal dual function generator source as a percent of the peak analog modulation amplitude. Tone 1 of the internal dual function generator source will make up the remaining amplitude.

*RST 50.0

Range 0 to 100.0 percent

Key Entry AM Tone 2 Ampl % of Peak

:AM[:SOURce]:AM[:SOURce]:INTernal:DUAL:FUNCtion2:POFFset

Supported All Models with Options UNT and 303

[:SOURce]:AM[:SOURce]:AM[:SOURce]:INTernal:DUAL:FUNCtion2:POFFset <value><unit>
[:SOURce]:AM[:SOURce]:AM[:SOURce]:INTernal:DUAL:FUNCtion2:POFFset?
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([:SOURce])

This command sets the phase offset in degrees or radians of tone 2 in relation to tone 1 of the internal dual function generator source.

*RST 0.000 rad

Range -6.290 to 6.290 rad
 -360.4 to 360.4 deg

Key Entry AM Tone 2 Phase Offset

Supported All Models with Options UNT and 303

Sets the frequency of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST 400.0 Hz

Range 100.0 mHz to 6.25 MHz

Key Entry AM Tone 1 Freq AM Tone 2 Freq

Supported All Models with Options UNT and 303

This command sets the shape of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST SINE

Key Entry AM Tone 1 Waveform AM Tone 2 Waveform

Supported All Models with Options UNT and 303

Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

This command sets the ramp direction of the selected tone (1 or 2) of the internal dual function generator source when :AM[1]|2:INTernal:DUAL:FUNCtion[1]|2:SHAPe is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp

Supported All Models with Option UNT

This command sets the internal amplitude modulation rate for the following applications:

– the start frequency for a swept-sine waveform
– the frequency rate for all other waveforms

*RST +4.00000000E+002

Range Swept-Sine & Sine: 0.1 Hz–20 MHz

Key Entry AM Rate

Supported All Models with Options UNT and 303

This command sets the phase offset in degrees or radians of internal function generator source.

*RST 0.000 rad

Range -6.290 to 6.290 rad
-360.4 to 360.4 deg

Key Entry AM Phase Offset

Supported All Models with Options UNT
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

SINE|TRIangle|SQUare|RAMP|PULSe

This command sets the AM waveform type.

*RST SINE

Remarks SINE is the only shape available without Option 303.

Key Entry AM Waveform

Supported All Models with Options UNT and 303

This command sets the ramp direction when :AM[1]|2:INTernal:FUNCTION[1]|2:SHAPe is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp

Supported All Models with Options UNT and 303

This command sets the noise type when :AM[1]|2:SOURce is set to NOISe[1] or NOISe2.

*RST POS

Key Entry Noise Gen 1 Noise Gen 2

Supported All Models with Options UNT and 303

[:SOURce]:AM[1]|2:INTernal:SWEep:FUNCTION:FREQuency:STARt <val><units>
[:SOURce]:AM[1]|2:INTernal:SWEep:FUNCTION:FREQuency:STARt?

This command sets the start frequency for the swept function generator.

*RST 400.0 Hz

Range 100 mHz to 6.250 MHz
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

Key Entry AM Start Freq

Supported All Models with Options UNT and 303

This command sets the stop frequency for the swept function generator.

*RST 400.0 Hz

Range 100 mHz to 6.250 MHz

Key Entry AM Stop Freq

Supported All Models with Options UNT and 303

[:SOURce]:AM[1]|2:INTernal:SWEep:FUNCtion:SHAPe SINE|TRIangle|SQUare|RAMP

This command sets the AM waveform type for the swept function generator.

*RST SINE

Key Entry AM Sweep Waveform

Supported All Models with Options UNT and 303

This command sets the ramp direction for the swept function generator when :AM[1]|2:INTernal:SWEep:FUNCtion:SHAPe is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp

Supported All Models with Options UNT and 303

Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

This command sets the sweep rate for the AM swept–sine waveform. The sweep rate function is only available for internal source 1.

*RST +4.00000000E+002
Range 0.5 Hz to 100 kHz
Key Entry AM Sweep Rate

Supported All Models with Options UNT and 303

[[:SOURce]:AM[1]|2:INTernal:SWEep:SHAPe SAWTooth|TRIangle
[[:SOURce]:AM[1]|2:INTernal:SWEep:SHAPe?

This command selects the sweep shape.

SAWTooth A sawtooth sweep shape only sweeps from start freq to stop freq.
TRIangle A triangle sweep sweeps from start freq to stop freq and back to start freq. With a triangle shape sweep you can choose a different sweep rate for start freq to stop freq and another sweep rate for stop freq to start freq.

*RST SAWTooth

Key Entry AM Sweep Shape

Supported All Models with Options UNT and 303

[[:SOURce]:AM[1]|2:INTernal:SWEep:TIME:COUPled ON|OFF|1|0

This command sets the couplings between start-to-stop values and stop-to-start values for AM sweep times and rates. The sweep times coupled to on.

Use this command when [:SOURce]:AM[1]|2:INTernal:SWEep:SHAPe is set to TRIangle.

ON|1 This choice uses the same sweep time for both start freq to stop freq and stop freq to start freq sweeps of a triangle shape sweep. If sweep times coupled is ON, sweep time and rate is only set by the Start -> Stop softkeys.
OFF|0 This choice disables sweep time couplings.

*RST OFF

Key Entry AM Sweep Times Coupled Off On
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

Supported All Models with Options UNT and 303

This command sets the sweep rate for the amplitude-modulated, swept-sine waveform.

*RST +1.00000000E−001

Range 1mS–65.535S

Key Entry AM Sweep Time

Supported All Models with Options UNT and 303

[:SOURce]:AM[1]|2:INTernal:SWEep:TRIGger
BUS|IMMediate|EXTernal|INTernal|KEY
[:SOURce]:AM[1]|2:INTernal:SWEep:TRIGger?

This command sets the trigger source for the amplitude modulated swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.

EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIG 1, TRIG 2, or PULSE BNC connector.

INTernal This choice enables the triggering of a sweep event by an internal Pulse Video or Pulse Sync signal.

KEY This choice enables triggering through front panel interaction by pressing the **Trigger** key.

*RST IMM

Key Entry Bus Free Run Ext Int Trigger Key

Supported All Models with Options SOURce
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

TRIGger[1]|TRIGger2|PULSe

This command selects the external trigger source for the AM swept-sine waveform. With external triggering, the selected bi-directional BNC is configured as an input.

<table>
<thead>
<tr>
<th></th>
<th>Trigger 1</th>
<th>Trigger 2</th>
<th>Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGger1</td>
<td>This choice selects the TRIG 1 BNC as the external trigger source for triggering sweep, point and function generator sweeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIGger2</td>
<td>This choice selects the TRIG 2 BNC as the external trigger source for triggering sweep, point and function generator sweeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PULSe</td>
<td>This choice selects the PULSE BNC as the external trigger source for triggering sweep, point and function generator sweeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*RST</td>
<td>TRIGger1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Entry Pulse Video Pulse Sync

Supported All Models with Options UNT and 303

PVIDeo|PSYNc

This command selects the internal trigger source for the AM swept-sine waveform.

<table>
<thead>
<tr>
<th></th>
<th>Trigger 1</th>
<th>Pulse Video</th>
<th>Pulse Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVIDeo</td>
<td>This choice selects Pulse Video as the internal trigger source for triggering sweep, point and function generator sweeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYNc</td>
<td>This choice selects Pulse Sync as the internal trigger source for triggering sweep, point and function generator sweeps.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*RST</td>
<td>PSYN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Entry Pulse Video Pulse Sync
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

Supported All Models with Options UNT and 303

POSitive|NEGative
[:SOURce]:AM[1]|2:INTernal:SWEep:TRIGger:SLOPe?

This command sets the polarity of an external signal at the TRIG 1, TRIG 2, or PULSE BNC (see :AM[1]|2:INTernal:SWEep:TRIGger:EXTERNAL:SOURce) or internal Pulse Video or Pulse Sync signal (see :AM[1]|2:INTernal:SWEep:TRIGger:INTERNAL:SOURce) that will trigger a list or step sweep.

POSitive The signal generator triggers an event when it detects a rising edge on the source signal

NEGative The signal generator triggers an event when it detects a falling edge on the source signal

*RST

Key Entry Int/Ext Trigger Polarity Neg Pos

:AM:MODE

Supported All Models with Option UNT

[:SOURce]:AM:MODE DEEP|NORMAL

[:SOURce]:AM:MODE?

This command sets the amplitude modulation mode. **DEEP** provides an AM depth with greater dynamic range. **NORMAL** sets AM to standard operation.

Default DEEP

Key Entry AM Mode Normal Deep

Remarks The RF carrier is modulated when you have set the signal generator’s modulation state to ON, see :MODulation[:STATe] command for more information.

Whenever amplitude modulation is enabled, the AM annunciator is turned on in the display.

:AM[1]|2:SOURce

Supported All Models with Option UNT

[:SOURce]:AM[1]|2:SOURce

[:SOURce]:AM[1]|2:SOURce?

This command sets the source to generate the amplitude modulation.
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([SOURce])

FUNCTION[1] Selects function generator 1 as the modulation source.
FUNCTION[2] Selects function generator 2 as the modulation source.
SWEep Selects the swept function generator as the modulation source.
DUAL Selects the dual function generator as the modulation source.
NOISe[1] Selects noise generator 1 as the modulation source.
NOISe2 Selects noise generator 2 as the modulation source.
EXT[1] Selects an externally applied signal as the modulation input. Connect the signal to the EXT 1 connector.
EXT2 Selects an externally applied signal as the modulation input. Connect the signal to the EXT 2 connector.

*RST FUNCTION[1]

Key Entry Ext1 Func Gen 1 Dual Func Gen Noise Gen 1

Ext2 Func Gen 2 Swept Func Gen Noise Gen 2

Remarks A 1.0 Vp input is required for calibrated AM depth settings.

The externally applied, ac-coupled input signal is tested for a voltage level and a display annunciator will report a high or low condition if that voltage is > ±3% of 1 Vp.

Only FUNC1, FUNC2, EXT1 and EXT2 are available without Option 303.

:AM[1]|2:STATe

Supported All Models with Option UNT

[:SOURce]:AM[1]|2:STATe ON|OFF|1|0
[:SOURce]:AM[1]|2:STATe?

This command enables or disables the amplitude modulation for the selected path.

*RST 0

Key Entry AM Off On

Remarks The RF carrier is modulated when you have set the signal generator’s modulation state to ON, see :MODulation[:STATe] command for more information.
Analog Modulation Commands
Amplitude Modulation Subsystem–Option UNT ([:SOURce])

Whenever amplitude modulation is enabled, the AM annunciator is turned on in the display.

:AM[1]|2:TYPE

Supported All models with Option UNT

[:SOURce]:AM[1]|2:TYPE LINear|EXPonential

This command sets the AM type to linear or exponential AM.

Example

:AM2:TYPE EXP

The preceding example selects exponential type depth values for AM path 2.

*RST LIN

Key Entry AM Type LIN EXP

:AM:WIDeband:STATe

Supported All Models with Option UNT

[:SOURce]:AM:WIDeband:STATe ON|OFF|1|0

This command toggles the state of wideband AM, which provides bandwidth beyond that of standard AM by utilizing an external modulating signal connected to the I Input.

*RST 0

Key Entry AM Path 1 2 WB AM Off On

Remarks Instruments that have 9kHz as their lowest frequency cannot have wideband AM at frequencies from 9kHz up to 5MHz.
Frequency Modulation Subsystem–Option UNT ([:SOURce])

Supported All Models with Option UNT

This command sets the coupling for the frequency modulation source through the selected external input connector.

Use this command with the EXTernal[1]|2:DC command to remove the effects of DC and optimize the DCFM calibration.

AC This choice only passes ac signal components.
DC This choice passes both ac and dc signal components.
*RST DC

Key Entry Ext Coupling DC AC

Remarks The command does not change the currently active source or switch the current modulation on or off. The modulating signal may be the sum of several signals, either internal or external sources.

Supported All Models with Option UNT

[:SOURce]:FM:EXTernal[1]|2:IMPedance 50|600|1000000
[:SOURce]:FM:EXTernal[1]|2:IMPedance?

This command sets the input impedance for the externally-applied FM input signal.

50 This choice selects 50 Ohm input impedance.
600 This choice selects 600 Ohm input impedance.
1000000 This choice selects 1 MOhm input impedance.
*RST 50 Ohm

Key Entry Ext Impedance 50 Ohm 600 Ohm 1 MOhm

Supported All Models with Options UNT and 303

Analog Modulation Commands
Frequency Modulation Subsystem–Option UNT ([:SOURce])

This command sets the amplitude of tone 2 of the internal dual function generator source as a percent of the peak analog modulation amplitude. Tone 1 of the internal dual function generator source will make up the remaining amplitude.

*RST 50.0
Range 0 to 100.0%

Key Entry FM Tone 2 Ampl % of Peak

Supported All Models with Options UNT and 303

This command sets the phase offset in degrees or radians of tone 2 in relation to tone 1 of the internal dual function generator source.

*RST 0.000 rad
Range -6.290 to 6.290 rad
-360.4 to 360.4 deg

Key Entry FM Tone 2 Phase Offset

Supported All Models with Options UNT and 303

This command sets the frequency of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST 400.0 Hz
Range 100.0 mHz to 6.25 MHz

Key Entry FM Tone 1 Freq FM Tone 2 Freq
Analog Modulation Commands

Frequency Modulation Subsystem–Option UNT ([:SOURce])

SINE|TRIAngle|SQUARE|RAMP

This command sets the shape of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST SINE

Key Entry FM Tone 1 Waveform FM Tone 2 Waveform

Supported All Models with Options UNT and 303

POSitive|NEGative

This command sets the ramp direction of the selected tone (1 or 2) of the internal dual function generator source when :FM[1]|2:INTERNAL:DUAL:FUNCTION[1]|2:SHAPE is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp

:FM:INTERNAL:FREQuency:STEP[:INCRement]

Supported All Models with Option UNT

This command sets the step increment for the internal frequency modulation. The variable <num> sets the entered value in units of Hertz:

*RST +5.00000000E+002 (persistent value; use :PRESet:PERSistent to restore the factory preset value)

Range 0.1–6.25E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices for the FM frequency setting. Refer to :FM[1]|2:INTERNAL:FUNCTION[1]|2:FREQuency command for more information.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.
Analog Modulation Commands

Frequency Modulation Subsystem–Option UNT ([SOURce])

Supported All Models with Option UNT

```
```

This command sets the internal frequency modulation rate for the following applications:

– the start frequency for a swept-sine waveform
– the frequency rate for all other waveforms

*RST +4.00000000E+002

Range All Waveforms: 0.1 Hz–2 MHz

Key Entry FM Rate

Supported All Models with Options UNT and 303

```
```

This command sets the phase offset in degrees or radians of internal function generator source.

*RST 0.000 rad

Range -6.290 to 6.290 rad
-360.4 to 360.4 deg

Key Entry FM Phase Offset

Supported All Models with Option UNT

```
```

This command sets the FM waveform type.

*RST SINE
Analog Modulation Commands
Frequency Modulation Subsystem–Option UNT [:SOURce]

Remarks
The waveform selection is only valid when INT is the source selection. Refer to “:FM[1]|2:SOURce” on page 272 for source type selection. SINE is the only shape available without Option 303.

Supported All Models with Options UNT and 303

POSitive|NEGative

This command sets the ramp direction when :FM[1]|2:INTernal:FUNCtion[1]|2:SHApe is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp

Supported All Models with Options UNT and 303

This command sets the noise type when “:FM[1]|2:SOURce” on page 272 is set to NOISe[1] or NOISe2.

*RST POS

Key Entry Noise Gen 1 Noise Gen 2

Supported All Models with Options UNT and 303

<val><units>
[:SOURce]:FM[1]|2:INTernal:SWEep:FUNCtion:FREQuency:STARt?

This command sets the start frequency for the swept function generator.

*RST 400.0 Hz
Range 100 mHz to 6.250 MHz
Key Entry FM Start Freq

Supported All Models with Options UNT and 303
Analog Modulation Commands

Frequency Modulation Subsystem–Option UNT ([SOURce])

<val><units>

This command sets the stop frequency for the swept function generator.

*RST 400.0 Hz

Range 100 mHz to 6.250 MHz

Key Entry FM Stop Freq

Supported All Models with Options UNT and 303

SINE|TRIangle|SQUare|RAMP

This command sets the FM waveform type for the swept function generator.

*RST SINE

Key Entry FM Sweep Waveform

Supported All Models with Options UNT and 303

POSitive|NEGative

This command sets the ramp direction for the swept function generator when :FM[1]|2:INTernal:SWEep:FUNCtion:SHAPe is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp

Supported All Models with Options UNT and 303

This command sets the sweep rate for the FM swept–sine waveform.

The sweep rate function is only available for internal source 1.

*RST +4.00000000E+002

Range 0.5 Hz to 100 kHz
Analog Modulation Commands
Frequency Modulation Subsystem–Option UNT ([:SOURce])

Key Entry
FM Sweep Rate

Supported All Models with Options UNT and 303

This command selects the sweep shape.

- **SAWTooth** A sawtooth sweep shape only sweeps from start freq to stop freq.
- **TRIangle** A triangle sweep sweeps from start freq to stop freq and back to start freq. With a triangle shape sweep you can choose a different sweep rate for start freq to stop freq and another sweep rate for stop freq to start freq.

RST SAWTooth

Key Entry
FM Sweep Shape

Supported All Models with Options UNT and 303

[:SOURce]:FM[1]|2:INTernal:SWEep:TIME:COUPled ON|OFF|1|0

This command sets the couplings between start-to-stop values and stop-to-start values for FM sweep times and rates. The sweep times coupled to on.

- **ON|1** This choice uses the same sweep time for both start freq to stop freq and stop freq to start freq sweeps of a triangle shape sweep. If sweep times coupled is ON, sweep time and rate is only set by the Start -> Stop softkeys.
- **OFF|0** This choice disables sweep time couplings.

RST OFF

Key Entry
FM Sweep Times Coupled Off On

Supported All Models with Options UNT and 303

Analog Modulation Commands
Frequency Modulation Subsystem–Option UNT ([SOURce])

This command sets the sweep time for the swept-sine waveform.

*RST +1.00000000E−001
Range 1.0mS–65.535S
Key Entry FM Sweep Time

Supported All Models with Options UNT and 303

[:SOURce]:FM[1]|2:INTernal:SWEep:TRIGger
BUS|IMMediate|EXTernal|INTernal|KEY
[:SOURce]:FM[1]|2:INTernal:SWEep:TRIGger?

This command sets the trigger source for the frequency modulated swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.
IMMediate This choice enables immediate triggering of the sweep event.
EXTernal This choice enables the triggering of a sweep event by an externally applied signal at the TRIG 1, TRIG 2, or PULSE BNC connector.
INTernal This choice enables the triggering of a sweep event by an internal Pulse Video or Pulse Sync signal.
KEY This choice enables triggering through front panel interaction by pressing the Trigger key.

*RST IMM

Key Entry Bus Free Run Ext Int Trigger Key

Supported All Models with Options UNT and 303

TRIGger[1]|TRIGger2|PULSe

This command selects the external trigger source for the FM swept-sine waveform. With external triggering, the selected bi-directional BNC is configured as an input.

TRIGger1 This choice selects the TRIG 1 BNC as the external trigger source for triggering sweep, point and function generator sweeps.
Analog Modulation Commands
Frequency Modulation Subsystem–Option UNT ([SOURce])

TRIGger2 This choice selects the TRIG 2 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

PULSe This choice selects the PULSE BNC as the external trigger source for triggering sweep, point and function generator sweeps.

*RST TRIGger1

Key Entry Trigger 1 Trigger 2 Pulse

Supported All Models with Options UNT and 303

PVIDeo|PSYNc

This command selects the internal trigger source for the FM swept-sine waveform.

PVIDeo This choice selects Pulse Video as the internal trigger source for triggering sweep, point and function generator sweeps.

PSYNc This choice selects Pulse Sync as the internal trigger source for triggering sweep, point and function generator sweeps.

*RST PSYN

Key Entry Pulse Video Pulse Sync

Supported All Models with Options UNT and 303

POSitive|NEGative

[:SOURce]:FM[1]|2:INTernal:SWEep:TRIGger:SLOPe?

This command sets the polarity of an external signal at the TRIG 1, TRIG 2, or PULSE BNC (see :FM[1]|2:INTernal:SWEep:TRIGger:EXTernal:SOURce) or internal Pulse Video or Pulse Sync signal (see :FM[1]|2:INTernal:SWEep:TRIGger:INTernal:SOURce) that will trigger a list or step sweep.

POSitive The signal generator triggers an event when it detects a rising edge on the source signal.
Analog Modulation Commands

Frequency Modulation Subsystem–Option UNT ([:SOURce])

NEGative The signal generator triggers an event when it detects a falling edge on the source signal

*RST POS

Key Entry Int/Ext Trigger Polarity Neg Pos

`:FM[1]|2:SOURce`

Supported All Models with Option UNT

```
[:SOURce]:FM[1]|2:SOURce
[:SOURce]:FM[1]|2:SOURce?
```

This command sets the source to generate the frequency modulation.

- **FUNCTION[1]** Selects function generator 1 as the modulation source.
- **FUNCTION[2]** Selects function generator 2 as the modulation source.
- **SWEep** Selects the swept function generator as the modulation source.
- **DUAL** Selects the dual function generator as the modulation source.
- **NOISe[1]** Selects noise generator 1 as the modulation source.
- **NOISe2** Selects noise generator 2 as the modulation source.
- **EXT[1]** Selects an externally applied signal as the modulation input. Connect the signal to the EXT 1 connector.
- **EXT2** Selects an externally applied signal as the modulation input. Connect the signal to the EXT 2 connector.

```
*RST
```

Key Entry Ext1 Func Gen 1 Dual Func Gen Noise Gen 1

```
Ext2  Func Gen 2  Swept Func Gen  Noise Gen 2
```

Remarks The externally applied, ac-coupled input signal is tested for a voltage level and a display annunciator will report a high or low condition if that voltage is > ±3% of 1 Vp.

Supported All Models with Option UNT

```
[:SOURce]:FM[1]|2:STATe  ON|OFF|1|0
[:SOURce]:FM[1]|2:STATe?
```
Analog Modulation Commands
Frequency Modulation Subsystem–Option UNT ([SOURce])

This command enables or disables the frequency modulation for the selected path.

*RST 0
Key Entry FM Off On
Remarks The RF carrier is modulated when you set the signal generator’s modulation state to ON, see :MODulation[:STATE] command for more information. Whenever frequency modulation is enabled, the FM annunciator is turned on in the display.

:FM[1]|2[:DEViation]

Supported All Models with Option UNT

[:SOURce]:FM[1]|2[:DEViation] <value><unit>
[:SOURce]:FM[1]|2[:DEViation]?

This command sets the frequency modulation deviation. Please refer to Data Sheet for more information on FM deviation specifications.

*RST +1.00000000E+003
Key Entry FM DEV

:FM[:DEViation]:STEP[:INCRement]

Supported All Models with Option UNT

[:SOURce]:FM[:DEViation]:STEP[:INCRement] <value><unit>|GHz|MHz|kHz|Hz
[:SOURce]:FM[:DEViation]:STEP[:INCRement]?

This command sets the step increment for the FM deviation of the signal generator.

*RST +5.00000000E+003
Key Entry Incr Set
Remarks The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.
Low Frequency Output Subsystem ([SOURce]:LFOutput)

:AMPLitude

Supported All Models with Option UNT

[:SOURce]:LFOutput:AMPLitude <val><unit>
[:SOURce]:LFOutput:AMPLitude?

This command sets the amplitude for the signal at the LF OUTPUT connector.

*RST 0.00
Range 0.000VP–5.0VP
Key Entry LF Out Amplitude

:DUAL:FUNCtion2:AMPLitude:PERCent

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:DUAL:FUNCtion2:AMPLitude:PERCent <value><unit>
[:SOURce]:LFOutput:DUAL:FUNCtion2:AMPLitude:PERCent?

This command sets the amplitude of tone 2 of the internal dual function generator source as a percent of the peak analog modulation amplitude. Tone 1 of the internal dual function generator source will make up the remaining amplitude.

*RST 50.0
Range 0 to 100.0%
Key Entry LFOut Tone 2 Ampl % of Peak

:DUAL:FUNCtion2:POFFset

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:DUAL:FUNCtion2:POFFset <value><unit>
[:SOURce]:LFOutput:DUAL:FUNCtion2:POFFset?

This command sets the phase offset in degrees or radians of tone 2 in relation to tone 1 of the internal dual function generator source.

*RST 0.00 rad
Range -6.290 to 6.290 rad
-360.4 to 360.4 deg
Analog Modulation Commands
Low Frequency Output Subsystem [:SOURce]:LFOutput

Key Entry LF Out Tone 2 Phase Offset

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:DUAL:FUNCtion[1]|2:FREQuency
<value><unit>
[:SOURce]:LFOutput:DUAL:FUNCtion[1]|2:FREQuency?

This command sets the frequency of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST 400.0 Hz

Range 100.0 mHz to 6.25 MHz

Key Entry LF Out Tone 1 Freq LF Out Tone 2 Freq

Supported All Models with Options UNT and 303

SINE|TRIangle|SQUARE|RAMP
[:SOURce]:LFOutput:DUAL:FUNCtion[1]|2:SHAPe?

This command sets the shape of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST SINE

Key Entry LF Out Tone 1 Waveform LF Out Tone 2 Waveform

Supported All Models with Options UNT and 303

POSitive|NEGative

This command sets the ramp direction of the selected tone (1 or 2) of the internal dual function generator source when :DUAL:FUNCtion[1]|2:SHAPe is set to RAMP.

*RST POS

Key Entry Pos Ramp Neg Ramp
Analog Modulation Commands
Low Frequency Output Subsystem ([SOURce]:LFOutput)

:FUNCTION[1]|2:FREQuency

Supported All models with Option UNT

[:SOURce]:LFOutput:FUNCTION[1]|2:FREQuency <val><units>
[:SOURce]:LFOutput:FUNCTION[1]|2:FREQuency?

This command sets the frequency of function generator 1 or 2. The command sets:

– the frequency of the first tone of a dual–sine waveform
– the start frequency for a swept–sine waveform
– the frequency for all other waveform types

For selecting the waveform type, use the :FUNCTION[1]|2:SHAPE command.

*RST +4.00000000E+002

Range Sine and Dual–Sine: 0.5 Hz to 1 MHz

Range Swept–Sine: 1 Hz to 1 MHz

All Other Waveforms: 0.5 Hz to 100 kHz

Key Entry LF Out Tone 1 Freq LF Out Start Freq LF Out Freq

:FUNCTION[1]|2:PERiod

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:FUNCTION[1]|2:PERiod <val><unit>
[:SOURce]:LFOutput:FUNCTION[1]|2:PERiod?

This command sets the pulse period of the internally generated pulsed low frequency waveform.

*RST +8.00000000E−005

Range 16uS–30S

Key Entry LF Out Period

:FUNCTION[1]|2:POFFset

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:FUNCTION[1]|2:POFFset <val><unit>
[:SOURce]:LFOutput:FUNCTION[1]|2:POFFset?

This command sets the phase offset in degrees or radians of internal function generator source.
Analog Modulation Commands
Low Frequency Output Subsystem (::SOURce::LFOutput)

*RST 0.000 rad

Range -6.290 to 6.290 rad
-360.4 to 360.4 deg

Key Entry LF Out Phase Offset

:FUNCtion[1]|2:PWIDth

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:FUNCtion[1]|2:PWIDth <val><unit>
[:SOURce]:LFOutput:FUNCtion[1]|2:PWIDth?

This command sets the pulse width of the internally-generated pulsed low frequency waveform.

The upper limit range value is restricted by the current value of the pulse period. For example, if the pulse period value is set to 16 μS, the pulse width is limited to a maximum range value of 16 μS.

*RST +4.00000000E−005

Range 8μS–30S

Key Entry LF Out Width

Remarks To change the pulse period value, refer to the :FUNCtion[1]|2:PERiod command.

:FUNCtion[1]|2:SHAPe

Supported All models with Option UNT

[:SOURce]:LFOutput:FUNCtion[1]|2:SHAPe SINE|TRIangle|SQUARE|RAMP|PULSe|NOISe|DC
[:SOURce]:LFOutput:FUNCtion[1]|2:SHAPe?

This command selects the waveform type. Function Generator 1 must be the source for the dual–sine or the swept–sine waveform. Refer to the ::SOURce command for more information.

*RST SINE

Key Entry Sine Triangle Square Ramp Pulse

Noise DC
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURCE]:LFOutput)

:FUNCTION[1]|2:SHAPE:RAMP

Supported All models with Option UNT

This command selects a positive or negative slope for the ramp modulation on the LF output.

For selecting the waveform type, use the :FUNCTION[1]|2:SHAPE command.

*RST POS

Key Entry Positive Negative

:LOAD:IMPedance

Supported All Models with Option UNT

[:SOURCE]:LFOutput:LOAD:IMPedance 50|1000000
[:SOURCE]:LFOutput:LOAD:IMPedance?

This command sets the impedance of the load that the LF Output is connected to. This changes the displayed LF Output amplitude based on the load impedance. Max LF Output amplitude is 5V into 50 Ohms and 10V into 1 MOhms.

50 This choice selects 50 Ohm load impedance.
1000000 This choice selects 1 MOhm load impedance.
*RST 50 Ohm

Key Entry Load Impedance 50 Ohm 1 MOhm

:NOISE[1]|2:TYPe

Supported All Models with Options UNT and 303

This command sets the noise type when :SOURCE is set to NOISE[1] or NOISE2.

*RST POS

Key Entry Uniform Gaussian

:OFFSET

Supported All Models with Option UNT
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

[:SOURce]:LFOutput:OFFset <value><unit>
[:SOURce]:LFOutput:OFFset?

This command sets the DC offset (in volts) of the signal at the LF Output connector.

*RST 0.000 V

Range -10.000 to 10.000 V

Key Entry LF Out DC Offset Into 50 Ohms
 LF Out DC Offset Into 1 MOhms

[:SOURce]

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SOURce
MONitor|FUNCtion[1]|FUNCtion2|SWEep|DUAL|NOISe[1]|NOISe2|DC
[:SOURce]:LFOutput:SOURce?

This command selects the source for the LF output.

MONitor Selects monitoring on the LF output BNC. Select the monitoring source using the :SOURce:MONitor command.

FUNCtion[1] Selects function generator 1 as the modulation source.

FUNCtion[2] Selects function generator 2 as the modulation source.

SWEep Selects the swept function generator as the LF output BNC source. If AM or FM or PM is modulating the swept function generator then the LF output BNC will have the unmodulated signal if you choose to monitor the swept function generator.

DUAL Selects the dual function generator as the modulation source.

NOISe[1] Selects noise generator 1 as the modulation source.

NOISe2 Selects noise generator 2 as the modulation source.

DC Selects a DC voltage level as the LF output BNC source.

*RST MONitor

Key Entry Int Monitor Func Gen 1 Dual Func Gen
 DC Func Gen 2 Swept Func Gen
 Noise Gen 1 Noise Gen 1
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURCE]:LFOutput)

Remarks
Only MON, FUNC1 and DC are available without Option 303.

:SOURCE:MONitor

Supported
All models with Option UNT

[[:SOURCE]:LFOutput:SOURce:MONitor
FUNCtion[1]|FUNCtion2|SWEep|DUAL
[:SOURCE]:LFOutput:SOURce:MONitor?]

This command selects the source for the LF output.

FUNCTION[1]|2
These choices enable you to output a signal where the frequency and shape of the signal is set by internal function generator 1 or 2. For example, if the internal source is currently assigned to an AM path configuration and AM is turned on, the signal output at the LF OUTPUT connector will have the frequency and shape of the amplitude modulating signal.

SWEep
Selects the swept function generator as the modulation source to monitor. If AM or FM or PM is modulating the swept function generator then the LF output BNC will have the unmodulated signal if you choose to monitor the swept function generator.

DUAL
Selects the dual function generator as the modulation source to monitor. If AM or FM or PM is modulating the dual function generator then the LF output BNC will have the unmodulated signal if you choose to monitor the dual function generator.

:*RST
FUNC1

Key Entry
Func Gen 1 Dual Func Gen
Func Gen 2 Swept Func Gen

Remarks
Only FUNC1 is available without Option 303.

:STATE

Supported
All Models

[[:SOURCE]:LFOutput:STATE ON|OFF|1|0
[:SOURCE]:LFOutput:STATE?]

This command enables or disables the low frequency output.

:*RST
0

Key Entry
LF Out Off On
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

:SWEep:FUNCTION:FREQuency:STARt

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:FUNCTION:FREQuency:STARt <val><units>
[:SOURce]:LFOutput:SWEep:FUNCTION:FREQuency:STARt?

This command sets the start frequency for the swept function generator.

*RST 400.0 Hz
Range 100 mHz to 6.250 MHz
Key Entry LF Out Start Freq

:SWEep:FUNCTION:FREQuency:STOP

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:FUNCTION:FREQuency:STOP <val><units>
[:SOURce]:LFOutput:SWEep:FUNCTION:FREQuency:STOP?

This command sets the stop frequency for the swept function generator.

*RST 400.0 Hz
Range 100 mHz to 6.250 MHz
Key Entry LF Out Stop Freq

:SWEep:FUNCTION:SHAPe

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:FUNCTION:SHAPe SINE|TRIangle|SQUare|RAMP
[:SOURce]:LFOutput:SWEep:FUNCTION:SHAPe?

This command sets the waveform type for the swept function generator.

*RST SINE
Key Entry LF Out Sweep Waveform

:SWEep:FUNCTION:SHAPe:RAMP

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:FUNCTION:SHAPe:RAMP POSitive|NEGative
[:SOURce]:LFOutput:SWEep:FUNCTION:SHAPe:RAMP?

This command sets the ramp direction for the swept function generator when :SWEep:FUNCTION:SHAPe is set to RAMP.
Analog Modulation Commands
Low Frequency Output Subsystem ([SOURce]:LFOutput)

*SRT POS

Key Entry Pos Ramp Neg Ramp

:SWEep:RATE[1]|2

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:RATE[1]|2 <val><units>
[:SOURce]:LFOutput:SWEep:RATE[1]|2?

This command sets the sweep rate for the swept-sine waveform.
The sweep rate function is only available for internal source 1.

*RST +4.00000000E+002

Range 0.5 Hz to 100 kHz

Key Entry LF Out Sweep Rate

:SWEep:SHAPe

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:SHAPe SAWTooth|TRIangle
[:SOURce]:LFOutput:SWEep:SHAPe?

This command selects the sweep shape.

SAWTooth A sawtooth sweep shape only sweeps from start freq to stop freq.

TRIangle A triangle sweep sweeps from start freq to stop freq and back to start freq. With a triangle shape sweep you can choose a different sweep rate for start freq to stop freq and another sweep rate for stop freq to start freq.

*RST SAWTooth

Key Entry LF Out Sweep Shape

:SWEep:TIME:COUPled

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:TIME:COUPled ON|OFF|1|0
[:SOURce]:LFOutput:SWEep:TIME:COUPled?

This command sets the couplings between start-to-stop values and stop-to-start values for low-frequency output sweep times and rates. The sweep times coupled to on.

Use this command when :SWEep:SHAPe is set to TRIangle.
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

ON|1
This choice uses the same sweep time for both start freq to stop freq and stop freq to start freq sweeps of a triangle shape sweep. If sweep times coupled is ON, sweep time and rate is only set by the Start -> Stop softkeys.

OFF|0
This choice disables sweep time couplings.

*RST

Key Entry
LF Out Sweep Times Coupled Off On

`:SWEep:TIME[1]|2`

Supported
All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:TIME[1]|2 <val><unit>
[:SOURce]:LFOutput:SWEep:TIME[1]|2?

This command sets the sweep time for the swept-sine waveform.

*RST

Range
1.0mS–65.535S

Key Entry
LF Out Sweep Time

`:SWEep:TRIGger`

Supported
All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:TRIGger
IMMediate|KEY|EXTernal|INTernal|BUS
[:SOURce]:LFOutput:SWEep:TRIGger?

This command sets the trigger source for the frequency modulated swept-sine waveform.

IMMediate
This choice enables immediate triggering of the sweep event.

KEY
This choice enables triggering through front panel interaction by pressing the Trigger key.

EXTernal
This choice enables the triggering of a sweep event by an externally applied signal at the TRIG 1, TRIG 2, or PULSE BNC connector.

INTernal
This choice enables the triggering of a sweep event by an internal Pulse Video or Pulse Sync signal.

BUS
This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURce]:LFOutput)

*RST IMM

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Bus</th>
<th>Free Run</th>
<th>Ext</th>
<th>Int</th>
<th>Trigger Key</th>
</tr>
</thead>
</table>

:SWEep:TRIGger:EXTernal:SOURce

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:TRIGger:EXTernal:SOURce
TRIGger[1]|TRIGger2|PULSe
[:SOURce]:LFOutput:SWEep:TRIGger:EXTernal:SOURce?

This command selects the external trigger source for the sweep. With external triggering, the selected bi-directional BNC is configured as an input.

TRIGger1 This choice selects the TRIG 1 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

TRIGger2 This choice selects the TRIG 2 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

PULSe This choice selects the PULSE BNC as the external trigger source for triggering sweep, point and function generator sweeps.

*RST TRIGger1

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Trigger 1</th>
<th>Trigger 2</th>
<th>Pulse</th>
</tr>
</thead>
</table>

:SWEep:TRIGger:INTernal:SOURce

Supported All Models with Options UNT and 303

[:SOURce]:LFOutput:SWEep:TRIGger:INTernal:SOURce
PVIDeo|PSYNc
[:SOURce]:LFOutput:SWEep:TRIGger:INTernal:SOURce?

This command selects the internal trigger source for the sweep.

PVIDeo This choice selects Pulse Video as the internal trigger source for triggering sweep, point and function generator sweeps.

PSYNc This choice selects Pulse Sync as the internal trigger source for triggering sweep, point and function generator sweeps.

*RST PSYN

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Pulse Video</th>
<th>Pulse Sync</th>
</tr>
</thead>
</table>
Analog Modulation Commands
Low Frequency Output Subsystem ([:SOURce]:LFOoutput)

:SWEep:TRIGger:SLOPe

Supported All Models with Options UNT and 303

[[:SOURce]:LFOoutput:SWEep:TRIGger:SLOPe] POSitive|NEGative

This command sets the polarity of an external signal at the TRIG 1, TRIG 2, or PULSE BNC (see :SWEep:TRIGger:EXTernal:SOURce) or internal Pulse Video or Pulse Sync signal (see :SWEep:TRIGger:INTernal:SOURce) that will trigger a list or step sweep.

- **POSitive** The signal generator triggers an event when it detects a rising edge on the source signal
- **NEGative** The signal generator triggers an event when it detects a falling edge on the source signal

*RST POS

Key Entry Int/Ext Trigger Polarity Neg Pos
Phase Modulation Subsystem–Option UNT ([SOURce])

:PM[1]|2:BANDwidth|BWIDth

Supported All Models with Option UNT

[:SOURce]:PM[1]|2:BANDwidth|BWIDth NORMal|HIGH
[:SOURce]:PM[1]|2:BANDwidth|BWIDth?

This command toggles between normal phase modulation and high-bandwidth phase modulation mode.

*RST NORM

Key Entry FM ΦM Normal High BW

Supported All Models with Option UNT

This command sets the coupling for the phase modulation source through the selected external input connector.

Use this command with the EXTernal[1]|2:DC command to remove the effects of DC and optimize the DCFM calibration.

AC This choice will only pass ac signal components.
DC This choice will pass both ac and dc signal components.
*RST DC

Key Entry Ext Coupling DC AC

Remarks This command does not change the currently active source or switch the current modulation on or off. The modulating signal may be the sum of several signals, either internal or external sources.

Supported All Models with Option UNT

[:SOURce]:PM[1]|2:EXTernal[1]|2:IMPedance 50|600|1000000

This command sets the input impedance for the externally-applied phase-modulated input signal.

50 This choice selects 50 Ohm input impedance.
600 This choice selects 600 Ohm input impedance.
Analog Modulation Commands

Phase Modulation Subsystem–Option UNT ([:SOURce])

1000000 This choice selects 1 MOhm input impedance.

*RST 50 Ohm

Key Entry Ext Impedance 50 Ohm 600 Ohm 1 MOhm

Supported All Models with Option UNT and 303

[:SOURce]:PM[1]|2:INTernal:DUAL:FUNCtion2:AMPLitude:PERCent <value><unit>

This command sets the amplitude of tone 2 of the internal dual function generator source as a percent of the peak analog modulation amplitude. Tone 1 of the internal dual function generator source will make up the remaining amplitude.

*RST 50.0

Range 0 to 100.0%

Key Entry Φ M Tone 2 Ampl % of Peak

Supported All Models with Option UNT and 303

This command sets the phase offset in degrees or radians of tone 2 in relation to tone 1 of the internal dual function generator source.

*RST 0.000 rad

Range -6.290 to 6.290 rad
 -360.4 to 360.4 deg

Key Entry Φ M Tone 2 Phase Offset

Supported All Models with Option UNT and 303

Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([:SOURce])

This command sets the frequency of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST 400.0 Hz

Range 100.0 mHz to 6.25 MHz

Key Entry ΦM Tone 1 Freq ΦM Tone 2 Freq

 Supported All Models with Option UNTand 303

This command sets the shape of tone 1 (default) or tone 2 of the internal dual function generator source.

*RST SINE

Key Entry ΦM Tone 1 Waveform ΦM Tone 2 Waveform

 Supported All Models with Option UNT and 303

This command sets the ramp direction of the selected tone (1 or 2) of the internal dual function generator source when

*RST POS

Key Entry Pos Ramp Neg Ramp

:PM:INTernal:FREQuency:STEP[:INCRement]

 Supported All Models with Option UNT

[:SOURce]:PM:INTernal:FREQuency:STEP[:INCRement] <num>
[:SOURce]:PM:INTernal:FREQuency:STEP[:INCRement]?

This command sets the step increment of the phase modulation internal frequency.

The variable <num> sets the entered value in units of Hertz.
Analog Modulation Commands
Phase Modulation Subsystem—Option UNT ([:SOURce])

*RST +5.00000000E+002 (persistent value; use :PRESet:PERSistent to restore the factory preset value)

Range 0.1–6.25E6

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices for the PM frequency command. Refer to :PM[1]|2:INTernal:FUNCtion[1]|2:FREQuency command for more information.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.

Supported All Models with Option UNT

This command sets the internal modulation frequency rate for the following applications:

– the start frequency for a swept-sine waveform
– the frequency rate for all other waveforms

*RST +4.00000000E+002

Range All Waveforms: 0.1 Hz–2 MHz (Wideband)

All Waveforms: 0.1 Hz–1 MHz (narrowband)

Key Entry ΦM Rate

Supported All Models with Option UNT and 303

This command sets the phase offset in degrees or radians of internal function generator source.

*RST 0.000 rad

Range -6.290 to 6.290 rad

-360.4 to 360.4 deg
Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([:SOURce])

Key Entry
ΦM Phase Offset

Supported All Models with Option UNT

SINE|SQUare|TRIangle|RAMP|PULSe

This command sets the phase modulation waveform type.

*RST SINE
Remarks The waveform selection is only valid when INT is the source selection. Refer to ":PM[1]|2:SOURce" on page 295 for source type selection.
SINE is the only shape available without Option 303.

Supported All Models with Option UNT and 303

POSitive|NEGative

This command sets the ramp direction when :PM[1]|2:INTernal:FUNCtion[1]|2:SHAPe is set to RAMP.

*RST POS
Key Entry
Pos Ramp
Neg Ramp

Supported All Models with Option UNT and 303

UNIForm|GAUSsian

This command sets the noise type when ":PM[1]|2:SOURce" on page 295 is set to NOISe[1] or NOISe2.

*RST POS
Key Entry
Noise Gen 1
Noise Gen 2

Supported All models with Option UNT and 303

Key Entry
ΦM Phase Offset
Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([:SOURce])

[:SOURce]:PM[1]|2:INTernal:SWEep:FUNCTION:FREQuency:STARt <val><units>
[:SOURce]:PM[1]|2:INTernal:SWEep:FUNCTION:FREQuency:STARt?

This command sets the start frequency for the swept function generator.

*RST 400.0 Hz
Range 100 mHz to 6.250 MHz
Key Entry ΦM Start Freq

Supported All models with Option UNT and 303

This command sets the stop frequency for the swept function generator.

*RST 400.0 Hz
Range 100 mHz to 6.250 MHz
Key Entry ΦM Stop Freq

Supported All Models with Option UNT and 303
[:SOURce]:PM[1]|2:INTernal:SWEep:FUNCTION:SHAPe SINE|TRIangle|SQUare|RAMP
[:SOURce]:PM[1]|2:INTernal:SWEep:FUNCTION:SHAPe?

This command sets the phase modulation waveform type for the swept function generator.

*RST SINE
Key Entry ΦM Sweep Waveform

Supported All Models with Option UNT and 303

This command sets the ramp direction for the swept function generator when [:PM[1]|2:INTernal:SWEep:FUNCTION:SHAPe is set to RAMP.
Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([:SOURCE])

*RST POS

Key Entry Pos Ramp Neg Ramp

Supported All models with Option UNT and 303

This command sets the sweep rate for a phase–modulated, swept–sine waveform.

To select the waveform, use the :PM[1]|2:INTernal:SWEep:FUNCTION:SHAPE command.

Example

:PM1:INT:SWE:RATE 30KHZ

The preceding example sets the sweep rate to 30 kHz.

*RST +4.00000000E+002
Range 0.5 Hz to 100 kHz

Key Entry FM Sweep Rate

Supported All Models with Option UNT and 303

This command selects the sweep shape.

SAWTooth A sawtooth sweep shape only sweeps from start freq to stop freq.

TRIangle A triangle sweep sweeps from start freq to stop freq and back to start freq. With a triangle shape sweep you can choose a different sweep rate for start freq to stop freq and another sweep rate for stop freq to start freq.

*RST SAWTooth

Key Entry FM Sweep Shape

Supported All Models with Option UNT and 303
Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([:SOURce])

[:SOURce]:PM[1]|2:INTernal:SWEep:TIME:COUPled ON|OFF|1|0
[:SOURce]:PM[1]|2:INTernal:SWEep:TIME:COUPled?

This command sets the couplings between start-to-stop values and stop-to-start values for phase modulation sweep times and rates. The sweep times coupled to on.

Use this command when :PM[1]|2:INTernal:SWEep:SHAPE is set to TRIangle.

ON|1 This choice uses the same sweep time for both start freq to stop freq and stop freq to start freq sweeps of a triangle shape sweep. If sweep times coupled is ON, sweep time and rate is only set by the Start -> Stop softkeys.

OFF|0 This choice disables sweep time couplings.

*RST

Key Entry ΦM Sweep Times Coupled Off On

Supported All Models with Option UNT and 303

This command sets the sweep time for a phase-modulated, swept-sine waveform.

*RST +1.00000000E-001

Range 1.0mS–65.535S

Key Entry ΦM Sweep Time

Supported All Models with Option UNT and 303

[:SOURce]:PM[1]|2:INTernal:SWEep:TRIGger BUS|IMMediate|EXTernal|INTernal|KEY
[:SOURce]:PM[1]|2:INTernal:SWEep:TRIGger?

This command sets the trigger source for the phase-modulated, swept-sine waveform.

BUS This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command.

IMMediate This choice enables immediate triggering of the sweep event.
Analog Modulation Commands

Phase Modulation Subsystem–Option UNT ([:SOURce])

EXTernal
This choice enables the triggering of a sweep event by an externally applied signal at the TRIG 1, TRIG 2, or PULSE BNC connector.

INTernal
This choice enables the triggering of a sweep event by an internal Pulse Video or Pulse Sync signal.

KEY
This choice enables triggering through front panel interaction by pressing the Trigger key.

*RST
IMM

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Bus</th>
<th>Free Run</th>
<th>Ext</th>
<th>Trigger Key</th>
</tr>
</thead>
</table>

Supported
All Models with Option UNT and 303

TRIGger1|TRIGger2|PULSe

This command selects the external trigger source for the phase-modulated swept-sine waveform. With external triggering, the selected bi-directional BNC is configured as an input.

TRIGger1
This choice selects the TRIG 1 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

TRIGger2
This choice selects the TRIG 2 BNC as the external trigger source for triggering sweep, point and function generator sweeps.

PULSe
This choice selects the PULSE BNC as the external trigger source for triggering sweep, point and function generator sweeps.

*RST
TRIGger1

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Trigger 1</th>
<th>Trigger 2</th>
<th>Pulse</th>
</tr>
</thead>
</table>

Supported
All Models with Option UNT and 303

PVIDeo|PSYNc

This command selects the internal trigger source for the phase-modulated swept-sine waveform.
Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([:SOURce])

PVIDeo This choice selects Pulse Video as the internal trigger source for triggering sweep, point and function generator sweeps.

PSYNc This choice selects Pulse Sync as the internal trigger source for triggering sweep, point and function generator sweeps.

*RST PSYN

Key Entry Pulse Video Pulse Sync

Supported All Models with Option UNT and 303

POSitive|NEGative
[:SOURce]:PM[1]|2:INTernal:SWEep:TRIGger:SLOPe?

This command sets the polarity of an external signal at the TRIG 1, TRIG 2, or PULSE BNC (see :PM[1]|2:INTernal:SWEep:TRIGger:EXTernal:SOURce) or internal Pulse Video or Pulse Sync signal (see :PM[1]|2:INTernal:SWEep:TRIGger:INTernal:SOURce) that will trigger a list or step sweep.

POSitive The signal generator triggers an event when it detects a rising edge on the source signal

NEGative The signal generator triggers an event when it detects a falling edge on the source signal

*RST POS

Key Entry Int/Ext Trigger Polarity Neg Pos

:PM[1]|2:SOURce

Supported All Models with Option UNT

[:SOURce]:PM[1]|2:SOURce
[:SOURce]:PM[1]|2:SOURce?

This command sets the source to generate the phase modulation.

FUNCTION[1] Selects function generator 1 as the modulation source.

FUNCTION[2] Selects function generator 2 as the modulation source.

SWEep Selects the swept function generator as the modulation source.

DUAL Selects the dual function generator as the modulation source.
Analog Modulation Commands

Phase Modulation Subsystem–Option UNT ([:SOURce])

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOISe[1]</td>
<td>Selects noise generator 1 as the modulation source.</td>
</tr>
<tr>
<td>NOISe2</td>
<td>Selects noise generator 2 as the modulation source.</td>
</tr>
<tr>
<td>EXT[1]</td>
<td>Selects an externally applied signal as the modulation input. Connect the signal to the EXT 1 connector.</td>
</tr>
<tr>
<td>EXT2</td>
<td>Selects an externally applied signal as the modulation input. Connect the signal to the EXT 2 connector.</td>
</tr>
<tr>
<td>*RST</td>
<td>Function[1]</td>
</tr>
</tbody>
</table>

Key Entry

<table>
<thead>
<tr>
<th>Ext1</th>
<th>Func Gen 1</th>
<th>Dual Func Gen</th>
<th>Noise Gen 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ext2</th>
<th>Func Gen 2</th>
<th>Swept Func Gen</th>
<th>Noise Gen 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

The externally applied, ac-coupled input signal is tested for a voltage level and a display annunciator will report a high or low condition if that voltage is $\pm 3\%$ of $1 \, V_p$.

:PM[1]|2:STATe

Supported

All Models with Option UNT

[:SOURce]:PM[1]|2:STATe ON\|OFF\|1\|0

This command enables or disables the phase modulation for the selected path.

Key Entry

ΦM Off On

Remarks

The RF carrier is modulated when you set the signal generator’s modulation state to ON, see :MODulation[:STATe] command for more information.

Whenever phase modulation is enabled, the ΦM annunciator is turned on in the display.
Analog Modulation Commands
Phase Modulation Subsystem–Option UNT ([SOURce])

:PM[1]|2[:DEViation]

Supported All Models with Option UNT

[:SOURce]:PM[1]|2[:DEViation] <value><unit>|UP|DOWN

This command sets the deviation of the phase modulation.

The variable <unit> will accept RAD (radians), PIRAD (pi-radians), and DEG (degrees); however, the query will only return values in radians.

*RST +0.00000000E+000

Range See the Data Sheet for range values

Key Entry ΦM Dev

Remarks Refer to :PM[:DEViation]:STEP[:INCRement] command for setting the value associated with the UP and DOWN choices.

:PM[:DEViation]:STEP[:INCRement]

Supported All Models with Option UNT

[:SOURce]:PM[:DEViation]:STEP[:INCRement] <value><unit>

This command sets the phase modulation deviation step increment.

Range 0.001–1E3RAD

Key Entry Incr Set

Remarks The value set by this command is used with the UP and DOWN choices for the FM deviation command. Refer to :PM[1]|2[:DEViation] command for more information.

The setting enabled by this command is not affected by signal generator power-on, preset, or *RST.
Pulse Modulation Subsystem–Options UNW and N5180320B ([:SOURce])

:PULM:EXTInternal:POLarity

Supported

All with Option UNW

[:SOURce]:PULM:EXTInternal:POLarity NORMal|INVerted

[:SOURce]:PULM:EXTInternal:POLarity?

This command selects the polarity of the TTL input signal at the TRIG IN rear panel connector. The signal generator can respond to either a normal (a TTL high) or an inverted (TTL low) signal.

Example

:PULM:EXT:POL NORM

The preceding example selects normal (TTL high) polarity.

*RST Normal

Key Entry

Ext Polarity Normal Invert

:PULM:INTernal:DELay:STEP

Supported

All with Option UNW

[:SOURce]:PULM:INTernal:DELay:STEP <value><unit>

[:SOURce]:PULM:INTernal:DELay:STEP?

This command sets the step increment for the pulse delay.

The step value, set by this command, is used with the UP and DOWN choices in the :PULM:INTernal:DELay[1]|2 command.

The step value set with this command is not affected by a signal generator power-on, preset, or *RST command.

Example

:PULM:INT:DEL:STEP 10NS

The preceding example sets the pulse delay step value to 10 nanoseconds.

Range

10nS to (pulse period – 20 nS)

Key Entry

Incr Set

Supported

All with Option UNW

[:SOURce]:PULM:INTernal:DELay[1]|2 <value><unit>|UP|DOWN

[:SOURce]:PULM:INTernal:DELay[1]|2
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B ([:SOURce])

This command sets the pulse delay for the internally-generated pulse modulation using the variable <value><unit>. The command, used with the UP|DOWN parameters, will change the delay by a user-defined step value. Refer to the :PULM:INTernal:DELa y:STEP command for setting the value associated with the UP and DOWN choices.

The optional variable <unit> accepts nS (nanoseconds) to S (seconds) with a resolution of 10 nS.

The range value is dependent on the pulse period (refer to the :PULM:INTernal:PERiod command).

Use DELay1 with the DOUBlet parameter and Delay1 and Delay2 with the ADOublet parameter (refer to the :PULM:SOURce:INTernal command).

When “TRIGgered” is the pulse train trigger mode, then this value specifies the time after a trigger is received before the first Pulse Train On Time starts (refer to the :PULM:INTernal:TRAI n:TRIGger command).

Example
:PULM:INT:DEL 200E-9
The preceding example sets the internal pulse delay to 200 nanoseconds.

*RST
0.00000000E000

Range

Internal Free Run: depends on pulse period and pulse width settings

Internal Triggered, Adjustable Doublet, & Triggered Doublet:
70nS to (42 S - 10 nS - pulse width)

Key Entry Pulse Delay

:PULM:INTernal:FREQuency

Supported All with Option UNW

[:SOURce]:PULM:INTernal:FREQuency
<frequency>|MAXimum|MINimum|UP|DOWN
[:SOURce]:PULM:INTernal:FREQuency?

This command sets the pulse rate for the internally-generated square wave using the variable <frequency>. The command, used with the UP|DOWN parameters, will change the frequency by a user-defined step value. Refer to the :PULM:INTernal:FREQuency:STEP command for setting the value associated with the UP and DOWN choices.

This command is used when SQUare is the pulse modulation type. Refer to :PULM:SOURce command for the pulse modulation type selection.

Example
:PULM:INT:FREQ 1MHz
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B [:SOURce]

The preceding example sets the square wave pulse rate to 1 megahertz.

*RST +4.00000000E+002
Range 0.1Hz–10MHz
Key Entry Pulse Rate

:PULM:INTernal:FREQuency:STEP

Supported All with Option UNW

[:SOURce]:PULM:INTernal:FREQuency:STEP[:INCRement]
<freq>|MAXimum|MINimum|DEFault
[:SOURce]:PULM:INTernal:FREQuency:STEP[:INCRement]?

This command sets the step value for the internally-generated square wave pulse rate.

This command is used when SQUare is the pulse modulation type. Refer to :PULM:SOURce command for the pulse modulation type selection. The step value, set with this command, is used with the UP and DOWN choices in the :PULM:INTernal:FREQuency command.

The step value set with this command is not affected by a power-on, preset, or *RST command.

Example

:PULM:INT:FREQ:STEP MIN

The preceding example sets the step value for the square wave pulse rate to 0.1 Hz, the minimum rate.

Range 0.1Hz–10MHz
Key Entry Incr Set

:PULM:INTernal:PERiod

Supported All with Option UNW

[:SOURce]:PULM:INTernal:PERiod
<period>|MAXimum|MINimum|UP|DOWN
[:SOURce]:PULM:INTernal:PERiod?

This command sets the pulse period for the internally generated pulse modulation using the variables <value><units>. The command, used with the UP|DOWN parameters, will change the pulse period by a user–defined step value. Refer to the :PULM:INTernal:PERiod:STEP[:INCRement] command for setting the value associated with the UP and DOWN choices.
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B ([:SOURce])

If the entered value for the pulse period is equal to or less than the value for the pulse width, the pulse width changes to a value that is less than the pulse period. Refer to :PULM:INTernal:PWIDth[1]|2 command for setting the pulse width.

Example

:PULM:INT:PER .5S

The preceding example sets the period of the internally generated pulse to 500 milliseconds.

*RST +4.00000000E−006

Range 30 nS – 42 S

Key Entry Pulse Period

:PULM:INTernal:PERiod:STEP[:INCRement]

Supported All with Option UNW

[:SOURce]:PULM:INTernal:PERiod:STEP[:INCRement]
<value><unit>|UP|DOWN
[:SOURce]:PULM:INTernal:PERiod:STEP[:INCRement]?

This command sets the step value for the internal pulse period using the variable <value><unit>.

The step value, set with this command, is used with the UP and DOWN choices available in the :PULM:INTernal:PERiod command.

The step value set with this command is not affected by a power-on, preset, or *RST command.

Example

:PULM:INT:PER:STEP .1S

The preceding example sets the square wave pulse period step value to 100 milliseconds.

Range 30 nS – 42S

Key Entry Incr Set

:PULM:INTernal:PWIDth:STEP

Supported All with Option UNW

[:SOURce]:PULM:INTernal:PWIDth:STEP
<value><unit>|MAXimum|MINimum|DEFault
[:SOURce]:PULM:INTernal:PWIDth:STEP?

This command sets the step increment for the pulse width using the variables <value><unit>.
Analog Modulation Commands
Pulse Modulation Subsystem—Options UNW and N5180320B ([[:SOURce]])

The step value, set by this command, is used with the **UP** and **DOWN** choices available in the :PULM:INternal:PWIDth[1]|2 command.

The step value, set with this command, is not affected by a power-on, preset, or *RST command.

Example

`:PULM:INT:PWID:STEP 100NS`

The preceding example sets the pulse width step to 100 nanoseconds.

Range 20nS to (pulse period - 10 nS)

Key Entry Incr Set

:PULM:INternal:PWIDth[1]|2

Supported All with Option UNW

[*[:SOURce]]:*PULM:INternal:PWIDth[1]|2 <value><unit>|UP|DOWN

[*[:SOURce]]:*PULM:INternal:PWIDth[1]|2?

This command sets the pulse width for the internally generated pulse signal.

This command sets the pulse width for the internally-generated pulse modulation using the variables <value><unit>. The command, used with the **UP|DOWN** parameters, will change the pulse width by a user-defined step value. Refer to the :PULM:INternal:PWIDth:STEP command for setting the value associated with the **UP** and **DOWN** choices.

If the entered value for the pulse width is equal to or greater than the value for the pulse period, the pulse width changes to a value that is less than the pulse period. For more information, refer to the *PULM:INternal:PERiod command.

Use PWIDTH1 with the DOUBlet parameter and PWIDTH1 and PWIDTH2 with the ADOublet parameter (refer to :PULM:SOURce:INternal command).

NOTE

A power search is recommended for signals with pulse widths less than one microsecond. Refer to “:ALC:SEARch” on page 100.

Example

`:PULM:INT:PWIDth 100MS`

The preceding example sets the pulse width to 100 milliseconds.

*RST +2.00000000E–006

Range 20 nS to (pulse period - 10 nS)

Key Entry Pulse Width

:PULM:INternal:TRAin:LIST:PRESet

Supported All with Options UNW and N5180320B
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B ([:SOURce])

[:SOURce]:PULM:INTernal:TRAin:LIST:PRESet

This command sets the list to a single row of 2us of On Time, 2us of Off Time, and a Repetition of 1. Refer to :PULM:INTernal:TRAin:ONTime and :PULM:INTernal:TRAin:OFFTime.

:PULM:INTernal:TRAin:OFFTime

Supported All with Options UNW and N5180320B

[:SOURce]:PULM:INTernal:TRAin:OFFTime <value>,<value>
[:SOURce]:PULM:INTernal:TRAin:OFFTime?

This command sets the pulse off values for the current list of pulse train off times (where the RF will be off). If this list is shorter than the other lists, then the last element will be repeated as necessary to match the length of the On Time or the Repetition list. The query returns the count of pulse cycle elements in the list of off times. Refer to :PULM:INTernal:TRAin:ONTime and :PULM:INTernal:TRAin:REPetition.

The resolution for this setting is 10nS.

Example

:PULM:INT:TRA:OFFT 100NS,200NS,400E–9

The preceding example sets the pulse train off cycles to 100 nanoseconds, 200 nanoseconds, and 400 nanoseconds.

Range 20nS to 42S

:PULM:INTernal:TRAin:OFFTime:POINts?

Supported All with Options UNW and N5180320B

[:SOURce]:PULM:INTernal:TRAin:OFFTime:POINts?

This query returns the count of elements in the list of off times.

:PULM:INTernal:TRAin:ONTime

Supported All with Options UNW and N5180320B

[:SOURce]:PULM:INTernal:TRAin:ONTime <value>,<value>
[:SOURce]:PULM:INTernal:TRAin:ONTime?

This command sets the pulse on values for the current list of pulse train on times. If this list is shorter than the other lists, then the last element will be repeated as necessary to match the length of the Off Time or the Repetition list. The query returns the count of pulse cycle elements in the list of on times. Refer to :PULM:INTernal:TRAin:OFFTime and :PULM:INTernal:TRAin:REPetition.

The resolution for this setting is 10 nS.
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B ([:SOURce])

Example

[:PULM:INT:TRA:ONT 100NS,200NS,400E–9]

The preceding example sets the pulse train on cycles to 100 nanoseconds, 200 nanoseconds, and 400 nanoseconds.

Range 20nS to 42S

[:PULM:INTernal:TRAin:ONTime:POINts?]

Supported All with Options UNW and N5180320B

[:SOURce]:PULM:INTernal:TRAin:ONTime:POINts?

This query returns the count of elements in the list of on times.

[:PULM:INTernal:TRAin:REPetition]

Supported All with Options UNW and N5180320B

[:SOURce]:PULM:INTernal:TRAin:REPetition <value>,<value>

[:SOURce]:PULM:INTernal:TRAin:REPetition?

This command generates a user-defined list of the pulse repetitions. The maximum is a total count of 2047, so a list of "2047,1" would be too long. Lists that are too long will generate an error and only the first 2047 pulses will be played. If this list is shorter than the other lists, then the last element will be repeated as necessary to match the length of the On Time or Off Time list, whichever is longer. Refer to [:PULM:INTernal:TRAin:ONTime and [:PULM:INTernal:TRAin:OFFTime.

Example

[:PULM:INT:TRA:REP 100,20,3]

The preceding example repeats the first pulse cycle 100 times, the second cycle to be repeated 20 times, and the third cycle 3 times.

Range 1 to 2047 total pulse repetitions
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B [:SOURce]]

[:SOURce]:PULM:INTernal:TRAIN:REPetition:POINts?

Supported All with Options UNW and N5180320B

This query returns the count of elements in the list of repetitions.

[:SOURce]:PULM:INTernal:TRAIN:TRIGger

This command sets the triggering mode for the Pulse Train feature.

- **FRUN**
 - Free Run triggering continuously plays the pulse train.

- **TRIGgered**
 - Trigger runs the pulse train (after waiting the Pulse Delay) each time an external trigger is supplied (edge triggered) to the PULSE BNC, the “Trigger Immediately” softkey is pressed, or the [:SOURce]:PULM:INTernal:TRAIN:TRIGger:IMMediate SCPI command is sent (when the pulse train playback is idle). Triggers received during playback are lost.

- **GATEd**
 - Gated triggering runs the pulse train while an external trigger is supplied (level triggered) to the PULSE BNC. The state of the GATEd trigger is detected only when the playback is transitioning to or in idle. This means that, once started, playback is always completed, even if the GATE trigger changes to the inactive state.

:RST TRIGgered

Key Entry Trigger Mode

[:SOURce]:PULM:INTernal:TRAIN:TRIGger:IMMediate

This command will cause the pulse train to run once. If the pulse train is already running or off, then this SCPI command has no effect.

Key Entry Trigger Immediately

[:SOURce]:PULM:INTernal:VIDeo:POLarity

Supported All with Option UNW

[:SOURce]:PULM:INTernal:VIDeo:POLarity NORMAL|INVerted

[:SOURce]:PULM:INTernal:VIDeo:POLarity?
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B ([:SOURce])

This command inverts the polarity on the internally generated pulse video signal.
If the entered value for Trig Out BNC Video Polarity is set to Invert, the pulse video signal at the Trig Out BNC is inverted.

Example

```
:PULM:INT:VID INV
```

The preceding example inverts the video signal polarity at the Trig Out BNC.

*RST Normal

Key Entry Trig Out BNC Video Polarity Normal Invert

:PULM:SOURce

Supported All with Option UNW

```
[:SOURce]:PULM:SOURce INTernal|EXTernal
[:SOURce]:PULM:SOURce?
```

This command sets the source of the pulse modulation.
The INTernal selection accesses one of the six internally generated modulation inputs while EXTernal selects an external pulse (rear panel connector) input. To select an internally generated modulation input, refer to

```
:PULM:SOURce:INTernal command.
```

Key Entry Pulse Source

:PULM:SOURce:INTernal

Supported All with Option UNW

```
[:SOURce]:PULM:SOURce:INTernal
SQUare|FRUN|TRIGgered|ADOublet|DOUBlet|GATEd|PTRain
[:SOURce]:PULM:SOURce:INTernal?
```

This command selects one of the seven internally generated modulation inputs. There is one external source: Ext Pulse selected by :PULM:SOURce command.

NOTE

The PTRain (Pulse Train) parameter requires Option N5180320B.

```
[:SOURce]:PULM:SOURce:INTernal
SQUare|FRUN|TRIGgered|ADOublet|DOUBlet|GATEd|PTRain
[:SOURce]:PULM:SOURce:INTernal?
```

This command selects one of the seven internally generated modulation inputs. There is one external source: Ext Pulse selected by :PULM:SOURce command.

SQUare This command sets Square as the pulse modulation source. This is an internal free-run pulse with a 50% duty cycle. The period is determined by the rate.

FRUN This command sets Free Run as the pulse modulation source. You can define the period, width, and delay.
Analog Modulation Commands
Pulse Modulation Subsystem–Options UNW and N5180320B ([SOURce])

TRIGgered
This command sets Triggered as the pulse modulation source. This selection produces an RF pulse with a user-defined width and delay at the RF OUTPUT connector when a valid trigger signal occurs at the PULSE connector.

ADOublet
This command sets Adjustable Doublet as the pulse modulation source. This selection produces two pulses at the RF OUTPUT connector for each trigger event at the PULSE connector. The first pulse has a user-defined width and delay (from the rising edge of the Pulse Sync Out signal). The second pulse has a user-defined width and delay (from the rising edge of the first pulse).

DOUBlet
This command sets Trigger Doublet as the pulse modulation source. This produces two pulses at the RF OUTPUT connector for each trigger event at the PULSE connector. The first pulse follows the external trigger signal. The second pulse has user-defined width and delay parameters.

GATEd
This command sets Gated as the pulse modulation source. A pulse train with user-defined period and width parameters occurs at the RF OUTPUT connector when a valid gate signal is applied to the PULSE connector.

PTRain
This selection produces an RF pulse train (up to 2047 distinct cycles) with user-defined widths and delays at the RF OUTPUT connector when a valid trigger signal occurs at the PULSE connector. The Pulse Train Trigger mode selection determines when the pulse train is output.

Example
:PULM:SOUR:INT SQU
The preceding example selects an internal free-run square wave with a 50% duty cycle, as the pulse modulation source.

*RST
FRUN (Int Free–Run)

Key Entry
Square Free-Run Triggered
Trigger Doublet Gated Pulse Train
Adjustable Doublet

:PULM:STATe

Supported
All with Option UNW

[:SOURce]:PULM:STATe ON|OFF|1|0
[:SOURce]:PULM:STATe?
Analog Modulation Commands
Pulse Modulation Subsystem—Options UNW and N5180320B ([:SOURce])

This command enables or disables pulse modulation for the selected path.
When pulse modulation is enabled, the PULSE annunciator appears on the signal generator's front-panel display.

Example

`:PULM:STAT ON`

The preceding example enables the pulse modulation.

```
*RST 0
Key Entry Pulse Off On
```
5 Arb Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

This chapter provides arb signal generation SCPI command descriptions for use in either component or receiver test using Keysight X-Series signal generators.

This chapter contains the following sections:

- **All Subsystem–N5166B/72B/82B [:SOURce]** on page 310
- **Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B [:SOURce]:RADio:DMODulation:ARB** on page 311
- **Dual ARB Subsystem–N5166B/72B/82B [:SOURce]:RADio:ARB** on page 344
- **LARB Subsystem–N5166B/72B/82B [:SOURce]:RADio:LARB** on page 390
- **Multitone Subsystem–N5166B/72B/82B with Option N5180430B [:SOURce]:RADio:MTONe:ARB** on page 391
- **Two Tone Subsystem–N5166B/72B/82B with Option N5180430B [:SOURce]:RADio:TTONe:ARB** on page 411
All Subsystem–N5166B/72B/82B ([:SOURce])

:RADio:ALL:OFF

Supported N5166B/72B/82B

[:SOURce]:RADio:ALL:OFF

This command turns off all digital modulation formats.

Remarks This command does not affect analog modulation.
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B ([:SOURce]:RADio:DMODulation:ARB)

Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B ([:SOURce]:RADio:DMODulation:ARB)

:BASeband:FREQuency:OFFSet

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:BASeband:FREQuency:OFFSet <value><unit>

[:SOURce]:RADio:DMODulation:ARB:BASeband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed–through is not in the center.

The X-Series signal generator provides automatic DAC over–range protection when the offset value is something other than 0 Hz. It scales down the playing I/Q data by \(1/\sqrt{2}\).

*RST +0.00000000E+000

Range +5.0E7 to –5.0E7 Hz

Key Entry Baseband Frequency Offset

:BASeband:FREQuency:OFFSet:PHASe:RESet

Supported N5166B/72B/82B with Option N5180431B

This command clears the phase accumulation and so zero phase shift.

When the Baseband Frequency Offset is non–zero, the hardware rotator accumulates phase–shift of the baseband signal. This residual phase remains even after the offset value is returned to zero. While there is a non–zero residual phase present in the signal, the DAC Over–Range Protection feature will automatically prevent DAC overrange errors from occurring by scaling the signal down by \(1/\sqrt{2}\).

Key Entry Baseband Frequency Offset Phase Reset

:FILTer

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:FILTer

RNYQuist|NYQuist|GAUSSian|

RECTangle|IS95|IS95_EQ|IS95_MOD|IS95_MOD_EQ|EDGE|EWIDe|EHSR|

WCDMa|AC4Fm|"<user FIR>"

[:SOURce]:RADio:DMODulation:ARB:FILTer?
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce:RADio:DMODulation:ARB])

This command specifies the pre–modulation filter type.

- **RNYQuist**: This choice selects a Root Nyquist (root raised cosine) filter. This filter is adjusted using Alpha.
- **NYQuist**: This choice selects a Nyquist (raised cosine) filter. This filter is adjusted using Alpha.
- **GAUSsian**: This choice selects a Gaussian filter which is adjusted using Bbt values.
- **RECTangle**: This choice selects a one symbol wide rectangular filter.
- **IS95**: This choice selects a filter that meets the criteria of the IS–95 standard.
- **IS95_EQ**: This choice selects a filter which is a combination of the IS–95 filter (above) and the equalizer filter described in the IS–95 standard. This filter is only used for IS–95 baseband filtering.
- **IS95_MOD**: This choice selects a filter that meets the criteria of the IS–95 error function (for improved adjacent channel performance) with lower passband rejection than the filter specified in the IS–95 standard.
- **IS95_MOD_EQ**: This choice selects a filter which is a combination of the equalizer filter described in the IS–95 standard and a filter that meets the criteria of the IS–95 error function (for improved adjacent channel performance), with lower passband rejection.
- **EDGE**: This choice selects a linearized Gaussian filter as defined in GSM 05.04.
- **EWIDe**: This choice selects an EDGE spectrally wide pulse shape filter as per 3GPP TS 45.004.
- **EDGE EHSR**: This choice selects an EDGE high symbol rate spectrally narrow pulse shape filter as per 3GPP TS 45.004.
- **WCDMa**: This choice selects a W–CDMA filter which is the equivalent of a Root Nyquist filter with an alpha of 0.22 optimized for ACP.
- **AC4Fm**: This choice selects a predefined Association of Public Safety Communications Officials (APCO) specified compatible 4–level frequency modulation (C4FM) filter.
- **"<user FIR>"**: This variable is any FIR filter file that you have stored in memory. The variable needs no directory path indicating the location of the file, such as FIR: or /USER/FIR. The command assumes the FIR directory. For more information on file names, refer to “File Name Variables” on page 43.
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADIO:DMODulation:ARB)

*RST Root Nyquist

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Nyquist</th>
<th>IS–95</th>
<th>EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>IS–95 Mod</td>
<td>WCDMA</td>
<td></td>
</tr>
<tr>
<td>User FIR</td>
<td>IS–95 w/EQ</td>
<td>Rectangle</td>
<td></td>
</tr>
<tr>
<td>Root Nyquist</td>
<td>IS–95 Mod w/EQ</td>
<td>EDGE Wide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APCO 25 C4FM</td>
<td>EDGE EHSR</td>
<td></td>
</tr>
</tbody>
</table>

:FILTER:ALPHA

Supported N5166B/72B/82B with Option N5180431B

[:SOURCE]:RADIO:DMODulation:ARB:FILTER:ALPHA <val>
[:SOURCE]:RADIO:DMODulation:ARB:FILTER:ALPHA?

This command changes the Nyquist or Root Nyquist filter alpha value.

The filter alpha value can be set to the minimum level (0), the maximum level (1), or in between by using fractional numeric values (0.001 to 0.999).

*RST +5.00000000E−001
Range 0.000 to 1.000
Key Entry Filter Alpha
Remarks To change the current filter type, refer to ":FILTER" on page 311.

:FILTER:BBT

Supported N5166B/72B/82B with Option N5180431B

[:SOURCE]:RADIO:DMODulation:ARB:FILTER:BBT <val>
[:SOURCE]:RADIO:DMODulation:ARB:FILTER:BBT?

This command changes the bandwidth–multiplied–by–bit–time (BbT) filter parameter.

The filter BbT value can be set to the minimum level (0.1), the maximum level (1), or in between by using fractional numeric values (0.100 to 0.999).

*RST +5.00000000E−001
Range 0.100 to 1.000
Key Entry Filter BbT
Remarks This command is effective only after choosing a Gaussian filter. It does not have an effect on other types of filters.
Arb Commands
Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([SOURce]:RADio:DMODulation:ARB)

To change the current filter type, refer to “:FILTER” on page 311.

:FILTER:CHANnel

Supported N5166B/72B/82B with Option N5180431B
[SOURce]:RADio:DMODulation:ARB:FILTER:CHANnel EVM|ACP
[SOURce]:RADio:DMODulation:ARB:FILTER:CHANnel?

This command optimizes the Nyquist and Root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

- **EVM**: This choice provides the most ideal passband.
- **ACP**: This choice improves stopband rejection.

*RST

Key Entry Optimize FIR For EVM ACP

Remarks To change the current filter type, refer to “:FILTER” on page 311.

:HEADER:CLEar

Supported N5166B/72B/82B with Option N5180431B
[SOURce]:RADio:DMODulation:ARB:HEADER:CLEar

This command clears the header information from the file header used by this modulation format.

Key Entry Clear Header

Remarks The Digital Modulation Off On softkey must be set to On for this command to function.

:HEADER:SAVE

Supported N5166B/72B/82B with Option N5180431B
[SOURce]:RADio:DMODulation:ARB:HEADER:SAVE

This command saves the header information to the file header used by this modulation format.

Key Entry Save Setup To Header

Remarks The Digital Modulation Off On softkey must be set to On for this command to function.

:IQ:MODulation:ATTen

Supported N5166B/72B/82B with Option N5180431B
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADio:DMODulation:ARB)

[:SOURCE]:RADio:DMODulation:ARB:IQ:MODulation:ATTen <val>
[:SOURCE]:RADio:DMODulation:ARB:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path.

The variable <val> is expressed in units of decibels (dB).

*RST +6.00000000E+000
Range 0 to 50
Key Entry I/Q Modulator Atten Manual Auto

:iQ:MODulation:ATTen:AUTO

Supported N5166B/72B/82B with Option N5180431B

ON|OFF|1|0

This command enables or disables the I/Q attenuation auto mode.

ON (1) This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. Refer to the :iQ:MODulation:ATTen command for setting the attenuation value.

*RST 1
Key Entry I/Q Modulator Atten Manual Auto

:MDEStination:AAMPliitude

Supported N5166B/72B/82B with Option N5180431B

[:SOURCE]:RADio:DMODulation:ARB:MDEStination:AAMPliitude
NONE|M1|M2|M3|M4
[:SOURCE]:RADio:DMODulation:ARB:MDEStination:AAMPliitude?

This command routes the selected marker to the Alternate Amplitude function. The NONE parameter clears the marker for the Alternate Amplitude function.

*RST NONE

Key Entry None Marker Marker Marker Marker
 1 2 3 4
CAUTION

Incorrect automatic level control (ALC) sampling can create a sudden unlevelled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

NOTE

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

NOTE

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the User’s Guide.

Example
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([[:SOURce]:RADio:DMODulation:ARB])

:RAD:DMOD:ARB:MDES:ALCH M1

The preceding example routes marker 1 to the ALC Hold function.

*RST

None

NOTE

Key Entry

<table>
<thead>
<tr>
<th>Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:MDEStination:PULSe

Supported N5166B/72B/82B with Option N5180431B

CAUTION

The pulse function incorporates ALC hold. Incorrect automatic level control (ALC) sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:DMODulation:ARB:MDEStination:PULSe

NONE|M1|M2|M3|M4

[:SOURce]:RADio:DMODulation:ARB:MDEStination:PULSe?

This command enables the marker pulse/RF blanking function for the selected marker.

This function automatically uses the ALC hold function, so there is no need to select both the ALC hold and pulse/RF blanking functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker's polarity, see

:MPOLarity:MARKer1|2|3|4.

NOTE

Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the User’s Guide.

NONE This terminates the marker RF blanking/pulse function.
M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example
The preceding example routes marker 2 to Pulse/RF Blanking.

*RST NONE

Key Entry

<table>
<thead>
<tr>
<th>Marker</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:MODulation:ASK[:DEPTh]

Supported N5166B/72B/82B with Option N5180431B
[:SOURce]:RADio:DMODulation:ARB:MODulation:ASK[:DEPTh] <0% – 100%>
[:SOURce]:RADio:DMODulation:ARB:MODulation:ASK[:DEPTh]?
This command changes the depth for the amplitude shift keying (ASK) modulation. Depth is set as a percentage of the full power on level.

*RST +1.00000000E+002
Range 0 to 100
Key Entry ASK Depth 100%
Remarks The modulation is applied to the I signal, the Q value is always kept at zero.

:MODulation:FSK[:DEViation]

Supported N5166B/72B/82B with Option N5180431B
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADIO:DMODulation:ARB)

[[:SOURCE]:RADIO:DMODulation:ARB:MODulation:FSK[:DEViation]
<val>
[[:SOURCE]:RADIO:DMODulation:ARB:MODulation:FSK[:DEViation]?]

This command sets the symmetric FSK frequency deviation value.
The variable <val> is expressed in units of Hertz and the maximum range value equals the current symbol rate value multiplied by ten, limited to 20 MHz.

*RST +4.00000000E+002
Range 0 to 10 times the current symbol rate but never more than the lesser of maxSymbolRate*0.8 or 40 MHz.
Key Entry Freq Dev
Remarks To change the modulation type, refer to “:MODulation[:TYPE]” on page 319.
Refer to the :SRATe command for a list of the minimum and maximum symbol rate values.
To set an asymmetric FSK deviation value, refer to the User's Guide for more information.

:MODulation[:TYPE]

Supported N5166B/72B/82B with Option N5180431B

[[:SOURCE]:RADIO:DMODulation:ARB:MODulation[:TYPE]
ASK|BPSK|QPSK|QPSK|IS95QPSK|
GRAYQPSK|QPSK|IS95QPSK|PSK8|PSK16|D8PSK|EDGE|MSK|FSK2|FSK4|FSK8|FSK16|
C4FM|QAM4|QAM16|QAM32|QAM64|QAM128|QAM256|QAM1024|UIQ|UFSK|VSAQAM64|VSAQAM128|VSAQAM256|VSAQAM512|VSAQAM1024
[[:SOURCE]:RADIO:DMODulation:ARB:MODulation[:TYPE]?]

This command sets the modulation type for the digital modulation personality.

*RST QPSK
Key Entry AS BPS QPS Unbalanced IS–95
K K K QPSK QPSK

QPSK IS–95 π/4 8PS 16PS D8PS
K OQPSK DQPSK K K K

2–Lvl 4–Lvl 8–Lvl 16–Lvl C4F
FSK FSK FSK FSK M
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

32QA 64QA 128Q 256QA 1024Q Select
M M AM M AM User IQ

Select User VSA VSA VSA
FSK 16QAM 32QAM 64QAM

VSA VSA VSA 4QAM
256QAM 512QAM 1024QAM

Gray Coded EDG MS 16QA Select User
QPSK E K M IQ

VSA 128QAM

:MODulation:UFSK

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:MODulation:UFSK <“filename”>
[:SOURce]:RADio:DMODulation:ARB:MODulation:UFSK?

This command selects the user FSK file to use when the :MODulation[:TYPE] is set to UFSK.
For more information on the file name syntax, see “File Name Variables” on page 43.

Key Entry Select User FSK

:MODulation:UIQ

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:MODulation:UIQ <“filename”>
[:SOURce]:RADio:DMODulation:ARB:MODulation:UIQ?

This command selects the user FSK file to use when the :MODulation[:TYPE] is set to UIQ.
For more information on the file name syntax, see “File Name Variables” on page 43.

Key Entry Select User I/Q

:MODulation:UQPSk[:GAIN]

Supported N5166B/72B/82B with Option N5180431B
Arb Commands
Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([SOURce]:RADio:DMODulation:ARB)

[:SOURce]:RADio:DMODulation:ARB:MODulation:UQPSk[:GAIN] <val>
[:SOURce]:RADio:DMODulation:ARB:MODulation:UQPSk[:GAIN]?

This command sets the Unbalanced QPSK modulation I versus Q gain, which is the difference in amplitude between I and Q. UQPSK is a 2 bits per symbol modulation where the I constellation values are typically set to be larger or smaller than the Q constellation values. This factor is known as the I Gain. Use this command when the :MODulation[:TYPE] is set to UQPSK.

The variable <val> is expressed in units of dB and the resolution is 0.01 dB.

*RST 0 dB
Range -50 to 50 dB
Key Entry I Gain

:MPOLarity:MARKer1|2|3|4

Supported N5166B/72B/82B with Option N5180431B
[:SOURce]:RADio:DMODulation:ARB:MPOlarity:MARker1|2|3|4 NEGative|POSitive
[:SOURce]:RADio:DMODulation:ARB:MPOlarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

*RST POS
Key Entry Marker 1 Polarity Neg Pos Maker 2 Polarity Neg Pos Marker 3 Polarity Neg Pos Marker 4 Polarity Neg Pos

:NOISe:BANDwidth

Supported N5166B/72B/82B with Options N5180431B and N5180403B
[:SOURce]:RADio:DMODulation:ARB:NOISe:BANDwidth <value><unit>
[:SOURce]:RADio:DMODulation:ARB:NOISe:BANDwidth?

This command selects the flat noise bandwidth value of the real–time noise for an ARB waveform.

Typically, this value is set slightly wider than the carrier bandwidth.
Arb Commands

Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

*:RST +1.00000000E+000

Range

- Option 653: 1 sa to 75 Msa
- Option 655: 1 sa to 150 Msa
- Option 656: 1 sa to 100 Msa
- Option 657: 1 sa to 200 Msa

Key Entry Noise Bandwidth

:NOISe:CBRate

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:,SOURce]:RADio:DMODulation:ARB:NOISe:CBRate <1bps - 999Mbps> [:SOURce]:RADio:DMODulation:ARB:NOISe:CBRate?

This command sets a value of the carrier bit rate (gross bit rate) for purposes of calculating the Eb/N0 (energy per bit over noise power density at the receiver). When the carrier to noise ratio format is set to Eb/N0 (refer to the :NOISe:CNFormat command), the adjustment of the carrier bit rate will have an immediate impact on the carrier to noise ratio as specified by Eb/N0. For DMODulation (ARB Custom) the carrier bit rate is derived from the symbol rate and bits per symbol of the modulation. The carrier bit rate is a saved instrument state that is recorded in the waveform header.

The query returns the current carrier bit rate setting.

Example

The preceding example sets the carrier bit rate to 5 Mbps.

Default 2.000000000 Mbps

Range 1 bps to 999 Mbps

Key Entry Carrier Bit Rate

:NOISe:CBWidth

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:,SOURce]:RADio:DMODulation:ARB:NOISe:CBWidth <1Hz-125MHz>

[:,SOURce]:RADio:DMODulation:ARB:NOISe:CBWidth?
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADio:DMODulation:ARB)

This command selects the carrier bandwidth over which the AWGN (additive white gaussian noise) is applied. The noise power will be integrated over the selected bandwidth for the purposes of calculating C/N (carrier to noise ratio). The carrier bandwidth is typically the symbol rate. For more information refer to “:NOISE[:STATE]” on page 327.

*RST 1.000000000 MHz
Range 1 Hz to 125 MHz
Key Entry Carrier Bandwidth

:NOISE:CN

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURCE]:RADio:DMODulation:ARB:NOISE:CN <-100dB - 100dB>
[:SOURCE]:RADio:DMODulation:ARB:NOISE:CN?

This command sets the carrier to noise ratio in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to the “:NOISE:CBWidth” command.

Example
:RAD:ARB:NOIS:CN 50DB

The preceding example sets the carrier to noise ratio to 50 dB.

*RST +0.00000000E+000
Key Entry Carrier to Noise Ratio

:NOISE:CNFormat

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURCE]:RADio:DMODulation:ARB:NOISE:CNFormat CN|EBNO
[:SOURCE]:RADio:DMODulation:ARB:NOISE:CNFormat?

This command selects either the Carrier to Noise Ratio (C/N) or energy per bit over noise power density at the receiver (Eb/N0) as the variable controlling the ratio of carrier power to noise power in the carrier bandwidth.

Example
:RAD:DMOD:ARB:NOIS:CNF EBNO

The preceding example sets the carrier to noise ratio format to EbNo.

Default Carrier to Noise Ratio Format C/N
Key Entry Carrier to Noise Ratio Format C/N Eb/No
Arb Commands
DModulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADio:DMODulation:ARB)

:[NOISE]:EBNO

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURCE]:RADio:DMODulation:ARB:NOISE:EBNO <ebno in dB>
[:SOURCE]:RADio:DMODulation:ARB:NOISE:EBNO?

This command allows the C/N to be set using the Eb/N0 (energy per bit over noise power density at the receiver) form. This requires that the carrier bit rate (:NOISE:CBRate) be set properly. The range of Eb/N0 is limited to the range that is equivalent to –100 to 100 dB of C/N. This value is only effective when Eb/N0 has been enabled by the :NOISE:CNFormat command.

The query returns the value of Eb/N0.

Default 0 dB
Range –100 to 100 dB
Key Entry Carrier to Noise Ratio Format Eb/No

:[NOISE]:MUX

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURCE]:RADio[1]:DMODulation:ARB:NOISE:MUX
SUM|CARRier|NOISE
[:SOURCE]:RADio[1]:DMODulation:ARB:NOISE:MUX?

This command enables diagnostic control of additive noise, such that only the noise, only the carrier, or the sum of both the noise and the carrier are output from the internal baseband generator. With the ALC off, this feature enables direct measurement of just the carrier or the noise contributions to the total power. The system will still behave as if both the noise and the carrier are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

Example

:RAD:DMOD:ARB:NOIS:MUX CARR

The preceding example enables the direct measurement of the carrier contribution to the total power.

Default Carrier+Noise
Key Entry Carrier+Noise | Carrier | Noise

:[NOISE]:POWer:CARRier

Supported N5166B/72B/82B with Options N5180431B and N5180403B
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:CARRier <carrierPower>
[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:CARRier?

This command sets the current carrier power level if noise is on.

In the CARRier control mode, the total power will be adjusted to achieve the specified carrier power and the carrier power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the carrier power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total power is adjusted.

In the NOISe control mode, this will adjust the total noise power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total noise power is adjusted. See also :NOISe:POWer:CONTrol[:MODE] and :NOISe:POWer:NOISe:TOTal commands.

Range The range varies based on the bounds of the total power that results from the noise settings.
Default The appropriate value given the current total power and the current Carrier to Noise (C/N).
Key Entry Carrier Power

:NOISe:POWer:CONTrol[:MODE]

Supported N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:CONTrol[:MODE]TO Tal|CARRier|NOISe
[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:CONTrol[:MODE]?

This command sets the power control to one of the three following modes:

Total This is the default mode where the total power and C/N are independent variables and the carrier power and total noise power are dependent variables set by the total power, C/N and the rest of the noise settings. The carrier power and total noise power will change as any noise parameter is adjusted to keep the total power and the C/N at their last specified values.

Carrier In this mode the carrier power and C/N are independent variables and the total power and total noise power are dependent variables set by the carrier power, C/N and the rest of the noise settings. The total power and total...
noise power will change as any noise parameter is adjusted to keep the carrier power and the C/N at their last specified values.

Total Noise
In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

Default
TOTal

Key Entry
Total Carrier Total Noise

:NOISe:POWer:NOISe:CHANnel?

Supported
N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:NOISe:CHANnel?
The query returns the current noise power across the carrier bandwidth in dBm.

:NOISe:POWer:NOISe:TOTal

Supported
N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:NOISe:TOTal
<totalNoisePowerInDbm>
[:SOURce]:RADio:DMODulation:ARB:NOISe:POWer:NOISe:TOTal?

This command sets the current total noise power level if noise is on.

In the NOISe control mode, the total power will be adjusted to achieve the specified total noise power and the total noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the total noise power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the total power is adjusted.

In the CARRier control mode, this will adjust the carrier power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the carrier power is adjusted.

See also :NOISe:POWer:CONTrol[:MODE] command.

Range
The range varies based on the bounds of the total power that results from the noise settings.
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([::SOURce]:RADio:DMODulation:ARB)

Default
The appropriate value given the current total power and the current Carrier to Noise (C/N).

Key Entry
Total Noise Power

:NOISe[:STATe]

Supported
N5166B/72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:DMODulation:ARB:NOISe[:STATe] ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB:NOISe[:STATe]?

This command enables or disables adding real–time, non–repeating additive white gaussian noise (AWGN) to the carrier modulated by the waveform being played by the Dual ARB waveform player.

For more information on AWGN, see the User’s Guide.

Example
:RAD:ARB:NOIS ON

The preceding example applies real–time AWGN to the carrier.

*RST 0

Key Entry
Real–Time AWGN Off On

:PHASe:NOISe:F1

Supported
N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:F1 <value><unit>
[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:F1?

This command sets the start frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see :PHASe:NOISe:F2). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.

The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User’s Guide.

*RST +1.00000000E+003

Range
0 Hz to 77.50052449 MHz

Key Entry
Desired Start Freq (f1)

:PHASe:NOISe:F1:ACTual?

Supported
N5172B/82B with Options N5180431B and N5180432B
Arb Commands

Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:F1:ACTual?

This query returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.

:PHASe:NOISe:F2

 Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:F2 <value><unit>
[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:F2?

This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see :PHASe:NOISe:F1). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User’s Guide.

*RST +3.00000000E+004

Range 1 Hz to 77.50052449 MHz

Key Entry Desired Stop Freq (f2)

:PHASe:NOISe:F2:ACTual?

 Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:F2:ACTual?

This query returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

:PHASe:NOISe:LMID

 Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:LMID <value>
[:SOURce]:RADio:DMODulation:ARB:PHASe:NOISe:LMID?

This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator.

The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.
Arb Commands
Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADio:DMODulation:ARB)

For more information on the phase noise impairment option, see the User’s Guide.

The amplitude range varies depending on the f2 value (“:PHASe:NOIsE:F2” on page 328). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The range values are expressed in units of dBc/Hz.

<table>
<thead>
<tr>
<th>Command</th>
<th>Range</th>
<th>Key Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>-7.00000000E+001</td>
<td>Desired Flat Amplitude (Lmid)</td>
</tr>
<tr>
<td>Range</td>
<td>-300 to 100 dBc/Hz</td>
<td></td>
</tr>
</tbody>
</table>

::PHASe:NOIsE:LMID:ACTual?

Supported N5172B/82B with Options N5180431B and N5180432B

This query returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.

::PHASe:NOIsE[:STATe]

Supported N5172B/82B with Options N5180431B and N5180432B

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the User’s Guide.

*RST 0

Key Entry Phase Noise Off On

::PHASe:NOIsE:TRACe?

Supported N5172B/82B with Options N5180431B and N5180432B

This query returns the theoretical phase noise amplitude mask applied with the current settings if the phase noise feature is on. This mask does not take the natural phase noise of the instrument into account, only the impairment from
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([;SOURce]:RADio:DMODulation:ARB)

the phase noise feature. The output is over the start frequency to the stop
frequency for the number of samples specified. The samples are taken at
logarithmic frequency steps and the output is in dBc/Hz.

<table>
<thead>
<tr>
<th>Range</th>
<th><startFreq></th>
<th>1 Hz to 100 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><stopFreq></td>
<td>1 Hz to 100 MHz</td>
</tr>
<tr>
<td></td>
<td><numSamples></td>
<td>1 to 8192</td>
</tr>
</tbody>
</table>
Arb Commands
Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

:PLAY:COMpleted?

Supported N5166B/72B/82B with Option N5180431B

This SCPI command returns whether the ARB waveform has completed since the last query or the last time the waveform was set up to play. The waveform is setup to play when various waveform parameters are adjusted, such as turning the mode off and on or changing the triggering mode. It returns a 0 if the waveform has not completed and a 1 if the waveform has completed at least one time. After this query, the value will be reset to 0 until another completion occurs.

:PLAY:WCOMpleted?

Supported N5166B/72B/82B with Option N5180431B

This SCPI command returns whether the ARB waveform has completed since the last query or the last time the waveform was setup up to play. This SCPI command will wait until the ARB waveform has completed. The completion is after repeat counts for single trigger. The waveform is set up to play when various waveform parameters are adjusted, such as turning the mode off and on or changing the triggering mode. It returns a 0 if the waveform has not completed and a DCAS has been sent to the instrument or the mode is not on, otherwise a 1 will be returned when the waveform has completed at least one time. After this query, the value will be reset to 0 until another completion occurs.

:RETRigger

Supported N5166B/72B/82B with Option N5180431B

This command enables or disables the ARB retriggering mode; the retrigger mode controls how the retriggering function performs while a waveform is playing.

ON (1) This choice specifies that if a trigger occurs while a waveform is playing, the waveform will retrigger at the end of the current waveform sequence and play once more.

OFF (0) This choice specifies that if a trigger occurs while a waveform is playing, the trigger will be ignored.
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

IMMediate
This choice specifies that if a trigger occurs while a waveform is playing, the waveform will reset and replay from the start immediately upon receiving a trigger.

:*RST
ON

Key Entry
On Off Immediate

:SCLock:RATE

Supported
N5166B/72B/82B with Option N5180431B

[[:SOURce]:RADio:DMODulation:ARB:SCLock:RATE <val>
[:SOURce]:RADio:DMODulation:ARB:SCLock:RATE?

This command sets the sample clock rate.

The variable <val> is expressed in units of Hertz (kHz – MHz)

:*RST
+4.00000000E+006

Range
1E3 to 2E8

Key Entry
ARB Sample Clock

Remarks
The modulation format should be active before executing this command. If this command is executed before the modulation format is active, the entered value will be overridden by a calculated factory default value. Refer to the [:STATE] command to activate the modulation format.

:SETup

Supported
N5166B/72B/82B with Option N5180431B

[[:SOURce]:RADio:DMODulation:ARB:SETup
GSM|NADC|PDC|PHS|DECT|AC4Fm|
ACQPsk|CDPD|PWT|EDGE|TETRa|BLUetooth|DEFault|MCARrier|"<filename>"
[:SOURce]:RADio:DMODulation:ARB:SETup?

This command selects the digital modulation format type or multicarrier, and turns multicarrier off or on (see the MCARrier choice description).

The **MCARrier** choice selects multicarrier and turns it on. Selecting any other setup such as GSM or CDPD turns multicarrier off. To select the multicarrier setup, see the “:SETup:MCARrier” on page 333.

:*RST
NADC

Key Entry
GS NAD PD PH DEC APCO 25
M C C S T w/C4FM
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier

Supported N5166B/72B/82B with Option N5180431B

GSM|NADC|PDC|PHS|DECT|
AC4Fm|ACQPSk|CDPD|PWT|EDGE|TETRa,<num carriers>,<freq spacing>)|<file name>

This command builds a table with the specified number of carriers and frequency spacing or retrieves the setup stored in the specified user file.

The carrier type, number of carriers, and frequency spacing value are returned when a query is initiated. The output format is as follows:

<carrier type>,<num carriers>,<freq spacing>

If a specific file is loaded and then queried, only the file name is returned.

The variable <freq spacing> is expressed in units of Hertz (kHz–MHz).

*RST

Carrier: NADC <num carriers>: 2

<freq spacing>: +1.0000000000000E+06

Range

<num carriers>: 2–100

<freq spacing>: 2 ÷ (num carriers) – 1) ÷ 80 MHz

Key Entry

GSM NADC PDC PHS DECT

CDPD PWT EDGE TETRA # of Carriers

Remarks
For information on the file name syntax, refer to “File Name Variables” on page 43.
Arb Commands
Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

Custom Digital Mod State APCO w/CQPSK
APCO 25 w/C4FM Freq Spacing

Remarks For information on the file name syntax, refer to “File Name Variables” on page 43.

:SETup:MCARrier:PHASe

Supported N5166B/72B/82B with Option N5180431B
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:PHASe
FIXed|RANDom
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:PHASe?

This command toggles the phase settings for multicarrier digital modulation.

FIXed This choice sets the phase of all carriers to 0.
RANDom This choice sets random phase values for all of the carriers.

*RST FIX

Key Entry Carrier Phases Fixed Random

:SETup:MCARrier:STORe

Supported N5166B/72B/82B with Option N5180431B
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:STORe "<filename>"

This command stores the current multicarrier setup information.
The stored file contains information that includes the digital modulation format, number of carriers, frequency spacing, and power settings for the multicarrier setup.

Key Entry Load/Store
Remarks The setting enabled by this command is not affected by signal generator power–on, preset, or *RST.

For information on the file name syntax, refer to “File Name Variables” on page 43.

:SETup:MCARrier:TABLe

Supported N5166B/72B/82B with Option N5180431B
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLe
INIT|APPend|<carrier_num>,GSM|NADC|PDC|PHS|DECT|AC4Fm|ACQPsk|CDPD|PWT|ED

For information on the file name syntax, refer to “File Name Variables” on page 43.
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

GE|TETRa|
"<file name>"",<freq_offset>,<power>
[:SOURce]:RADio:DMODulation:ARB:SETup:MCARrier:TABLE? <carrier_num>

This command modifies the parameters of one of the available multicarrier
digital modulation formats.

The variable <freq_offset> is expressed in units of Hertz (kHz–MHz).
The variable <power> is expressed in units of decibels (dB).

 INIT This choice clears the current information and creates a
new one–row table, allowing for further definition using
additional parameters.

 APPend This choice adds rows to an existing table.

 <carrier_num> This variable specifies the number of the carriers in the
multicarrier table that will be modified.
The value of the variable <carrier_num> must be
specified prior to selecting the digital modulation
format.

Carrier type, frequency offset, and power level are returned when a query is
initiated. The output format is as follows:

 <carrier type>,<freq_offset>,<power>

*RST carrier type: NADC <freq_offset>: −5.00000000E+004
<power>: +0.00000000E+000

Range <freq_offset>: −8E7 to 8E7 <power>: −40 to 0

Key Entry Initialize Table Insert Row GSM

 NADC PDC PHS DECT
APCO 25 w/C4FM APCO w/CQPSK TETRA
CDPD PWT EDGE Custom Digital Mod State

Remarks For information on the file name syntax, refer to “File
Name Variables” on page 43.
Arb Commands

Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B

([::SOURce]:RADio:DMODulation:ARB)

To store a multicarrier setup refer to “::SETup:MCARrier:STORe” on page 334.

::SETup:MCARrier:TABLE:NCARriers

Supported

N5166B/72B/82B with Option N5180431B

[::SOURce]:RADio:DMODulation:ARB::SETup:MCARrier:TABLE:NCARriers?

This query returns the number of carriers in the current multicarrier setup.

| *RST | +2 |
| **Range** | 1 to 100 |

Key Entry

of Carriers

::SETup:STORe

Supported

N5166B/72B/82B with Option N5180431B

[::SOURce]:RADio:DMODulation:ARB::SETup:STORe "<file name>"

This command stores the current custom digital modulation state.

The saved file contains information that includes the modulation type, filter and symbol rate for the custom modulation setup.

Key Entry

Store Custom Dig Mod State

Remarks

For information on the file name syntax, refer to “File Name Variables” on page 43.

::SRATe

Supported

N5166B/72B/82B with Option N5180431B

[::SOURce]:RADio:DMODulation:ARB::SRATe <val>

[::SOURce]:RADio:DMODulation:ARB::SRATe?

This command sets the transmission symbol rate.

The variable <val> is expressed in units of symbols per second (sps–Msps) and the maximum range value is dependent upon the modulation type and filter.

*RST	+1.00000000E+006	
Range	Option 653	50 sps to 37.5 Msps
	Option 655	50 sps to 75 Msps
	Option 656	50 sps to 50 Msps
	Option 657	50 sps to 100 Msps

Key Entry

Symbol Rate
Arb Commands

Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

[:TRIGger:TYPE]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE
CONTinuous|SINGle|GATE

[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE?

This command sets the trigger mode (type) that controls the waveform’s playback.

Triggers control the playback by telling the X-Series signal generator when to play the modulating signal (waveform). Depending on the trigger settings, the waveform playback can occur once, continuously, or the X-Series signal generator may start and stop playing the waveform repeatedly (GATE mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the X-Series signal generator to trigger on either state of the trigger signal. It is common to have multiple triggers, also referred to as trigger occurrences or events, occur when the X-Series signal generator requires only a single trigger. In this situation, the X-Series signal generator recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the waveform. This is because the X-Series signal generator sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the waveform’s final I and Q levels determine whether you will see the carrier signal or not (zero = no carrier, other values = carrier visible). At the end of most files, the final I and Q points are set to a value other than zero.

There are four parts to configuring the trigger:

− Choosing the trigger type, which controls the waveform’s transmission.

− Setting the waveform’s response to triggers:
 − CONTinuous, see “[:TRIGger:TYPE:CONTinuous[:TYPE]]” on page 339
 − SINGle, see “:RETRigger” on page 331
 − GATE, selecting the mode also sets the response

− Selecting the trigger source (see “[:TRIGger[:SOURce]]” on page 340), which determines how the X-Series signal generator receives its trigger signal, internally or externally. The GATE choice requires an external trigger.

− Setting the trigger polarity when using an external source:
 − CONTinuous and SINGle see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 342
 − GATE, see “:TRIGger:TYPE:GATE” on page 339

For more information on triggering, see the User’s Guide.

The following list describes the trigger type command choices:
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([SOURce]:RADio:DMODulation:ARB)

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Continuous</th>
<th>Single</th>
<th>Gated</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTInuous</td>
<td>Upon triggering, the waveform repeats continuously.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINGle</td>
<td>Upon triggering, the waveform segment or sequence plays once.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATE</td>
<td>An external trigger signal repeatedly starts and stops the waveform’s playback (transmission). The time duration for playback depends on the duty period of the trigger signal and the gate polarity selection (see “:TRIGger:TYPE:GATE” on page 339). The waveform plays during the inactive state and stops during the active polarity selection state. The active state can be set high or low. The gate mode works only with an external trigger source.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE
The ARB gating behavior described above is opposite to the gating behavior for real-time custom mode.

RST CONT
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURce]:RADio:DMODulation:ARB)

:TRIGger:TYPE:CONTinuous[:TYPE]

Supported N5166B/72B/82B with Option N5180431B

TRIGger|RESet
[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:CONTinuous[:TYPE]?

This commands selects the waveform’s response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see “:TRIGger:TYPE” on page 337.

The following list describes the waveform’s response to each of the command choices:

FREE Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.

TRIGger The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

RESet The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.

*RST FREE

Key Entry Free Trigger & Reset &
Run Run Run

:TRIGger:TYPE:GATE

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:GATE LOW|HIGH
[:SOURce]:RADio:DMODulation:ARB:TRIGger:TYPE:GATE?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the active state occurs, the X-Series signal generator starts the waveform playback at the last played
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RAD:DMODulation:ARB)

Sample point, then stops the playback at the next sample point when the
inactive state occurs. For more information on triggering and to select gating
as the trigger mode, see “TRIgger:TYPE” on page 337.

The following list describes the X-Series signal generator’s gating behavior for
the polarity selections:

- **LOW** The waveform playback starts when the trigger signal
goes low (active state) and stops when the trigger
signal goes high (inactive state).

- **HIGH** The waveform playback starts when the trigger signal
goes high (active state) and stops when the trigger
signal goes low (inactive state).

- **RST** HIGH

Key Entry Gate Active Low High

:TRIGger[:SOURCE]

Supported N5166B/72B/82B with Option N5180431B

[:SOURCE]:RAD:DMODulation:ARB:TRIGger[:SOURCE] KEY|EXT|BUS

[:SOURCE]:RAD:DMODulation:ARB:TRIGger[:SOURCE]?

This command sets the trigger source.

For more information on triggering, see “TRIgger:TYPE” on page 337. The
following list describes the command choices:

- **KEY** This choice enables manual triggering by pressing the
 front panel Trigger.

- **EXT** An externally applied signal triggers the waveform. This
 is the only choice that works with gating. The following
 conditions affect an external trigger:

 - The input connector selected for the trigger signal.
 You have a choice between the rear panel PATTERN
 TRIG IN connector or the PATT TRIG IN 2 pin on the
 rear panel AUXILIARY I/O connector. To make the
 connector selection, see
 “TRIgger[:SOURCE]:EXTernal[:SOURCE]” on page
 342.

 For more information on the connectors and on
 connecting the cables, see the User’s Guide.

 - The trigger signal polarity:
 - gating mode, see “TRIgger:TYPE:GATE” on
 page 339
Arb Commands

Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([:SOURCE]:RADio:DMODulation:ARB)

— continuous and single modes, see
“:TRIGger[:SOURCE]:EXTernal:SLOPe” on page 342

— The time delay between when the X-Series signal
generator receives a trigger and when the waveform
responds to the trigger. There are two parts to
setting the delay:

— setting the amount of delay, see
“:TRIGger[:SOURCE]:EXTernal:DELay” on page 341

— turning the delay on, see
“:TRIGger[:SOURCE]:EXTernal:DELay:STATe” on page 342

BUS This choice enables triggering over the GPIB or LAN
using the *TRG or GET commands or the AUXILIARY
INTERFACE (RS–232) using the *TRG command.

*RST

Key Entry Trigger Key Ext Bus

:TRIGger[:SOURCE]:EXTernal:DELay

Supported N5166B/72B/82B with Option N5180431B

[:SOURCE]:RADio:DMODulation:ARB:TRIGger[:SOURCE]:EXTernal:DELay <val>
[:SOURCE]:RADio:DMODulation:ARB:TRIGger[:SOURCE]:EXTernal:DELay?

This command sets the amount of time to delay the X-Series signal generator’s
response to an external trigger.

The delay is a path (time) delay between when the X-Series signal generator
receives the trigger and when it responds to the trigger. For example,
configuring a trigger delay of two seconds, causes the X-Series signal
generator to wait two seconds after receipt of the trigger before the X-Series
signal generator plays the waveform.

The delay does not occur until you turn it on (see
“:TRIGger[:SOURCE]:EXTernal:DELay:STATe” on page 342). You can set the
delay value either before or after turning it on.

For more information on configuring an external trigger source and to select
external as the trigger source, see “:TRIGger[:SOURCE]” on page 340.

The unit of measurement for the variable <val> is in seconds (nsec–sec).

*RST +1.00000000E–003

Range 1E–8 to 4E1
Arb Commands
Dmodulation Subsystem—N5166B/72B/82B with Option N5180431B
([[:SOURce]:RADio:DMODulation:ARB])

Key Entry **Ext Delay Time**

`:TRIGger[:SOURce]:EXTernal:DELay:STATe`

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DELay:STATe ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:DELay:STATe?

This command enables or disables the external trigger delay function.

For setting the delay time, see “`:TRIGger[:SOURce]:EXTernal:DELay`” on page 341, and for more information on configuring an external source, see “`:TRIGger[:SOURce]`” on page 340.

*RST 0

Key Entry **Ext Delay Off On**

`:TRIGger[:SOURce]:EXTernal:SLOPe`

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:SLOPe POSitive|NEGative
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal:SLOPe?

This command sets the polarity for an external trigger signal while using the continuous, single triggering mode. To set the polarity for gating, see “`:TRIGger:TYPE:GATE`” on page 339.

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger signal. When the X-Series signal generator receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see “`:TRIGger[:SOURce]`” on page 340.

*RST NEG

Key Entry **Ext Polarity Neg Pos**

`:TRIGger[:SOURce]:EXTernal[:SOURce]`

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal[:SOURce] EPT1|EPT2|EPTRIGGER1|EPTRIGGER2
[:SOURce]:RADio:DMODulation:ARB:TRIGger[:SOURce]:EXTernal[:SOURce]?
Arb Commands
Dmodulation Subsystem–N5166B/72B/82B with Option N5180431B
([[:SOURce]:RADio:DMODulation:ARB])

This command selects which PATTERN TRIG IN connection the X-Series signal
generator uses to accept an externally applied trigger signal when external is
the trigger source selection.

For more information on configuring an external trigger source and to select
external as the trigger source, see “:TRIGger[:SOURce]” on page 340. For more
information on the rear panel connectors, see the User’s Guide.

The following list describes the command choices:

- **EPT1** This choice is synonymous with EPTRIGGER1 and
 selects the PATTERN TRIG IN rear panel connector.

- **EPT2** This choice is synonymous with EPTRIGGER2 and
 selects the PATT TRIG IN 2 pin on the rear panel
 AUXILIARY I/O connector.

- **EPTRIGGER1** This choice is synonymous with EPT1 and selects the
 PATTERN TRIG IN rear panel connector.

- **EPTRIGGER2** This choice is synonymous with EPT2 and selects the
 PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O
 connector.

- **:*RST** EPT1

Key Entry Patt Trig In 1 Patt Trig In 2

[:STATe]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:DMODulation:ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio:DMODulation:ARB[:STATe]?

This command enables or disables the digital modulation capability.

- **ON (1)** This choice sets up the internal hardware to generate
 the currently selected digital modulation format signal
 selection.

- **OFF (0)** This choice disables the digital modulation capability.

- **:*RST** 0

Key Entry Digital Modulation Off On

Key Path Mode > ARB Custom Modulation > Digital Modulation
Off On

Remarks When On is selected, the I/Q state is activated and the
I/Q source is set to internal.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

:BASeband:FREQuency:OFFSet

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:BASeband:FREQuency:OFFSet <value><unit>
[:SOURce]:RADio:ARB:BASeband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed-through is not in the center.

The X-Series signal generator provides an automatic DAC over-range protection feature, which can be turned off (factory default has it set to on). When turned on, the protection is active when the offset value is something other than 0 Hz. It scales down the playing I/Q data by \(1/\sqrt{2}\). To turn the protection off, see ":DOPRotection" on page 345.

*RST 0 Hz

Range –5.0E7 to +5.0E7 Hz

Key Entry Baseband Frequency Offset

:BASeband:FREQuency:OFFSet:PHASe:RESet

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:BASeband:FREQuency:OFFSet:PHASe:RESet

This command clears the phase accumulation and so zero phase shift.

When the Baseband Frequency Offset is non-zero, the hardware rotator accumulates phase-shift of the baseband signal. This residual phase remains even after the offset value is returned to zero. While there is a non-zero residual phase present in the signal, the DAC Over-Range Protection feature will automatically prevent DAC overrange errors from occurring by scaling the signal down by \(1/\sqrt{2}\).

Key Entry Baseband Frequency Offset Phase Reset

:CLIPping

Supported N5166B/72B/82B

Clipping cannot be undone (i.e. restoring clipping value to 100% will have no effect on a previously clipped waveform.)

[[:SOURce]:RADio:ARB:CLIPping "<file name>"|IJQ|IORQ,<value> [,<value>]]
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

This command sets the clipping level of the selected waveform segment to a percentage of its highest peak.

The variable <value> is expressed in units of percent.

- **I/Q**: This choice clips the composite I/Q waveform.
- **IORQ**: This choice clips I and Q separately. When this choice is enabled, percentage values for both I and Q must be specified.

*RST I/Q <value>: +100

Range

<value>: 10–100 (0.1% resolution)

Key Entry

Clipping Type |I+jQ| |I|,|Q|

Remarks

A value of 100 percent equates to no clipping.

For information on the file name syntax, refer to “File Name Variables” on page 43.

:DOPRtection

Supported

N5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:DOPRtection ON|OFF|1|0

[:SOURce]:RADio:ARB:DOPRtection?

This commands turns the DAC over–range protection feature off or on.

The over–range protection feature works only with the Baseband Frequency Offset feature and the Option N5180432B Phase Noise Impairment.

- **On**: Minimizes the occurrence of a DAC over–range condition. In doing so, it can also decrease the dynamic range of the waveform by scaling the data more than what is actually needed. For the Baseband Frequency Offset feature, this protection is active only when the offset parameter is a value other than 0 Hz.
- **Off**: The automatic protection feature is not enabled. To correct a DAC over–range condition, reduce the waveform runtime scaling value (see “:RSCaling” on page 376).

*RST ON

Key Entry

DAC Over–range Protection Off On

:FILTer:ALPHa

Supported

N5166B/72B/82B
Arb Commands

Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

[:SOURce]:RADio[1]:ARB:FILTER:ALPHA <value>

[:SOURce]:RADio[1]:ARB:FILTER:ALPHA?

This command changes the Nyquist or Root Nyquist Real-Time Modulation filter alpha value.

The filter alpha value can be set to the minimum level (0), the maximum level (1), or in between by using fractional numeric values (0.001 to 0.999).

*RST +3.50000000E−001

Range 0.000 to 1.000

Key Entry Filter Alpha

Remarks To change the current filter type, refer to :FILTER:TYPE.

:FILTER:BBT

Supported N5166B/72B/82B

[:SOURce]:RADio[1]:ARB:FILTER:BBT <value>

[:SOURce]:RADio[1]:ARB:FILTER:BBT?

This command changes the bandwidth-multiplied-by-bit-time (BbT) Real-Time Modulation filter parameter.

The filter BbT value can be set to the minimum level (0.1), the maximum level (1), or in between by using fractional numeric values (0.100 to 0.999).

*RST +5.00000000E−001

Range 0.100 to 1.000

Key Entry Filter BbT

Remarks This command is effective only after choosing a Gaussian filter. It does not have an effect on other types of filters.

To change the current filter type, refer to :FILTER:TYPE.

:FILTER:CHANnel

Supported N5166B/72B/82B

[:SOURce]:RADio[1]:ARB:FILTER:CHANnel EVM|ACP

[:SOURce]:RADio[1]:ARB:FILTER:CHANnel?

This command optimizes the Nyquist and Root Nyquist Real-Time Modulation filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

EVM This choice provides the most ideal passband.

ACP This choice improves stopband rejection.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B [:SOURce]:RADio:ARB

*RST
Key Entry EVM
Remarks Optimize FIR For EVM ACP
Remarks To change the current filter type, refer to :FILTer:TYPE.

:FILTer:TYPE

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:FILTer:TYPE RNYQuist|NYQuist|GAUSsian|
RECTangle|IS95|IS95_EQ|IS95_MOD|IS95_MOD_EQ|EDGE|EWIDE|EHSR|
WCDMa|AC4Fm|"<user FIR>"
[:SOURce]:RADio:ARB:FILTer:TYPE?

This command specifies the Real-Time Modulation filter type.

RNYQuist This choice selects a Root Nyquist (root raised cosine) filter. This filter is adjusted using Alpha.

NYQuist This choice selects a Nyquist (raised cosine) filter. This filter is adjusted using Alpha.

GAUSsian This choice selects a Gaussian filter which is adjusted using Bbt values.

RECTangle This choice selects a one symbol wide rectangular filter.

IS95 This choice selects a filter that meets the criteria of the IS–95 standard.

IS95_EQ This choice selects a filter which is a combination of the IS–95 filter (above) and the equalizer filter described in the IS–95 standard. This filter is only used for IS–95 baseband filtering.

IS95_MOD This choice selects a filter that meets the criteria of the IS–95 error function (for improved adjacent channel performance) with lower passband rejection than the filter specified in the IS–95 standard.

IS95_MOD_EQ This choice selects a filter which is a combination of the equalizer filter described in the IS–95 standard and a filter that meets the criteria of the IS–95 error function (for improved adjacent channel performance), with lower passband rejection.

EDGE This choice selects a linearized Gaussian filter as defined in GSM 05.04.

EWIDE This choice selects an EDGE spectrally wide pulse shape filter as per 3GPP TS 45.004.

EDGE EHSR This choice selects an EDGE high symbol rate spectrally narrow pulse shape filter as per 3GPP TS 45.004.
Arb Commands

Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

WCDMa
This choice selects a W-CDMA filter which is the equivalent of a Root Nyquist filter with an alpha of 0.22 optimized for ACP.

AC4Fm
This choice selects a predefined Association of Public Safety Communications Officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.

"<user FIR>"
This variable is any FIR filter file that you have stored in memory. The variable needs no directory path indicating the location of the file, such as FIR: or /USER/FIR. The command assumes the FIR directory. For more information on file names, refer to “File Name Variables” on page 43.

:*RST
Root Nyquist

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Nyquist</th>
<th>IS–95</th>
<th>EDGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>IS–95 Mod</td>
<td>WCDMA</td>
<td></td>
</tr>
<tr>
<td>User FIR</td>
<td>IS–95 w/EQ</td>
<td>Rectangle</td>
<td></td>
</tr>
<tr>
<td>Root Nyquist</td>
<td>IS–95 Mod w/EQ</td>
<td>EDGE Wide</td>
<td>APCO 25 C4FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EDGE EHSR</td>
</tr>
</tbody>
</table>

:FILT[er][:STATe]

Supported
N5166B/72B/82B

[:SOURce]:RADio[1]:ARB:FILTer[:STATe]ON|OFF|1|0

[:SOURce]:RADio[1]:ARB:FILTer[:STATe]?

This command enables or disables the Real-Time Modulation Filter. This filter is typically applied to an Arb waveform containing just the I/Q symbol decision points. The filter then defines the transitions between the symbol decision points. This means that the filter must have an oversample ratio of two or more. When this feature is active, the Sample Clock Rate is actually the Symbol Rate.

Default Off

Key Entry Modulation Filter Off On

:GENerate:SINE

Supported
N5166B/72B/82B

[:SOURce]:RADio:ARB:GENerate:SINE

["<file_name>",[<osr>],[<scale>],[I|Q|IQ][<phasedeg>]]
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([SOURce]:RADio:ARB)

This command creates a sine wave waveform file and saves it in the signal generator's volatile waveform memory (WFM1).

"<file_name>" This variable names the file used to save the generated sine wave data.

<osr> This variable sets the oversample ratio, which must be an even number and \(\geq 4 \). The <osr> variable is expressed in samples. If the oversample ratio is \(< 60\) (the minimum number of samples or I/Q points required for a waveform), multiple waveform periods are generated to create a waveform file with \(\geq 60\) samples. The number of periods created is \(60 + \frac{\text{osr}}{\text{osr}} \) (quotient will round up to an integer value). A waveform with an oversample ratio \(\geq 60\) has one period.

*scale> This variable sets the scale factor for the waveform. The scale factor is a real number from zero to one.

I|Q|IQ Selects I, Q, or I and Q paths for the waveform data. Sine wave data is generated and applied to the I path if the I path is selected; Q data are set to zeros. Sine data is generated and applied to the Q path if the Q path is selected; I data are set to zeros. If the I and Q paths are selected, sine wave data are applied to the I and Q paths.

<phasedeg> Selects the phase angle of the waveform data. Sine wave data is generated and the phase angle in degrees is applied to the sine wave.

Example

:RAD:ARB:GEN:SINE "Sine_Wave",60,.5,IQ

The preceding example generates an I/Q sine wave and saves the data to a file named Sine_Wave. The oversampling ratio is 60, the scaling is set for 50%, and the data is applied to both the I and Q paths.

The signal generator's baseband option and available baseband memory determine the maximum number of samples for the waveform.

Range

OSR Option 65x: 4E0 to 32E6

OSR Option 021: 4E0 to 256E6

OSR Option 022: 4E0 to 512E6

OSR Option 023: 4E0 to 1E9

Scale: 0 to 1

:GENERate:TEST:WAVeforms

Supported

N5166B/72B/82B
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURCE]:RADio:ARB)

[:SOURCE]:RADio:ARB:GENERate:TEST:WAVEforms
This command recreates the arb waveform test files into BBG (waveform) memory (WFM1). When this command is sent to the instrument, the SINE_TEST_WFM and RAMP_TEST_WFM files are regenerated.

Example
:RAD:ARB:GEN:TEST:WAV

:HEADER:CLEar

Supported N5166B/72B/82B

[:SOURCE]:RADio:ARB:HEADER:CLEar
This command clears the header information from the file header used by this modulation format (i.e. all file header fields are set to unspecified).

Key Entry Clear Header

Remarks A waveform must be selected for this command to function.

:HEADER:NOISe:RMS[:OVERRide]

Supported N5166B/72B/82B

[:SOURCE]:RADio:ARB:HEADER:NOISe:RMS:OVERRide "<file_name>" ,<value>|UNSpecified
This command sets the value of the waveform’s I and Q RMS (root mean square) for noise.

The RMS is used strictly for calculating the relative power of the noise in the specified header. The RMS is specified in normalized linear units with |+1| or |–1| as full scale on I or Q, therefore the largest RMS that can be specified is the square root of 2 (1.414213562). If the value is unspecified, then the waveform file header’s RMS is used.

This value is useful if you wish to have the noise be relative to only a portion of the waveform, such as a pilot channel, or be relative to only a single carrier that is mixed with other carriers.

For setting the header’s RMS value, see “:HEADER:RMS” on page 351.

"<file_name>" This variable names the waveform file to which the RMS value will be applied. The file name variable can designate a file in the WFM1, NVWFWM, or SEQ directories. For information on file name syntax, refer to “File Name Variables” on page 43.

<value> This variable is the user–measured RMS noise value for the specified carrier.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

UNSPecified
Sets RMS as unspecified, which causes the general RMS value to be used for calculating the relative noise power.

Example
The preceding example sets the file header RMS noise override value for a file type WFM1, named Sine_Wave, to .835.
In the second example, the signal generator calculates the RMS, using the waveform file header’s RMS value. For setting the header’s RMS value, see “:HEADer:RMS” on page 351.
The RMS value is expressed in volts.

Key Entry Edit Noise RMS Override Unspecified Enter

:HEADer:RMS

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:HEADER:RMS "<file_name>" | SPECified
[:SOURce]:RADio:ARB:HEADER:RMS? "<file_name>"

This command sets the file header RMS value for the selected waveform file. The X-Series signal generator uses the RMS value with the dual ARB’s real–time noise function and to optimize the modulator drive level.
The signal generator reads the RMS value from the file header when a waveform is selected to play. If the value is unspecified, then it is calculated and stored in the header automatically.
When the waveform file is saved from volatile waveform memory (WFM1) to non–volatile waveform memory (NVWFM), the RMS value, auto–calculated or user–defined, is also saved.
For setting the header noise carrier RMS override value, see “:HEADer:NOISE:RMS[:OVERride]” on page 350.
"<file_name>" This variable names the waveform file to which the RMS value will be applied. The file name variable can designate a file in the WFM1, NVWFM, or SEQ directories. For information on the file name syntax, refer to “File Name Variables” on page 43.
<value> This variable is the user–measured RMS value for the specified waveform. The following figure shows the RMS calculation.

\[
\sqrt{\frac{1}{N} \sum_{n=1}^{N} (i_n^2 + q_n^2)}
\]

UNSPECified Using this variable in the command clears the RMS value and sets it to unspecified. An unspecified RMS value causes the signal generator to calculate the value when the ARB personality is turned on. The RMS calculation includes rise/fall times and does not include consecutive zero level samples. DC offsets and noise are also included in the RMS measurement. But, the Marker values are not included in these calculations. Because the signal generator calculation uses so many factors, you may achieve better results calculating your own RMS value.

Examples

[:SOURce]:RADio:ARB:HEADER:RMS "WFM1:Sine_Wave",.835

The first example shows a user–measured RMS value for the Sine_Wave waveform file in the waveform's file header.

[:RAD:ARB:HEADER:RMS "WFM1:Sine_Wave",UNSP]

In the second example, the signal generator calculates the RMS value when the ARB is turned on with this file selected or a sequence which contains the file selected.

The RMS value is expressed in volts.

Range 0 to 1.414213562373095

Key Entry Edit RMS Enter Unspecified Calculate

:HEADer:SAVE

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:HEADer:SAVE

This command saves the Dual ARB state information to the header of the currently selected waveform.

Key Entry Save Setup To Header

Remarks A waveform must be selected for this command to function.
:IQ:MODulation:ATTen

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:IQ:MODulation:ATTen <value>
[:SOURce]:RADio:ARB:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path.

The variable <value> is expressed in units of decibels (dB).

*RST Varies (instrument dependent)

Range 0 to 50

Key Entry Modulator Atten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the I/Q attenuation auto mode.

ON (1) This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. Refer to the :IQ:MODulation:ATTen command for setting the attenuation value.

*RST 1

Key Entry Modulator Atten Manual Auto

:MARKer:CLEar

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MARKer:CLEar "<file_name>,<marker>,<first_point>,<last_point>

This command clears a single marker point or a range of marker points on a waveform segment for the selected marker (1–4). The dual ARB player and all of the ARB modulation formats use this command.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). For information on the file name syntax, see “File Name Variables” on page 43.

<marker> This variable selects the marker number; an integer value from one to four.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

<first_point> This variable defines the first point in a range of points. The number must be greater than or equal to one, and less than or equal to the total number of waveform points.

If you enter a value for either the first marker point or the last marker point that would make the first marker point occur after the last, the last marker point automatically adjusts to match the first marker point.

<last_point> This variable defines the last point in a range of points. The number must be greater than or equal to the first point, and less than or equal to the total number of waveform points.

To clear a single marker point, use the same marker point for the first and last point variables. For more information on markers and ARB files, refer to the User’s Guide.

Example

:RAD:ARB:MARK:CLE "Test_Data",1,1,300

The preceding example clears marker 1 from the first point through the 300th point in the Test_Data file.

Range <marker>: 1–4

<first_Point>: 1–number of waveform points

<last_point>: <first_Point>–number of waveform points

Key Entry Set Marker Off Range Of Points Marker 1 2 3 4

Key Entry First Mkr Point Last Mkr Point
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([SOURce]:RADio:ARB)

:MARKer:CLEar:ALL

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MARKer:CLEar:ALL "<file_name>",<marker>

This command clears all marker points on a waveform segment for the selected marker (1–4). The dual ARB player and all of the ARB formats use this command. With all marker points cleared, the event output signal level is set low.

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). For information on the file name syntax, see “File Name Variables” on page 43.

<marker> This variable selects the marker number; an integer value from one to four.

Example

:RAD:ARB:MARK:CLE:ALL "Test_Data",1

The preceding example clears marker 1 from the all waveform points in the Test_Data file.

Range 1 to 4

Key Entry Marker 1 2 3 4 Set Marker Off All Points

:MARKer:ROTate

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MARKer:ROTate "<file_name>",<rotate_count>

This command shifts the marker points for all markers in a waveform segment earlier or later by the value of the <rotate_count> variable. The dual ARB player and all of the ARB formats use this command.

You can use a positive or negative value. When a marker point is close to the end of the waveform and the <rotate_count> value is greater than the number of remaining marker points, but less than the total number of marker points, the marker points that would move beyond the end of the waveform wrap to the beginning of the waveform. For example, if a marker point resides at sample point 195 out of 200, and the <rotate_count> value is twenty-five, the marker point wraps to the beginning of the waveform and continues out to the twentieth waveform point.

To set the marker points in a waveform, refer to “:MARKer[:SET]” on page 356.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([[:SOURce]:RADio:ARB])

"<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). For information on the file name syntax, see “File Name Variables” on page 43.

Example

:RAD:ARB:MARK:ROT "Test_Data",100

The preceding example shifts all markers set in the Test_Data file 100 points later. If the first set point in the file is at 50, then after sending this command, the first set point will be 150 (assuming the Test_Data file has at least 150 points and no later set points wrapped around to the beginning of the file).

Range
– (n – 1) to (n – 1)

n = number of points in the waveform

:MARKer[:SET]

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MARKer[:SET]
"<file_name">,<marker>,<first_point>,<last_point>,<skip_count>

This command sets a single marker point or a range of marker points on a waveform segment for the selected marker (1–4). The dual ARB player and all of the ARB formats use this command.

The Keysight X-Series signal generator provides four independent markers. Two of the markers route output signals to rear panel event connectors, Marker–1 to Event1 BNC and Marker–2 to Aux I/O. A marker consists of marker points placed at defined sample points in a waveform segment. This means that a marker point cannot be less than one or greater than the last sample point in the waveform. Marker points are cumulative, so multiple command executions with different range values, without first clearing the existing points, places additional marker points on the waveform. Because of this cumulative behavior, it is a good practice to clear existing marker points prior to setting new points. This will eliminate unexpected marker pulses. Refer to “:MARKer:CLEar” on page 353 and “:MARKer:CLEar:ALL” on page 355 for information on clearing marker points.

For waveforms generated on the signal generator (baseband generator), the Keysight X-Series signal generator automatically places a marker point at the first waveform sample for markers one and two.

NOTE

You can set markers for either positive or negative polarity. The following discussions for this command assume positive marker polarity. When using negative marker polarity, the marker pulses occur during the periods of no marker points.

There are three ways to place marker points using this command:
Arb Commands

Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

- consecutive marker points over a range that collectively create a single marker pulse that spans the range
- equally spaced marker points over a range, so that a marker pulse occurs at each sample point that coincides with a marker point (Using this method, you can configure a clock signal by setting the <skip_count> variable to one.)
- a single marker point placed at a specific sample point in the waveform, which outputs a single pulse relative to the marker point location (To configure a single marker point, set the first and last points to the same number.)

For more information on markers, refer to the User’s Guide.

The following list describes the command variables:

- "<file_name>" This variable specifies the name of the waveform file in volatile waveform memory (WFM1). For information on the file name syntax, see “File Name Variables” on page 43.

- <marker> This variable selects the marker number; an integer value from one to four.

- <first_point> This variable defines the first point in the range over which the marker is placed. This number must be greater than or equal to one, and less than or equal to the total number of waveform points.

 If you enter a value for either the first marker point or the last marker point that would make the first marker point occur after the last, the last marker point is automatically adjusted to match the first marker point.

- <last_point> This variable defines the last point in the range over which the marker will be placed. This value must be greater than or equal to the first point, and less than or equal to the total number of waveform points.

- <skip_count> This variable defines the marker point pattern across the range. A zero value means the marker points occur consecutively across the range. A value greater than zero creates a repeating marker point pattern across the range, where the gap between the marker points is equal to the <skip_count> value. The gaps begin after the first marker point. Each marker point in the pattern, which is only one point wide, produces a marker pulse.

Example

:RAD:ARB:MARK "Test_Data",1,40,100,2
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([[:SOURce]:RADio:ARB])

The preceding example sets marker 1 on the first point, 40, the last point, 100, and every third point (skip 2) between 40 and 100 (assuming the Test_Data file has at least 100 points).

<table>
<thead>
<tr>
<th>Range</th>
<th><marker>: 1–4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><first_Point>: 1–number of waveform points</td>
</tr>
<tr>
<td></td>
<td><last_point>: <first_point>–number of waveform points</td>
</tr>
<tr>
<td></td>
<td><skip_count>: 0–number of points in the range</td>
</tr>
</tbody>
</table>

Key Entry
Set Marker on Range Of Points Marker 1 2 3 4
First Mkr Point Last Mkr Point
Skipped Points Apply to Waveform

:MBSync

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MBSync OFF|MASTer|SLAVe
[:SOURce]:RADio:ARB:MBSync?

This command disables or enables the multiple BBG synchronization setup for the current signal generator. Ensure that the Dual ARB play is off prior to executing this command.

| OFF | Turns off multiple baseband synchronization for the signal generator. |
| MASTer | Sets the signal generator as the master for the setup. When selected, the following trigger features are unavailable: |

Trigger Type
- Free Run, see page 381
- Gated, see page 380

Prior to selecting MASTer, ensure that the trigger type is something other than shown above. If not, the X-Series signal generator generates a settings conflict error and changes the trigger type to TRIGger (continuous play once triggered).
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

<table>
<thead>
<tr>
<th>SLAVe</th>
<th>Sets the signal generator as a slave in the setup. When selected, the following trigger features are unavailable:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trigger Type</td>
</tr>
<tr>
<td></td>
<td>Free Run, see page 381</td>
</tr>
<tr>
<td></td>
<td>Gated, see page 380</td>
</tr>
<tr>
<td></td>
<td>Trigger Source</td>
</tr>
<tr>
<td></td>
<td>All selections, see page 384</td>
</tr>
</tbody>
</table>

Prior to selecting SLAVe, ensure that the trigger type is something other than shown above and that the trigger source is set according to the following list:

- EXT (external trigger signal, see page 384)
- EPT1 (PAT TRIG connector, see page 387)
- SLOPe POSitive (see page 386)
- EXT DELay to OFF (see page 386)

If not, the X-Series signal generator generates a settings conflict error and changes the trigger type to TRIGger (continuous play once triggered) and the trigger source to the above listed selections.

To set the slave position, see "MBSync:SREFERENCE" on page 361.

For more information on the multiple BBG synchronization feature, see the User's Guide.

Example

:RAD:ARB:MBS MAST

The preceding example sets the signal generator as the master in the master/slave setup.

*RST OFF

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Off</th>
<th>Master</th>
<th>Slave</th>
</tr>
</thead>
</table>

:MBSync:NASLaves

| Supported | N5166B/72B/82B |

[:SOURce]:RADio:ARB:MBSync:NASLaves <value>
[:SOURce]:RADio:ARB:MBSync:NASLaves?

This command enters the number of first-generation MXG (N51xxA) signal generators that are designated as slaves in a multiple BBG synchronization setup. This value is required for both the master and slave signal generators and is used to calculate the internal compensation values to minimize synchronization delay.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURCE]:RADio:ARB)

NOTE: All first-generation MXG slaves must be at the end of the synchronization chain.

The NASLaves value is a persistent setting that survives both preset and power cycling.

Example

:RAD:ARB:MBS:NASL 3

The preceding example enters three as the number of first-generation MXG slaves the current signal generator master/slave setup.

Range 0 to 15 (depends on the NSLaves setting)
Key Entry Number of MXG-A Slaves

:MBSync:NSLaves

Supported N5166B/72B/82B

[:SOURCE]:RADio:ARB:MBSync:NSLaves <value>
[:SOURCE]:RADio:ARB:MBSync:NSLaves?

This command enters the number of signal generators designated as slaves in a multiple BBG synchronization setup. This value is required for both the master and slave signal generators.

This command does not designate which slave position a signal generator occupies. To set the slave position, see “:MBSync:SREFERENCE” on page 361.

The NASLaves value is a persistent setting that survives both preset and power cycling.

Example

:RAD:ARB:MBS:NSL 7

The preceding example enters seven as the number of slaves the current signal generator master/slave setup.

Range 1 to 15
Key Entry Number of Slaves

:MBSync:SLISten

Supported N5166B/72B/82B

[:SOURCE]:RADio:ARB:MBSync:SLISten

For signal generators designated as slaves in the multiple BBG synchronization setup, this command enables them to receive a one–time baseband synchronization event trigger initiated by the master. The signal generator receives the trigger signal through the PAT TRIG connector.
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([:SOURce]:RADio:ARB)

Prior to executing this command, ensure that the Dual ARB player and the trigger source for the master is off.

Since this command is for a one-time event, you must send this command each time there is a need to synchronize the master/slave setup and prior to initiating the synchronization trigger from the master signal generator. After executing this command, each signal generator should show a status register weighting of 256 (waiting for sync). To check the status, see “:REGister[:STATus]” on page 374. To initiate the synchronization signal, see “:MBSync:SSLaves” on page 361.

Example

[:RAD:ARB:MBS:SLIS]

The preceding example enables a slave signal generator to receive the synchronization trigger.

Key Entry Listen for Sync

:MBSync:SREFerence

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MBSync:SREFerence <value>
[:SOURce]:RADio:ARB:MBSync:SREFerence?

For signal generators designated as slaves in the multiple BBG synchronization setup, this command sets the slave position of the signal generator.

The SREFerence value is a persistent settings that survives both preset and power cycling.

Example

[:RAD:ARB:MBS:SREF 13]

The preceding example sets the signal generator to slave number 13.

Range 1 to 15

Key Entry Slave Position

:MBSync:SSLaves

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MBSync:SSLaves

For the signal generator designated as the master in the multiple BBG synchronization setup, this command initiates the trigger to synchronize the baseband generators. The trigger signal is output through the **EVENT 1** connector.
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([SOURce]:RADio:ARB)

As each slave receives the synchronization signal, it automatically sends a synchronization signal to the next slave in the chain. Prior to executing this command, all of the slaves must be set to listen for the trigger. For more information, see ":[MBSync:SLISten] on page 360. After executing this command, each signal generator should show a status register weighting of 512 (in sync). To check the status, see ":[REGister:[STATus]] on page 374.

If any changes are made to the synchronization parameters after executing this command, the master/slave system must be resynchronized. See the User’s Guide for more information and the process for resynchronizing a system.

Example

```
:RAD:ARB:MBS:SSL
```

The preceding example initiates the synchronization trigger signal.

Key Entry

<table>
<thead>
<tr>
<th>Sync Slaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

:MDEStination:AAMPliitude

Supported

N5166B/72B/82B

[:SOURce]:RADio:ARB:MDEStination:AAMPliitude NONE|M1|M2|M3|M4

[:SOURce]:RADio:ARB:MDEStination:AAMPliitude?

This command routes the selected marker to the Alternate Amplitude function. The **NONE** parameter clears the marker for the Alternate Amplitude function.

:*RST

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:MDEStination:ALCHold

Supported

N5166B/72B/82B

Incorrect automatic level control (ALC) sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Marker 1</th>
<th>Marker 2</th>
<th>Marker 3</th>
<th>Marker 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[:SOURce]:RADio:ARB:MDEStination:ALCHold NONE|M1|M2|M3|M4

[:SOURce]:RADio:ARB:MDEStination:ALCHold?

This command enables the marker ALC hold function for the selected marker. For setting markers, see ":[MARKer:[SET]] on page 356."
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC leveling circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKe1|2|3|4” on page 365.

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two-sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the User’s Guide. For setting the marker points, see “:MARKe[:SET]” on page 356.

NONE This terminates the marker ALC hold function.
M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

Example

:RAD:ARB:MDES:ALCH M1

The preceding example routes marker 1 to the ALC Hold function.

*RST NONE

Key Entry None Marker 1 Marker 2 Marker 3 Marker 4
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([:SOURce]:RADio:ARB)

:MDestination:PULSe

Supported N5166B/72B/82B

CAUTION
The pulse function incorporates ALC hold. Incorrect automatic level control (ALC) sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:ARB:MDestination:PULSe NONE|M1|M2|M3|M4
[:SOURce]:RADio:ARB:MDestination:PULSe?

This command enables the marker pulse/RF blanking function for the selected marker.

This function automatically uses the ALC hold function, so there is no need to select both the ALC hold and pulse/RF blanking functions for the same marker.

NOTE
Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPolarity:MARKer1|2|3|4” on page 365.

Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output. For setting the marker points, see “:MARKer[:SET]” on page 356.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE
A waveform that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the User’s Guide.

NONE This terminates the marker RF blanking/pulse function.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.

Example
:RAD:ARB:MDES:PULS M2
The preceding example routes marker 2 to Pulse/RF Blanking.

*RST NONE

:MPOLarity:MARKer1|2|3|4

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:MPOLarity:MARKer1|2|3|4 NEGative|POSitive
[:SOURce]:RADio:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

Example
:RAD:ARB:MPOL:MARK3 NEG
The preceding example sets the polarity for marker 3 to negative.

*RST POS

:NOISe:BANDwidth

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe:BANDwidth <value><unit>
[:SOURce]:RADio:ARB:NOISe:BANDwidth?

This command selects the flat noise bandwidth value of the real–time noise for an ARB waveform. Typically, this value is set slightly wider than the signal bandwidth. The minimum increment value is 0.001 Hz.

*RST +1.00000000E+000

Range Option 653 1 sa to 75 Msa
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([::SOURce]:RADio:ARB)

Option 655 1 sa to 150 Msa
Option 656 1 sa to 100 Msa
Option 657 1 sa to 200 Msa

Key Entry Noise Bandwidth

:NOISe:CBRate

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe:CBRate <1bps - 999Mbps>
[:SOURce]:RADio:ARB:NOISe:CBRate?

This command sets a value of the carrier bit rate (gross bit rate) for purposes of calculating the Eb/N0 (energy per bit over noise power density at the receiver). When the carrier to noise ratio format is set to Eb/N0 (refer to the :NOISe:CNFormat command), the adjustment of the carrier bit rate will have an immediate impact on the carrier to noise ratio as specified by Eb/N0. The carrier bit rate is derived from the symbol rate and bits per symbol of the modulation. The carrier bit rate is a saved instrument state that is recorded in the waveform header.

The query returns the current carrier bit rate setting.

Example

:RAD:ARB:NOISe:CBR 5

The preceding example sets the carrier bit rate to 5 bps.

Default 1.000 bps
Range 1 bps to 999 Mbps

Key Entry Carrier Bit Rate

:NOISe:CBWidth

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe:CBWidth <value><unit>
[:SOURce]:RADio:ARB:NOISe:CBWidth?

This command selects the carrier bandwidth over which the additive white gaussian noise (AWGN) is applied. The carrier RMS power and the noise power will be integrated over the selected carrier–bandwidth for the purposes of calculating carrier to noise ratio (C/N). The minimum increment value is 0.001 Hz. For more information, refer to the “:NOISe[:STATe]” command and the “:NOISe:BANDwidth” command.

*RST +1.00000000E+000
Range 1 Hz to 200 MHz
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

Key Entry Carrier Bandwidth

:NOISe:CN

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe:CN <value><unit>
[:SOURce]:RADio:ARB:NOISe:CN?

This command sets the carrier to noise ratio (C/N) in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to “:NOISe:CBWidth” on page 366.

Example
:RAD:ARB:NOIS:CN 50DB
The preceding example sets the carrier to noise ratio to 50 dB.

*RST +0.00000000E+000
Range -100 to 100 dB

Key Entry Carrier to Noise Ratio

:NOISe:CNFormat

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe:CNFormat CN|EBNO
[:SOURce]:RADio:ARB:NOISe:CNFormat?

This command selects either the Carrier to Noise Ratio (C/N) or energy per bit over noise power density at the receiver (E_b/N_0) as the variable controlling the ratio of carrier power to noise power in the carrier bandwidth.

Example
:RAD:ARB:NOIS:CNF EBNO
The preceding example sets the carrier to noise ratio format to EbNo.

Default Carrier to Noise Ratio Format C/N

Key Entry Carrier to Noise Ratio Format C/N Eb/No

:NOISe:EBNO

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe:EBNO <ebno in dB>
[:SOURce]:RADio:ARB:NOISe:EBNO?
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURCE]:RAD:ARB)

This command allows the C/N to be set using the Eb/N0 (energy per bit over noise power density at the receiver) form. This requires that the carrier bit rate (:NOIS:CBRate on page 366) be set properly. The range of Eb/N0 is limited to the range that is equivalent to –100 to 100 dB of C/N. This value is only effective when Eb/N0 has been enabled by the :NOIS:CNFormat command.

The query returns the value of EBNO.

Default 0 dB
Range –100 to 100 dB
Key Entry Carrier to Noise Ratio Format Eb/No

:NOIS:MUX

Supported N5166B/72B/82B with Option N5180403B
[:SOURCE]:RAD:ARB:NOIS:MUX SUM|CARRier|NOISe
[:SOURCE]:RAD:ARB:NOIS:MUX?

This command enables diagnostic control of additive noise, such that only the noise, only the carrier, or the sum of both the noise and the carrier are output from the internal baseband generator. With the ALC off, this feature enables direct measurement of just the carrier or the noise contributions to the total power. The system will still behave as if both the noise and the carrier are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

Example

:RAD:ARB:NOIS:MUX CARR

The preceding example enables the direct measurement of the carrier contribution to the total power.

Default Carrier+Noise
Key Entry Carrier+Noise | Carrier | Noise

:NOIS:POWer:CARRier

Supported N5166B/72B/82B with Option N5180403B
[:SOURCE]:RAD:ARB:NOIS:POWer:CARRier <carrierPower>
[:SOURCE]:RAD:ARB:NOIS:POWer:CARRier?

This command sets the current carrier power level if noise is on.

In the CARRier control mode, the total power will be adjusted to achieve the specified carrier power and the carrier power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the carrier power setting appropriately to maintain the C/N ratio.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

In the TOTal control mode, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total power is adjusted.

In the NOISe control mode, this will adjust the total noise power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total noise power is adjusted. See also :NOIsE:POWer:CONTrol[:MODE] and :NOIsE:POWr:NOIsE:TOTal commands.

Range The range varies based on the bounds of the total power that results from the noise settings.

Default The appropriate value given the current total power and the current Carrier to Noise (C/N).

Key Entry Carrier Power

:NOIsE:POWer:CONTrol[:MODE]

Supported N5166B/72B/82B with Option N5180403B

This command sets the power control to one of the three following modes:

Total This is the default mode where the total power and C/N are independent variables and the carrier power and total noise power are dependent variables set by the total power, C/N and the rest of the noise settings. The carrier power and total noise power will change as any noise parameter is adjusted to keep the total power and the C/N at their last specified values.

Carrier In this mode the carrier power and C/N are independent variables and the total power and total noise power are dependent variables set by the carrier power, C/N and the rest of the noise settings. The total power and total noise power will change as any noise parameter is adjusted to keep the carrier power and the C/N at their last specified values.

Total Noise In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

Default Total

Key Entry Total Carrier Total Noise
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

:"NOISe*:POWer*:NOISe*:CHANnel?"

Supported
N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe*:POWer*:NOISe*:CHANnel?

The query returns the current noise power across the carrier bandwidth in dBm.

:"NOISe*:POWer*:NOISe*:TOTal"

Supported
N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe*:POWer*:NOISe*:TOTal
<totalNoisePowerInDbm>
[:SOURce]:RADio:ARB:NOISe*:POWer*:NOISe*:TOTal?

This command sets the current total noise power level if noise is on.

In the NOISe control mode, the total power will be adjusted to achieve the specified total noise power and the total noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the total noise power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the total power is adjusted.

In the CARRier control mode, this will adjust the carrier power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the carrier power is adjusted.

See also :NOISe*:POWer*:CONTrol[:MODE] command.

Range
The range varies based on the bounds of the total power that results from the noise settings.

Default
The appropriate value given the current total power and the current Carrier to Noise (C/N).

Key Entry
Total Noise Power

:"NOISe*:STATE"

Supported
N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:ARB:NOISe*:STATE ON|OFF|1|0
[:SOURce]:RADio:ARB:NOISe*:STATE?

This command enables or disables adding real-time additive white gaussian noise (AWGN) to the carrier modulated by the waveform being played by the dual ARB waveform player.

Example
:RAD:ARB:NOIS ON
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

The preceding example applies real-time AWGN to the carrier.

*RST 0
Key Entry Real-Time AWGN Off On

:PHASe:NOISe:F1

Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:PHASe:NOISe:F1 <value><unit>
[:SOURce]:RADio:ARB:PHASe:NOISe:F1?

This command sets the start frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :PHASe:NOISe:F2 command). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.

The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User’s Guide.

*RST +1.00000000E+003
Range 0 Hz to 77.50052449 MHz
Key Entry Desired Start Freq (f1)

:PHASe:NOISe:F1:ACTual?

Supported N5172B/82BN5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:PHASe:NOISe:F1:ACTual?

This query returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.

:PHASe:NOISe:F2

Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:PHASe:NOISe:F2 <value><unit>
[:SOURce]:RADio:ARB:PHASe:NOISe:F2?

This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :PHASe:NOISe:F1 command). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User’s Guide.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

*RST +3.00000000E+004
Range 1 Hz to 77.50052449 MHz
Key Entry Desired Stop Freq (f2)

:PHASe:NOISe:F2:ACTual?
Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:PHASe:NOISe:F2:ACTual?
This query returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

:PHASe:NOISe:LMID
Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:PHASe:NOISe:LMID <value>
[:SOURce]:RADio:ARB:PHASe:NOISe:LMID?
This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator. The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.

For more information on the phase noise impairment option, see the User’s Guide.

NOTE
The amplitude range varies depending on the f2 value (see the “:PHASe:NOISe:F2” on page 371). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The range values are expressed in units of dBC/Hz.

*RST −7.00000000E+001
Range −300 to 100
Key Entry Desired Flat Amplitude (Lmid)

:PHASe:NOISe:LMID:ACTual?
Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:ARB:PHASe:NOISe:LMID:ACTual?
This query returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.
Arb Commands
Double ARB Subsystem—N5166B/72B/82B ([SOURce]:RADio:ARB)

:[PHASE:NOISE][:STATE]
Supported N5172B/82B with Option N5180432B
[:SOURce]:RADio:ARB:[PHASE:NOISE][:STATE] ON|OFF|1|0
[:SOURce]:RADio:ARB:[PHASE:NOISE][:STATE]?

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the *User's Guide*.

RST
0
Key Entry
Phase Noise Off On

:[PHASE:NOISE]:TRACe?
Supported N5172B/82B with Option N5180432B
[:SOURce]:RADio:ARB:[PHASE:NOISE]:TRACe?
<startFreq>,<stopFreq>,<numSamples>

This query returns the theoretical phase noise amplitude mask applied with the current settings if the phase noise feature is on. This mask does not take the natural phase noise of the instrument into account, only the impairment from the phase noise feature. The output is over the start frequency to the stop frequency for the number of samples specified. The samples are taken at logarithmic frequency steps and the output is in dBC/Hz.

Range
<startFreq> 1 Hz to 100 MHz
<stopFreq> 1 Hz to 100 MHz
<numSamples> 1 to 8192

:[PLAY:COMPleted]?
Supported N5166B/72B/82B
[:SOURce]:RADio:ARB:PLAY:COMPleted?

This SCPI command returns whether the ARB waveform has completed since the last query or the last time the waveform was setup up to play. The completion is after repeat counts for single trigger. The waveform is setup to play when various waveform parameters are adjusted, such as turning the mode off and on or changing the triggering mode. It returns a 0 if the waveform has not completed and a 1 if the waveform has completed at least one time. After this query, the value will be reset to 0 until another completion occurs.

:[PLAY:WCOMpleted]?
Supported N5166B/72B/82B
[:SOURce]:RADio:ARB:PLAY:WCOMpleted?
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

This SCPI command returns whether the ARB waveform has completed since the last query or the last time the waveform was setup up to play. This SCPI command will wait until the ARB waveform has completed. The completion is after repeat counts for single trigger. The waveform is setup to play when various waveform parameters are adjusted, such as turning the mode off and on or changing the triggering mode. It returns a 0 if the waveform has not completed and a DCAS has been sent to the instrument or the mode is not on, otherwise a 1 will be returned when the waveform has completed at least one time. After this query, the value will be reset to 0 until another completion occurs.

[:REGister][:STATus]

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:REGister[:STATus]?

This query returns a weighted decimal value to indicate the status of the following Dual ARB settings:

- Dual ARB state (ARB)
- Triggering modes (ARM and Run)
- Multiple BBG synchronization (MBS1 and MBS2)

<table>
<thead>
<tr>
<th>Weighting</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>512</th>
<th>256</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Position</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>MBS2</td>
<td>MBS1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Run</td>
<td>ARM</td>
</tr>
</tbody>
</table>

When the bit position is set high, the weighted position value equals 2^n where n = bit position. When the bit position is set low, the weighting equals zero. The sum of the weighted values indicates the status of all monitored items.

Table 5-1 Low and High Bit Position Description

<table>
<thead>
<tr>
<th>ARB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dual ARB is off</td>
</tr>
<tr>
<td>1</td>
<td>Dual ARB is on</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARMa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Trigger is not armed</td>
</tr>
<tr>
<td>1</td>
<td>Trigger is armed and the Dual ARB is waiting for a trigger to start the play-back of the waveform</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RUNb</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The Dual ARB waveform is not playing</td>
</tr>
<tr>
<td>1</td>
<td>The Dual ARB waveform is playing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MBS1</th>
<th></th>
</tr>
</thead>
</table>

374 Keysight CXG, EXG, and MXG X-Series Signal Generators SCPI Command Reference
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

Table 5-1 Low and High Bit Position Description

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Multiple BBG synchronization is not waiting for a sync signal from the master</td>
</tr>
<tr>
<td>1</td>
<td>Multiple BBG synchronization is waiting for a sync signal from the master</td>
</tr>
</tbody>
</table>

MBS2

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Multiple BBG synchronization is out of sync</td>
</tr>
<tr>
<td>1</td>
<td>Multiple BBG synchronization is in sync</td>
</tr>
</tbody>
</table>

a. The ARM bit remains 0 for the following trigger type selections:

FREE (Free Run) see page 381
RESet (Reset and Run) see page 381
IMMediate (Restart on Trigger) see page 375
GATE see page 380

b. For GATE triggering, the bit remains high for both states of the trigger signal.

*RST 0

:RETRigger

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:RETRigger ON|OFF|1|0|IMMediate
[:SOURce]:RADio:ARB:RETRigger?

This command enables or disables the ARB retriggering mode. The retrigger mode controls how the retriggering function performs while a waveform is playing.

ON (1) This choice (Buffered Trigger) specifies that if a trigger occurs while a waveform is playing, the waveform will retrigger at the end of the current waveform sequence and play once more.

OFF (0) This choice (No Retrigger) specifies that if a trigger occurs while a waveform is playing, the trigger will be ignored.

IMMediate This choice (Restart on Trigger) specifies that if a trigger occurs while a waveform is playing, the waveform will reset and replay from the start immediately upon receiving a trigger.

*RST ON

Key Entry No Retrigger Buffered Trigger Restart on Trigger

Remarks This command applies to the single trigger type only.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

:RSCaling

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:RSCaling <value>
[:SOURce]:RADio:ARB:RSCaling?

This command adjusts the scaling value in percent that is applied to a waveform while it is playing. The variable <value> is expressed as a percentage. Runtime scaling does not alter the waveform data file. This feature is used to avoid DAC overflow. The scaling is compensated for at the modulator (i.e. when the modulator is the optimized path). For more information about runtime scaling, refer to the User's Guide.

Example

:RAD:ARB:RSC 50

The preceding example applies a 50% scaling factor to the selected waveform. Runtime scaling does not alter the waveform data file.

*RST +7.00000000E+001

Range 1 to 100 percent

Key Entry Runtime Scaling

Remarks Saving the instrument state saves the currently-set Runtime Scaling in the instrument state file.

:SCALing

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:SCALing "<file_name>",<value>

This command scales the designated "<file_name>" waveform file while it is being played by the dual ARB player. The variable <value> is expressed as a percentage, 1–100%. The peak value of the waveform is disconnected and the whole waveform is scaled such that the peak value is at the specified percentage of full scale.

Unlike runtime scaling (:RSCaling), Scaling (:SCALing) has a permanent effect on the waveform data. Scaling up, after scaling down, typically results in a slightly different waveform from the original, as some data is lost in the scale–down process. For more information about waveform file scaling, refer to the User's Guide.

Example

:RAD:ARB:SCAL "Test_Data", 50

The preceding example applies a 50% scaling factor to the Test_Data waveform file.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

Range
1 to 100 percent

Key Entry
Scaling

Remarks
For information on file name syntax, see “File Name Variables” on page 43.

:SCLock:RATE

Supported
N5166B/72B/82B

[:SOURce]:RADio:ARB:SCLock:RATE <value>
[:SOURce]:RADio:ARB:SCLock:RATE?

This command sets the sample clock rate for the dual ARB format. When the Modulation Filter is active, the Sample Clock Rate is actually the Symbol Rate and is limited from 100 Hz to half of the maximum sample rate as shown in the range table below.

The variable <value> is expressed in units of hertz.

* RST
 +75.000000E+006 (with Option 653)
 +150.000000E+006 (with Option 655)
 +100.000000E+006 (with Option 656)
 +200.000000E+006 (with Option 657)

Range
Option 653: 1 Hz to 75MHz
Option 655: 1 Hz to 150MHz
Option 656: 1 Hz to 100 MHz
Option 657: 1 Hz to 200 MHz

Key Entry
ARB Sample Clock

:SEQuence[:MWAVeform]

Supported
N5166B/72B/82B

[:SOURce]:RADio:ARB:SEQuence[:MWAVeform]
<filename>,<waveform1>,<reps>,NONE|M1|M2|M3|M4|M1M2|M1M3|M1M4|M2M3|M2M4|M3M4|M1M2M3|M1M2M4|M1M3M4|M2M3M4|M1M2M3M4|ALL,,<waveform2>,<reps>,NONE|M1|M2|M3|M4|M1M2|M1M3|M1M4|M2M3|M2M4|M3M4|M1M2M3|M1M2M4|M1M3M4|M2M3M4|ALL,}

[:SOURce]:RADio:ARB:SEQuence[:MWAVeform]? <filename>
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([[:SOURce]:RADiO]:ARB)

This command creates a waveform sequence. A waveform sequence is made up of segments and other sequences. Any number of segments, up to a segment count limit of 1024, can be used to create a sequence. The count limit is determined by the number of segments in the waveform sequence. Repeated segments are included in the count limit.

For example, using the figure below, suppose a waveform is created using two sequences: Sequence_A and Sequence_B. Sequence_A consists of Sequence_B and Segment_Q with Sequence_B repeated four times. The total segment count for this waveform sequence would be eleven.

The query returns the contents and segment settings of the waveform sequence file.

The segments and sequences play in the same order as placed into the waveform sequence by the command. Once you create the file, you cannot edit the segment settings or add further waveform segments unless you use the signal generator’s front panel. Using the same waveform sequence name overwrites the existing file with that name. To use a segment’s marker settings, you must enable the segment’s markers within the segment or within the waveform sequence. A sequence is stored in the catalog of SEQ files USER/SEQ or SEQ: directory.

When you create a waveform sequence, the Keysight X-Series signal generator also creates a file header for the sequence. This file header takes priority over segment or nested sequence file headers. Refer to the User’s Guide for more information on file headers. To save the file header, see “:HEADer:SAVE” on page 352.

"<file_name>" This variable names the waveform sequence file. For information on the file name syntax, see “File Name Variables” on page 43.

"<waveform1>" This variable specifies the name of an existing waveform segment or sequence file. A waveform segment or the waveform segments in a specified sequence must reside in volatile memory, WFM1, before it can be played by the dual ARB player. For information on the file name...
Arb Commands

Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

syntax, see “File Name Variables” on page 43, and for more information on waveform segments, see the User’s Guide.

"<waveform2>" This variable specifies the name of a second existing waveform segment or sequence file. The same conditions required for waveform1 apply for this segment or sequence. Additional segments and other sequences can be inserted into the file.

<reps> This variable sets the number of times a segment or sequence plays (repeats) before the next segment or sequence plays.

NONE This choice disables all four markers for the waveform. Disabling markers means that the waveform sequence ignores the segment’s or sequence’s marker settings.

M1, M2, M3, M4 These choices, either individually or a combination of them, enable the markers for the waveform segment or sequence. Markers not specified are ignored for that segment or sequence.

ALL This choice enables all four markers in the waveform segment or sequence.

Example

The preceding example creates a waveform sequence file named Test_Data. This file consists of the factory–supplied waveform segments, ramp_test_wfm and sine_test_wfm. The waveform is stored in the signal generator’s SEQ: directory.

– The first segment, ramp_test_wfm, has 25 repetitions with markers 1 and 4 enabled.
– The second segment, sine_test_wfm, has 100 repetitions with all four markers enabled.

Range <reps>: 1 to 65535

A carriage return or line feed is never included in a SCPI command. The example above contains a carriage return so that the text will fit on the page.

The preceding example creates a waveform sequence file named Test_Data. The example above contains a carriage return so that the text will fit on the page.

NOTE

The example above contains a carriage return so that the text will fit on the page.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

:TRIGger:TYPE

Supported
N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger:TYPE
CONTinuous|SINGle|GATE|SADVance
[:SOURce]:RADio:ARB:TRIGger:TYPE?

This command sets the trigger mode (type) that controls the waveform’s playback.

Triggers control the playback by telling the Keysight X-Series signal generator when to play the modulating signal (waveform). Depending on the trigger settings for the Keysight X-Series signal generator, the waveform playback can occur once, continuously, or the Keysight X-Series signal generator may start and stop playing the waveform repeatedly (GATE mode).

A trigger signal comprises both positive and negative signal transitions (states), which are also called high and low periods. You can configure the Keysight X-Series signal generator to trigger on either state of the trigger signal. It is common to have multiple triggers, also referred to as trigger occurrences or events, occur when the signal generator requires only a single trigger. In this situation, the Keysight X-Series signal generator recognizes the first trigger and ignores the rest.

When you select a trigger mode, you may lose the signal (carrier plus modulating) from the RF output until you trigger the waveform. This is because the Keysight X-Series signal generator sets the I and Q signals to zero volts prior to the first trigger event, which suppresses the carrier. After the first trigger event, the waveform’s final I and Q levels determine whether you will see the carrier signal or not (zero = no carrier, other values = carrier visible). At the end of most files, the final I and Q points are set to a value other than zero.

There are four parts to configuring the trigger:

– Choosing the trigger type, which controls the waveform’s transmission.

– Setting the waveform’s response to triggers:

 – CONTinuous, see “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 381
 – SINGle, see “:RETrigger” on page 375
 – SADVance, see “:TRIGger:TYPE:SADVance[:TYPE]” on page 383
 – GATE, selecting the mode also sets the response
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

- Selecting the trigger source (see "`:TRIGger[:SOURce]` on page 384"), which determines how the Keysight X-Series signal generator receives its trigger signal, internally or externally. The GATE choice requires an external trigger.

- Setting the trigger polarity when using an external source:
 - CONTinuous, SINGle, and SADVance see "`:TRIGger[:SOURce]:EXTernal:SLOPe` on page 386
 - GATE, see "`:TRIGger:TYPE:GATE` on page 382

To check the trigger status, see "`:REGister[:STATus]` on page 374". For more information on triggering, see the User’s Guide.

The following list describes the trigger type command choices:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTinuous</td>
<td>Upon triggering, the waveform repeats continuously.</td>
</tr>
<tr>
<td>SINGle</td>
<td>Upon triggering, the waveform segment or sequence plays once.</td>
</tr>
<tr>
<td>SADVance</td>
<td>The trigger controls the segment advance within a waveform sequence. To use this choice, a waveform sequence must be the active waveform. Ensure that all segments in the sequence reside in volatile memory.</td>
</tr>
<tr>
<td>GATE</td>
<td>An external trigger signal repeatedly starts and stops the waveform’s playback (transmission). The time duration for playback depends on the duty period of the trigger signal and the gate polarity selection (see "<code>:TRIGger:TYPE:GATE</code> on page 382"). The waveform plays during the inactive state and stops during the active polarity selection state. The active state can be set high or low. The gate mode works only with an external trigger source.</td>
</tr>
</tbody>
</table>

With the multiple baseband generator synchronization feature active, GATE is unavailable (see page 358 for more information).

*RST CONT

Key Entry	Continuous	Single	Gate	Segment Advance

`::TRIGger:TYPE:CONTinuous[:TYPE]`

Supported N5166B/72B/82B

`[:SOURce]:RADio:ARB::TRIGger:TYPE:CONTinuous[:TYPE]`

FREE | TRIGger | RESET

`[:SOURce]:RADio:ARB::TRIGger:TYPE:CONTinuous[:TYPE]?`

This command selects the waveform’s response to a trigger signal while using the continuous trigger mode.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

For more information on triggering and to select the continuous trigger mode, see “:TRIGger:TYPE” on page 380.

The following list describes the waveform’s response to each of the command choices:

FREE Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.

With the multiple baseband generator synchronization feature active, this selection is unavailable (see page 358 for more information).

TRIGger The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

RESet The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.

*RST FREE

:TRIGger:TYPE:GATE

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger:TYPE:GATE LOW|HIGH
[:SOURce]:RADio:ARB:TRIGger:TYPE:GATE?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the inactive state occurs, the Keysight X-Series signal generator stops the waveform playback at the last played sample point, then restarts the playback at the next sample point when the active state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 380.

The following list describes the Keysight X-Series signal generator’s gating behavior for the polarity selections:

LOW The waveform playback stops when the trigger signal goes high and restarts when the trigger signal goes low.
Arb Commands

Dual ARB Subsystem—N5166B/72B/82B ([;SOURce]:RADio:ARB)

HIGH The waveform playback stops when the trigger signal goes low and restarts when the trigger signal goes high.

RST HIGH

Key Entry

<table>
<thead>
<tr>
<th>Active Low</th>
<th>Active High</th>
</tr>
</thead>
</table>

:TRIGger:TYPE:SADVance[:TYPE]

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger:TYPE:SADVance[:TYPE]

SINGLE|CONTInuous

[:SOURce]:RADio:ARB:TRIGger:TYPE:SADVance[:TYPE]?

This command selects the waveform’s response to a trigger signal while using the segment advance (SADVance) trigger mode.

When the Keysight X-Series signal generator receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest. For more information on triggering and to select segment advance as the trigger mode, see “:TRIGger:TYPE” on page 380.

The following list describes the waveform’s response to each of the command choices:

SINGLE Each segment in the sequence requires a trigger to play, and a segment plays only once, ignoring a segment’s repetition value (see “:SEQuence[:MWAVeform]” on page 377 for repetition information). The following list describes a sequence’s playback behavior with this choice:

- After receiving the first trigger, the first segment plays to completion.

- When the waveform receives a trigger after a segment completes, the sequence advances to the next segment and plays that segment to completion.

- When the waveform receives a trigger during play, the current segment plays to completion. Then the sequence advances to the next segment, and it plays to completion.

- When the waveform receives a trigger either during or after the last segment in a sequence plays, the sequence resets and the first segment plays to completion.
CONTinuous Each segment in the sequence requires a trigger to play. After receiving a trigger, a segment plays continuously until the waveform receives another trigger. The following list describes a sequence’s playback behavior with this choice:

- After receiving the first trigger, the first segment plays continuously.
- A trigger during the current segment play causes the segment to play to the end of the segment file, then the sequence advances to the next segment, which plays continuously.
- When last segment in the sequence receives a trigger, the sequence resets and the first segment plays continuously.

Example

:RAD:ARB:TRIG:TYPE:SADV CONT

The preceding example selects the continuous segment advance mode.

*RST CONT

Key Entry Single Continuous

:TRIGger:TYPE:SINGle:REPeat

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger:TYPE:SINGle:REPeat <count>

<count> is the number of times to repeat the waveform when a single trigger is received.

*RST 1

Range 1 to 65535

:TRIGger[:SOURce]

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger[:SOURce] KEY|EXT|BUS

[:SOURce]:RADio:ARB:TRIGger[:SOURce]?

This command sets the trigger source. With the multi–baseband generator synchronization slave selection, this command is unavailable (see page 358 for more information).

For more information on triggering, see “:TRIGger:TYPE” on page 380. The following list describes the command choices:
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY</td>
<td>Enables manual triggering by pressing the front-panel Trigger key.</td>
</tr>
<tr>
<td>EXT</td>
<td>An externally applied signal triggers the waveform. This is the only choice that works with gating. The following conditions affect an external trigger:</td>
</tr>
<tr>
<td></td>
<td>- The input connector selected for the trigger signal. You have a choice between the rear panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector. To make the connector selection, see “:TRIGger[:SOURce]:EXTernal[:SOURce]” on page 387. For more information on the connectors and on connecting the cables, see the User’s Guide.</td>
</tr>
<tr>
<td></td>
<td>- The trigger signal polarity:</td>
</tr>
<tr>
<td></td>
<td>- gating mode, see “:TRIGger:TYPE:GATE” on page 382</td>
</tr>
<tr>
<td></td>
<td>- continuous and single modes, see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 386</td>
</tr>
<tr>
<td></td>
<td>- The time delay between when the Keysight X-Series signal generator receives a trigger and when the waveform responds to the trigger. There are two parts to setting the delay:</td>
</tr>
<tr>
<td></td>
<td>- setting the amount of delay, see “:TRIGger[:SOURce]:EXTernal:DELay” on page 385</td>
</tr>
<tr>
<td></td>
<td>- turning the delay on, see “:TRIGger[:SOURce]:EXTernal:DELay:STATe” on page 386</td>
</tr>
<tr>
<td>BUS</td>
<td>Enables triggering over the GPIB or LAN using the *TRG or GET commands or the AUXILIARY INTERFACE (USB) using the *TRG command.</td>
</tr>
</tbody>
</table>

RST EXT

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Trigger Key</th>
<th>Ext</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:TRIGger[:SOURce]:EXTernal:DELay

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:DELay <value>

[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal:DELay?
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([:SOURce]:RADio:ARB)

This command sets the amount of time to delay the Keysight X-Series signal generator’s response to an external trigger.

The delay is a path (time) delay between when the Keysight X-Series signal generator receives the trigger and when it responds to the trigger. For example, configuring a trigger delay of two seconds, causes the Keysight X-Series signal generator to wait two seconds after receipt of the trigger before the Keysight X-Series signal generator plays the waveform.

The delay does not occur until you turn it on (see “[:TRIGger[:SOURce]:EXTernal:DELay:STATe” on page 386). You can set the delay value either before or after turning it on.

For more information on configuring an external trigger source and to select external as the trigger source, see “[:TRIGger[:SOURce]” on page 384.

The unit of measurement for the variable <value> is in seconds (nsec–sec).

*RST +1.00000000E–003
Range 1E–8 to 3E1
Key Entry Ext Delay Time

[:TRIGger[:SOURce]:EXTernal:DELay:STATe

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB[:TRIGger[:SOURce]:EXTernal:DELay:STATe

ON|OFF|1|0

[:SOURce]:RADio:ARB[:TRIGger[:SOURce]:EXTernal:DELay:STATe?

This command enables or disables the operating state of the external trigger delay function.

For setting the delay time, see “[:TRIGger[:SOURce]:EXTernal:DELay” on page 385, and for more information on configuring an external source, see “[:TRIGger[:SOURce]” on page 384.

*RST 0

Key Entry Ext Delay Off On

[:TRIGger[:SOURce]:EXTernal:SLOPe

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB[:TRIGger[:SOURce]:EXTernal:SLOPe

POSitive|NEGative

[:SOURce]:RADio:ARB[:TRIGger[:SOURce]:EXTernal:SLOPe?

This command sets the polarity for an external trigger signal while using the continuous, single triggering mode. To set the polarity for gating, see “[:TRIGger:TYPE:GATE” on page 382.
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([:SOURce]:RADio:ARB)

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger signal. When the Keysight X-Series signal generator receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 384.

*RST
Key Entry Ext Polarity Neg Pos

:TRIGger[:SOURce]:EXTernal[:SOURce]

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal[:SOURce]
EPT1|EPT2|
EPTRIGGER1|EPTRIGGER2
[:SOURce]:RADio:ARB:TRIGger[:SOURce]:EXTernal[:SOURce]?

This command selects which PATTERN TRIG IN connection the Keysight X-Series signal generator uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 384. For more information on the rear panel connectors, see the User’s Guide.

The following list describes the command choices:

- **EPT1** This choice is synonymous with EPTRIGGER1 and selects the PAT TRIG rear panel connector.
- **EPT2** This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear panel AUX I/O connector.
- **EPTRIGGER1** This choice is synonymous with EPT1 and selects the PAT TRIG rear panel connector.
- **EPTRIGGER2** This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear panel AUXILIARY I/O connector.

*RST EPT1

Key Entry Patt Trig In 1 Patt Trig In 2

:WAVeform

Supported N5166B/72B/82B
Arb Commands
Dual ARB Subsystem–N5166B/72B/82B ([SOURce]:RADio:ARB)

[:SOURce]:RADio:ARB:WAVeform
"WFM1:file_name"|"SEQ:file_name"

[:SOURce]:RADio:ARB:WAVeform?

This command selects a waveform file or sequence, for the dual ARB player to play. The file must be present in volatile memory, WFM1, or in the SEQ directory. If a file is in non–volatile memory (NVWFM), use the command "COPY[:NAME]" on page 164 to copy the file to WFM1. Any specified values in the header are applied to the ABR upon selection. Unspecified fields in the header cause no change in the ARB state.

"WFM1:file_name" This variable names a waveform file residing in volatile memory (WFM1:). For information on the file name syntax, see “File Name Variables” on page 43.

"SEQ:filename" This variable names a sequence file residing in the catalog of sequence files. For more information on the file name syntax, see “File Name Variables” on page 43.

Example
:RAD:ARB:WAV "WFM1:Test_Data"

The preceding example selects the file Test_Data from the list of files in volatile waveform memory, WFM1, and applies its file header settings.

Key Entry Select Waveform

:WAVeform:NHEAders

Supported N5166B/72B/82B

[:SOURce]:RADio:ARB:WAVeform:NHEaders
"WFM1:file_name"|"SEQ:filename"

[:SOURce]:RADio:ARB:WAVeform:NHEaders?

This command, for the dual ARB mode, allows for a fast selection of a segment or sequence waveform file. No header information or settings are applied to the segment or sequence waveform file when this command is used. This will improve the access or loading speed of the waveform file. The file must be in volatile waveform memory (WFM1), or in the SEQ directory. If a file is in non–volatile waveform memory (NVWFM), use the command "COPY[:NAME]" on page 164 to copy files to WFM1.

"WFM1:file_name" This variable names a waveform file residing in volatile memory:WFM1. For information on the file name syntax, see "File Name Variables" on page 43.

"SEQ:filename" This variable names a sequence file residing in the catalog of sequence files. For more information on the file name syntax, see “File Name Variables” on page 43.

Example
:RAD:ARB:WAV:NHE "Test_Data"
Arb Commands
Dual ARB Subsystem—N5166B/72B/82B ([:SOURce]:RADIO:ARB)

The preceding example selects the file Test_Data, without applying header settings.

:WAVEform:SEGMents

Supported N5166B/72B/82B

[:SOURce]:RADIO:ARB:WAVEform:SEGMents?

This command returns the segment count in the currently selected waveform sequence for Dual Arb.

[:STATE]

Supported N5166B/72B/82B

[:SOURce]:RADIO:ARB[:STATE] ON|OFF|1|0

[:SOURce]:RADIO:ARB[:STATE]?

This command enables or disables the arbitrary waveform generator function.

The Dual ARB Player provides a status register to show the status of the following items:

– Dual ARB state (off or on)
– Trigger arming
– Waveform play–back
– Multiple BBG synchronization

To use the register, see “:REGister[:STATus]” on page 374.

*RST 0

Key Entry ARB Off On
Arb Commands
LARB Subsystem–N5166B/72B/82B ([::SOURce]:RADio:LARB)

LARB Subsystem–N5166B/72B/82B ([::SOURce]:RADio:LARB)

[::STATe]

Supported N5166B/72B/82B

[::SOURce]:RADio:LARB[:STATe] ON|OFF|1|0

[::SOURce]:RADio:LARB[:STATe]?

This command enables or disables the waveform sweep function, when the signal generator is in list sweep mode.

NOTE

Except for the sample clock rate, unspecified fields in the header result in the default settings of the dual arb's settings being used (i.e. not the current arb's settings). The sample clock rate must be specified for the file header of the waveform file being played. If the sample clock rate is unspecified in the file header, the instrument generates a header error.

*RST 0

Key Entry Waveform Off On

Remarks The **Sweep Type** softkey must be set to **List** for this command to function.
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

Creating a Multitone Waveform

Use the following steps to create a multitone waveform:

1. Initialize the phase for the multitone waveform. Refer to
 “:SETup:TABLE:PHASe:INITialize” on page 408.
2. Assign the frequency spacing between the tones. Refer to
 “:SETup:TABLE:FSPacing” on page 407.
3. Define the number of tones within the waveform. Refer to
 “:SETup:TABLE:NTONes” on page 408.
4. Modify the power level, phase, and state of any individual tones. Refer to
 “:SETup:TABLE:ROW” on page 409.

:ALIGnment

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:ALIGnment LEFT|CENTer|RIGHT
[:SOURce]:RADio:MTONe:ARB:ALIGnment?

This command will align the multitones either left, center or right of the carrier frequency.

Example

:RAD:MTON:ARB:ALIG CENT

The preceding example aligns each of the multitones equidistant from the carrier frequency.

Key Entry Alignment Left Cent Right

:BASEband:FREQuency:OFFSet

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:BASEband:FREQuency:OFFSet
<val><unit>
[:SOURce]:RADio:MTONe:ARB:BASEband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed-through is not in the center.

The X-Series signal generator provides automatic DAC over-range protection when the offset value is something other than 0 Hz. It scales down the playing I/Q data by $1/\sqrt{2}$.

Key Entry Alignment Left Cent Right

:BASEband:FREQuency:OFFSet

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:BASEband:FREQuency:OFFSet
<val><unit>
[:SOURce]:RADio:MTONe:ARB:BASEband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed-through is not in the center.

The X-Series signal generator provides automatic DAC over-range protection when the offset value is something other than 0 Hz. It scales down the playing I/Q data by $1/\sqrt{2}$.

Key Entry Alignment Left Cent Right
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([[:SOURce]:RADio:MTOnE:ARB])

*RST

Range +5.0E7 to −5.0E7 Hz

Key Entry Baseband Frequency Offset

[:BASEband]:FREQuency:OFFSet:PHASE:RESet

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTOnE:ARB:BASEband:FREQuency:OFFSet:PHASE:RESet

This command clears the phase accumulation and so zero phase shift.

When the Baseband Frequency Offset is non-zero, the hardware rotator accumulates phase-shift of the baseband signal. This residual phase remains even after the offset value is returned to zero. While there is a non-zero residual phase present in the signal, the DAC Over-Range Protection feature will automatically prevent DAC overrange errors from occurring by scaling the signal down by $1/\sqrt{2}$.

Key Entry Baseband Frequency Offset Phase Reset

:HEADer:CLEar

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTOnE:ARB:HEADer:CLEar

This command clears the header information from the file header used by this modulation format.

Key Entry Clear Header

Remarks The Multitone Off On softkey must be set to On for this command to function.

:HEADer:SAVE

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTOnE:ARB:HEADer:SAVE

This command saves the header information to the file header used by this modulation format.

Key Entry Save Setup To Header

Remarks The Multitone Off On softkey must be set to On for this command to function.

:IQ:MODulation:ATTen

Supported N5166B/72B/82B with Option N5180430B
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen <val>
[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen?

This command attenuates the I/Q signals being modulated through the signal generator RF path.

The variable <val> is expressed in units of decibels (dB).

*RST +2.00000000E+000
Range 0 to 50
Key Entry Modulator Atten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:MTONe:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disables the I/Q attenuation auto mode.

ON (1) This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. Refer to the :IQ:MODulation:ATTen command for setting the attenuation value.

*RST 1
Key Entry Modulator Atten Manual Auto

:MDEStination:AAMPlitude

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:MDEStination:AAMPlitude NONE|M1|M2|M3|M4
[:SOURce]:RADio:MTONe:ARB:MDEStination:AAMPlitude?

This command routes the selected marker to the Alternate Amplitude function. The NONE parameter clears the marker for the Alternate Amplitude function.

*RST NONE

Key Entry None Marker 1 Marker 2 Marker 3 Marker 4
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([SOURce]:RADIO:MTONe:ARB)

:MDEStination:ALCHold

Supported N5166B/72B/82B with Option N5180430B

CAUTION
Incorrect automatic level control (ALC) sampling can create a sudden un leveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADIO:MTONe:ARB:MDEStination:ALCHold
NONE|M1|M2|M3|M4
[:SOURce]:RADIO:MTONe:ARB:MDEStination:ALCHold?

This command enables the marker ALC hold function for the selected marker. For setting markers, see “:MARKer:[SET]” on page 356.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC leveling circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see :MPOLarity:MARKer1|2|3|4.

Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

NOTE
A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the *User’s Guide*.

<table>
<thead>
<tr>
<th>NONE</th>
<th>This terminates the marker ALC hold function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1–M4</td>
<td>These are the marker choices. The ALC hold feature uses only one marker at a time.</td>
</tr>
</tbody>
</table>
Arb Commands
Multitone Subsystem—N5166B/72B/82B with Option N5180430B
([:SOURCE]:RAD:MTON:ARB)

*RST NONE

Key Entry None Marker 1 Marker 2
Marker 3 Marker 4

:MDEStination:PULSe

Supported N5166B/72B/82B with Option N5180430B

CAUTION

The pulse function incorporates ALC hold. Incorrect automatic level control (ALC) sampling can create a sudden unlevelled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURCE]:RAD:MTON:ARB:MDEstination:PULSe
NONE|M1|M2|M3|M4
[:SOURCE]:RAD:MTON:ARB:MDEstination:PULSe?

This command enables the marker pulse/RF blanking function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no need to select both the ALC hold and pulse/RF blanking functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low. The marker polarity determines when the marker signal is low. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. For setting a marker’s polarity, see “:MPOLarity:MARKer1|2|3|4” on page 396.

NOTE

Set marker points prior to using this function. Enabling this function without setting marker points may create a continuous low or high marker signal, depending on the marker polarity. This causes either no RF output or a continuous RF output. For setting the marker points, see “:MARKer:[SET]” on page 356.

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([*SOURce*]:RADio:MTONe:ARB)

the RF blanking to begin. The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the User’s Guide.

NONE This terminates the marker RF blanking/pulse function.
M1–M4 These are the marker choices. The RF blanking/pulse feature uses only one marker at a time.
*RST NONE

Key Entry

None Marker 1 Marker 2
Marker 3 Marker 4

:MPOLarity:MARKer1|2|3|4

Supported N5166B/72B/82B with Option N5180430B

[:SOURce*]:RADio:MTONe:ARB:MPOLarity:MARKer1|2|3|4
NEGative|POSitive
[:SOURce*]:RADio:MTONe:ARB:MPOLarity:MARKer1|2|3|4?

This command sets the polarity for the selected marker. For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points.

*RST POS

Key Entry

Marker 1 Polarity Neg Pos
Marker 2 Polarity Neg Pos
Marker 3 Polarity Neg Pos
Marker 4 Polarity Neg Pos

:NOISe:BANDwidth

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce*]:RADio:MTONe:ARB:NOISe:BANDwidth <val><unit>
[:SOURce*]:RADio:MTONe:ARB:NOISe:BANDwidth?

This command sets the flat noise bandwidth value for the multitone waveform. This value is typically set wider than the carrier bandwidth.
Arb Commands
Multitone Subsystem—N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

To configure the AWGN, refer to the following sections located in the multitone subsystem:

- To set the bandwidth over which the noise power is integrated for calculating the carrier to noise ratio, refer to "[:NOISe:CBWidth]" on page 397.
- To set the carrier to noise ratio as the active function, refer to "[:NOISe:CN]" on page 398.
- To enable the AWGN, refer to "[:NOISe:[STATE]]" on page 402.

*RST +1.00000000E+000

Key Entry Noise Bandwidth

:NOISe:CBRate

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTONe:ARB:NOISe:CBRate <val>
[:SOURce]:RADio:MTONe:ARB:NOISe:CBRate?

This command sets a value of the carrier bit rate (gross bit rate) for purposes of calculating the Eb/N0 (energy per bit over noise power density at the receiver). When the carrier to noise ratio format is set to Eb/N0 (refer to the :NOISe:CNFormat command), the adjustment of the carrier bit rate will have an immediate impact on the carrier to noise ratio as specified by Eb/N0. The carrier bit rate is derived from the symbol rate and bits per symbol of the modulation. The carrier bit rate is a saved instrument state that is recorded in the waveform header.

The query returns the current carrier bit rate setting.

Default 1.000 bps
Range 1 bps–999 Mbps
Key Entry Carrier Bit Rate

:NOISe:CBWidth

Supported N5166B/72B/82B with Options N5180430B and N5180403B
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

[:SOURce]:RADio:MTONe:ARB:NOISe:CBWidth <val>
[:SOURce]:RADio:MTONe:ARB:NOISe:CBWidth?

This command selects the carrier bandwidth over which the AWGN (additive white gaussian noise) is applied. The noise power will be integrated over the selected bandwidth for the purposes of calculating C/N (carrier to noise ratio). For more information refer to “:NOISe[:STATe]” on page 402.

*RST +1.00000000E+000

Range 1 Hz–200 MHz (Minimum increment is .001 Hz)

Key Entry Carrier Bandwidth

:NOISe:CN

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTONe:ARB:NOISe:CN <val>
[:SOURce]:RADio:MTONe:ARB:NOISe:CN?

This command sets the carrier to noise ratio in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to :NOISe:CBWidth.

Example

:RAD:ARB:NOIS:CN 50DB

The preceding example sets the carrier to noise ratio to 50 dB.

*RST +0.00000000E+000

Range –100dB to 100dB

Key Entry Carrier to Noise Ratio

:NOISe:CNFormat

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTONe:ARB:NOISe:CNFormat CN|EBNO
[:SOURce]:RADio:MTONe:ARB:NOISe:CNFormat?

This command selects either the Carrier to Noise Ratio (C/N) or energy per bit over noise power density at the receiver (Eb/N0) as the variable controlling the ratio of carrier power to noise power in the carrier bandwidth.

Example

:RAD:MTON:ARB:NOIS:CNF EBNO
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B ([:SOURCE]:RAD:MTONE:ARB)

The preceding example sets the carrier to noise ratio format to EbNo.

<table>
<thead>
<tr>
<th>Default</th>
<th>Carrier to Noise Ratio Format C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Carrier to Noise Ratio Format C/N Eb/No</td>
</tr>
</tbody>
</table>

::NOISe:EBNO

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURCE]:RAD:MTONE:ARB:NOISe:EBNO <ebno in dB>
[:SOURCE]:RAD:MTONE:ARB:NOISe:EBNO?

This command allows the C/N to be set using the Eb/N0 (energy per bit over noise power density at the receiver) form. This requires that the carrier bit rate (::NOISe:CBRate on page 397) be set properly. The range of Eb/N0 is limited to the range that is equivalent to –100 to 100 dB of C/N. This value is only effective when Eb/N0 has been enabled by the ::NOISe:CNFormat command.

The query returns the value of Eb/N0.

<table>
<thead>
<tr>
<th>Default</th>
<th>0 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>–100 to 100 dB</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Carrier to Noise Ratio Format Eb/No</td>
</tr>
</tbody>
</table>

::NOISe:MUX

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURCE]:RAD[1]:MTONE:ARB:NOISe:MUX SUM|CARRier|NOISe
[:SOURCE]:RAD[1]:MTONE:ARB:NOISe:MUX?

This command enables diagnostic control of additive noise, such that only the noise, only the carrier, or the sum of both the noise and the carrier are output from the internal baseband generator. With the ALC off, this feature enables direct measurement of just the carrier or the noise contributions to the total power. The system will still behave as if both the noise and the carrier are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

Example

:RAD:MTON:ARB:NOIS:MUX CARR

The preceding example enables the direct measurement of the carrier contribution to the total power.

<table>
<thead>
<tr>
<th>Default</th>
<th>Carrier+Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Carrier+Noise</td>
</tr>
</tbody>
</table>
Arb Commands
Multitone Subsystem—N5166B/72B/82B with Option N5180430B
([SOURce]:RADio:MTONE:ARB)

:NOISE:POWER:CARRier

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTONE:ARB:NOISE:POWER:CARRier <carrierPower>

[:SOURce]:RADio:MTONE:ARB:NOISE:POWER:CARRier?

This command sets the current carrier power level if noise is on.

In the CARRier control mode, the total power will be adjusted to achieve the specified carrier power and the carrier power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the carrier power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total power is adjusted.

In the NOISe control mode, this will adjust the total noise power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total noise power is adjusted. See also :NOISE:POWER:CONTrol[:MODE] and :NOISE:POWER:NOISe:TOTal commands.

Range
The range varies based on the bounds of the total power that results from the noise settings.

Default
The appropriate value given the current total power and the current Carrier to Noise (C/N).

Key Entry
Carrier Power

:NOISE:POWER:CONTrol[:MODE]

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTONE:ARB:NOISE:POWER:CONTrol[:MODE]?

This command sets the power control to one of the three following modes:

Total
This is the default mode where the total power and C/N are independent variables and the carrier power and total noise power are dependent variables set by the total power, C/N and the rest of the noise settings. The carrier power and total noise power will change as any noise parameter is adjusted to keep the total power and the C/N at their last specified values.

Carrier
In this mode the carrier power and C/N are independent variables and the total power and total noise power are dependent variables set by the carrier power, C/N and...
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTOnE:ARB)

the rest of the noise settings. The total power and total noise power will change as any noise parameter is adjusted to keep the carrier power and the C/N at their last specified values.

Total Noise
In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

Default
Total

Key Entry
Total Carrier Total Noise

:NOISe:POWer:NOISe:CHANnel?

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTOnE:ARB:NOISe:POWer:NOISe:CHANnel?
The query returns the current noise power across the carrier bandwidth in dBm.

:NOISe:POWer:NOISe:TOTal

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:MTOnE:ARB:NOISe:POWer:NOISe:TOTal<totalNoisePowerInDbm>
[:SOURce]:RADio:MTOnE:ARB:NOISe:POWer:NOISe:TOTal?

This command sets the current total noise power level if noise is on.

In the NOISe control mode, the total power will be adjusted to achieve the specified total noise power and the total noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the total noise power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the total power is adjusted.

In the CARRier control mode, this will adjust the carrier power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the carrier power is adjusted. See also :NOISe:POWer:CONTrol[:MODE] command.
Arb Commands
Multi-tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

Range
The range varies based on the bounds of the total power that results from the noise settings.

Default
The appropriate value given the current total power and the current Carrier to Noise (C/N).

Key Entry
Total Noise Power

:NOISe[:STATe]

Supported
N5166B/72B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONe:ARB:NOISe[:STATe] ON|OFF|1|0
[:SOURce]:RADio:MTONe:ARB:NOISe[:STATe]?

This command enables the Multi-Tone modulation mode.
To configure the AWGN, refer to the following sections located in the multitone subsystem:
- To set the AWGN noise bandwidth, refer to "NOISe:BANDwidth" on page 396.
- To set the bandwidth over which the noise power is integrated for calculating the carrier to noise ratio, refer to "NOISe:CBWidth" on page 397.
- To set the carrier to noise ratio as the active function, refer to "NOISe:CN" on page 398.

*RST
Off

Key Entry
Real-Time AWGN Off On

:PHASe:NOISe:F1

Supported
N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:F1 <value><unit>
[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:F1?

This command sets the start frequency value of the flat area for the phase noise impairment.
Ensure that this value is less than or equal to the stop frequency value (see :PHASe:NOISe:F2). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.
The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User’s Guide.

*RST
+1.00000000E+003

Range
0 Hz to 77.50052449 MHz
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONe:ARB)

Key Entry Desired Start Freq (f1)

:PHASe:NOISe:F1:ACTual?

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:F1:ACTual?

This query returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.

:PHASe:NOISe:F2

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:F2 <value><unit>
[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:F2?

This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :PHASe:NOISe:F1 command). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User’s Guide.

*RST +3.00000000E+004

Range 1 Hz to 77.50052449 MHz

Key Entry Desired Stop Freq (f2)

:PHASe:NOISe:F2:ACTual?

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:F2:ACTual?

This query returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

:PHASe:NOISe:LMID

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:LMID <value>
[:SOURce]:RADio:MTONe:ARB:PHASe:NOISe:LMID?

This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator.
Arb Commands

Multitone Subsystem–N5166B/72B/82B with Option N5180430B
(:SOURce:RADio:MTONE:ARB)

The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.

For more information on the phase noise impairment option, see the User’s Guide.

NOTE

The amplitude range varies depending on the f2 value (“:PHASE:NOISE:F2” on page 403). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The range values are expressed in units of dBc/Hz.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>−7.00000000E+001</td>
</tr>
<tr>
<td>Range</td>
<td>−300 to 100</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Desired Flat Amplitude (Lmid)</td>
</tr>
</tbody>
</table>

:PHASE:NOISE:LMID:ACTual?

Supported

N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONE:ARB:PHASE:NOISE:LMID:ACTual?

This query returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.

:PHASE:NOISE[:STATE]

Supported

N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:MTONE:ARB:PHASE:NOISE[:STATE] ON|OFF|1|0

[:SOURce]:RADio:MTONE:ARB:PHASE:NOISE[:STATE]?

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the User’s Guide.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>0</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Phase Noise Off On</td>
</tr>
</tbody>
</table>
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURCE]:RADio:MTONe:ARB)

the phase noise feature. The output is over the start frequency to the stop frequency for the number of samples specified. The samples are taken at logarithmic frequency steps and the output is in dBc/Hz.

Range
<startFreq> 1 Hz to 100 MHz
<stopFreq> 1 Hz to 100 MHz
<numSamples> 1 to 8192

:SCLock:RATE

Supported N5166B/72B/82B with Option N5180430B

[:SOURCE]:RADio:MTONe:ARB:SCLock:RATE <val>
[:SOURCE]:RADio:MTONe:ARB:SCLock:RATE?

This command sets the sample clock rate for the multitone modulation format. The variable <val> is expressed in units of hertz.

*RST
+60.000000E+006 (with Option 653)
+120.000000E+006 (with Option 655)
+80.000000E+006 (with Option 656)
+160.000000E+006 (with Option 657)

Range
Option 653: 1 Hz to 60 MHz
Option 655: 1 Hz to 120 MHz
Option 656: 1 Hz to 80 MHz
Option 657: 1 Hz to 160 MHz

Key Entry ARB Sample Clock

Remarks
The modulation format should be active before executing this command. If this command is executed before the modulation format is active, the entered value will be overridden by a calculated factory default value. To activate the modulation format, refer to “[:STATE]” on page 410.

:SETup

Supported N5166B/72B/82B with Option N5180430B

[:SOURCE]:RADio:MTONe:ARB:SETup "<file name>"
[:SOURCE]:RADio:MTONe:ARB:SETup?

This command retrieves a multitone waveform file.

Key Entry Load From Selected File
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
(:SOURce):RADio:MTONe:ARB)

Remarks
The name of a multitone waveform file is stored in the signal generator file system of MTONE files. This information is held in memory until you send the command that turns the waveform on.

For information on the file name syntax, refer to “File Name Variables” on page 43.

:SETup:STORe

Supported
N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:SETup:STORe "<file name>"

This command stores the current multitone waveform setup in the signal generator file system of MTONE files.

Key Entry
Store To File

:SETup:TABLe

Supported
N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONe:ARB:SETup:TABLe <freq_spacing>, <num_tones>, <phase>, <state>
[:SOURce]:RADio:MTONe:ARB:SETup:TABLe?

This command creates and configures a multitone waveform.

The frequency offset, power, phase, and state value are returned when a query is initiated. The output format is as follows:

<frequency offset>,<power>,<phase>,<state>

The variable <freq_spacing> is expressed in units of Hertz (Hz–MHz).

The variable <power> is expressed in units of decibels (dB).

<table>
<thead>
<tr>
<th>*RST</th>
<th>Tone</th>
<th><frequency offset></th>
<th><power></th>
<th><phase></th>
<th><state></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tone 1</td>
<td>-35000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 2</td>
<td>-25000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 3</td>
<td>-15000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 4</td>
<td>-5000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 5</td>
<td>+5000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 6</td>
<td>+15000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 7</td>
<td>+25000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Tone 8</td>
<td>+35000</td>
<td>+0.00000000E+000</td>
<td>+0</td>
<td>+1</td>
</tr>
</tbody>
</table>

Range
<freq_spacing> (2 tones): 1E1 to Option 65x bandwidth
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTOn:ARB)

<freq_spacing> (≥2 tones): 1E1 to (Option 65x bandwidth ÷ (num_tones – 1))

<phase>: 0–359

BBG_max_bandwidth:
653: 60 MHz
655: 120 MHz
656: 80 MHz
657: 160 MHz

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Freq Spacing</th>
<th>Number Of Tones</th>
<th>Toggle State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry Freq Spacing Number Of Tones Toggle State</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Toggle State softkey has a different softkey path but the same SCPI command when initializing the Multitone table (For the softkey path, refer to “:SETup:TABLE:ROW” on page 409).

Remarks
To set the frequency spacing, refer to “:SETup:TABLE:FSPacing” on page 407.

:SETup:TABLE:FSPacing

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTOn:ARB:SETup:TABLE:FSPacing

This command sets the frequency spacing between the tones.

The variable <freq_spacing> is expressed in units of Hertz (Hz–MHz).

*RST +1.00000000E+004

Range <freq_spacing> (2 tones): 1E1–Option 65x bandwidth

<freq_spacing> (>2 tones): 1E1 to (Option 65x bandwidth ÷ (num_tones – 1))

Key Entry Freq Spacing

Remarks
To set frequency spacing and additional parameters required to create or configure a multitone waveform, refer to “:SETup:TABLE” on page 406.

This command is the second step in creating a multitone waveform. Refer to “Creating a Multitone Waveform” on page 391 for all four steps.
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTONE:ARB)

:SETup:TABLE:NTONes

Supported
N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONE:ARB:SETup:TABLE:NTONes <num_tones>
[:SOURce]:RADio:MTONE:ARB:SETup:TABLE:NTONes?

This command defines the number of tones in the multitone waveform.

*RST +8

Range 2 to 64

Key Entry Number Of Tones

Remarks To specify the number of tones and additional parameters required to create or configure a multitone waveform, refer to “:SETup:TABLE” on page 406.

This command is the third step in creating a multitone waveform. Refer to “Creating a Multitone Waveform” on page 391 for all four steps.

:SETup:TABLE:PHASe:INITialize

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:MTONE:ARB:SETup:TABLE:PHASe:INITialize FIXed|RANDom
[:SOURce]:RADio:MTONE:ARB:SETup:TABLE:PHASe:INITialize?

This command initializes the phase in the multitone waveform table.

FIXed This choice sets the phase of all tones to the fixed value of 0 degrees.

RANDom This choice sets the phase of all tones to random values based on the setting on the random seed generator.

*RST FIX

Key Entry Initialize Phase Fixed Random

Remarks To change the random number generator seed value, refer to “:SETup:TABLE:PHASe:INITialize:SEED” on page 409.

This command is the first step in creating a multitone waveform. Refer to “Creating a Multitone Waveform” on page 391 for all four steps.
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([SOURce]:RADio:MTOne:ARB)

[:SETup:TABLE:PHAse:INITialize:SEED

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5166B/72B/82B with Option N5180430B</th>
</tr>
</thead>
</table>

[:SOURce]:RADio:MTOne:ARB:SETup:TABLE:PHAse:INITialize:SEED
FIXed|RANDom

[:SOURce]:RADio:MTOne:ARB:SETup:TABLE:PHAse:INITialize:SEED?

This command initializes the random number generator seed that is used to generate the random phase values for the multitone waveform.

FIXed This choice sets the random number generator seed to a fixed value.

RANDom This choice sets the random number generator seed to a random value. This changes the phase value after each initialization of the phase.

*RST FIX

Key Entry Random Seed Fixed Random

[:SETup:TABLE:ROW

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5166B/72B/82B with Option N5180430B</th>
</tr>
</thead>
</table>

[:SOURce]:RADio:MTOne:ARB:SETup:TABLE:ROW
<row_number>,<power>,
<phase>,<state>

[:SOURce]:RADio:MTOne:ARB:SETup:TABLE:ROW? <row_number>

This command modifies the indicated tone (row) of the multitone waveform.

<row_number> The number of rows for this variable is determined by the :SETup:TABLE command.

<power> The power level of the tone defined in the row number. Power levels for all tones must not exceed the power level of the signal generator. The power variable is expressed in decibels (dB)

<phase> The phase of the tone relative to the carrier. The phase variable is expressed in degrees.

<state> The state of the tone in this row can be enabled or disabled.

Frequency offset, power, phase, and state value are returned when a query is initiated. The output format is as follows:

<frequency_offset>,<power>,<phase>,<state>

Refer to “SETup:TABLE” on page 406 for information on how to change the number of rows.

This command is the final step in creating a multitone waveform. Refer to “Creating a Multitone Waveform” on page 391 for all four steps.
Arb Commands
Multitone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:MTOne:ARB)

Example
:RAD:MTON:ARB:SET:TABL:ROW 2,-10,40,0

The preceding example modifies row number two in the currently selected multitone table. The power is set to –10 dB, the phase is set to 40 degrees, and the state is off.

*RST frequency offset: <power>: <phase>: <state>
−3.50000000E+004 +0.00000000E+000 +0.00000000E+000 1

Range frequency <power>: <phase>: <state>
offset: −80 0–359 1
653: +/-30 MHz
655: +/-60 MHz
656: +/-40 MHz
657: +/-80 MHz

Key Entry Goto Row Edit Item Toggle State

[:STATe]

Supported N5166B/72B/82B with Option N5180430B

[[:SOURce]:RADio:MTOne:ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio:MTOne:ARB[:STATe]?]

This command enables or disables the multitone waveform generator function.

*RST 0

Key Entry Multitone Off On
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

:ALIGNment

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:ALIGNment LEFT|CENTER|RIGHT

[:SOURce]:RADio:TTONe:ARB:ALIGNment?

This command will align the two tones either left, center or right of the carrier frequency.

Example

:RAD:TTON:ARB:ALIGN CENT

The preceding example aligns each of the two tones equidistant from the carrier frequency.

Key Entry

Alignment Left Cent Right

:APPLY

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:APPLY

This command will cause the two-tone waveform to be regenerated using the current settings.

This command has no effect unless the two-tone waveform generator is enabled and a change has been made to the frequency spacing setting.

Key Entry

Apply Settings

:BASEband:FREQuency:OFFSet

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:BASEband:FREQuency:OFFSet <val><unit>

[:SOURce]:RADio:TTONe:ARB:BASEband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed-through is not in the center.

The X-Series signal generator provides automatic DAC over-range protection when the offset value is something other than 0 Hz. It scales down the playing I/Q data by $1/\sqrt{2}$.

*RST 0 Hz

Range +5.0E7 to -5.0E7 MHz
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([SOURce]:RADio:TTONe:ARB)

Key Entry

Baseband Frequency Offset

:SASeband:FREQ:OFFSet:PHASE:RESet

Supported
N5166B/72B/82B with Option N5180430B

This command clears the phase accumulation and so zero phase shift.
When the Baseband Frequency Offset is non-zero, the hardware rotator accumulates phase-shift of the baseband signal. This residual phase remains even after the offset value is returned to zero. While there is a non-zero residual phase present in the signal, the DAC Over–Range Protection feature will automatically prevent DAC overrange errors from occurring by scaling the signal down by $1/\sqrt{2}$.

Key Entry

Baseband Frequency Offset Phase Reset

:FSPacing

Supported
N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:FSPacing <freq_spacing>
[:SOURce]:RADio:TTONe:ARB:FSPacing?

This command sets the frequency spacing between the tones.
The variable <freq_spacing> is expressed in hertz (Hz–MHz).

Example

:RAD:TTON:ARB:FSP 10MHZ

The preceding example sets a 10 megahertz frequency spacing for the two tones.

*RST
+1.000000000E+004

Range
1E1 to 1E8

Key Entry
Freq Separation

:HEADer:CLEar

Supported
N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:HEADer:CLEar

This command clears the header information from the header file used for the two-tone waveform format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User's Guide for information on file headers.
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([SOURce]:RADio:TTONe:ARB)

For this command to function, two tone must be on. To turn two tone on, see “[:STATe]” on page 427.

Key Entry Clear Header

:HEADer:SAVE

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:HEADer:SAVE

This command saves the header information to the header file used for the two-tone waveform format. Header information consists of signal generator settings and marker routings associated with the waveform file. Refer to the User’s Guide for information on header files.

For this command to function, two tone must be on. To turn two tone on, see “[:STATe]” on page 427.

Key Entry Save Setup To Header

:IQ:MODulation:ATTen

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen <val><unit>
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path. The variable <val> is expressed in decibels (dB).

Example

The preceding example sets the modulator attenuator to 20 dB.

*RST +2.00000000E+000

Range 0 to 50 dB

Key Entry Modulator Atten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:TTONe:ARB:IQ:MODulation:ATTen:AUTO?

This command enables or disabling the modulator attenuator auto mode. The auto mode will be switched to manual if the signal generator receives an AUTO OFF or AUTO ON command.
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

ON (1) This choice enables the attenuation auto mode which allows the signal generator to select the attenuation level that optimizes performance based on the current conditions.

OFF (0) This choice holds the attenuator at its current setting or at a selected value. For setting the attenuation value, refer to “[:IQ:MODulation:ATTen] on page 392.

Example

The preceding example enables the attenuator automatic mode.

*RST 1

Key Entry Modulator Atten Manual Auto

[:MDESTination: ALCHold]

Supported N5166B/72B/82B with Option N5180430B

CAUTION
Incorrect ALC sampling can create a sudden unleveled condition that may create a spike in the RF output potentially damaging a DUT or connected instrument. Ensure that you set markers to let the ALC sample over an amplitude that accounts for the high power levels within the signal.

[:SOURce]:RADio:TTONe:ARB:MDESTination:ALCHold
NONE|M1|M2|M3|M4
[:SOURce]:RADio:TTONe:ARB:MDESTination:ALCHold?

This command disables the marker ALC hold function, or it enables the marker hold function for the selected marker.

Use the ALC hold function when you have a waveform signal that incorporates idle periods, or when the increased dynamic range encountered with RF blanking is not desired. The ALC circuitry responds to the marker signal during the marker pulse (marker signal high), averaging the modulated signal level during this period.

The ALC hold function operates during the low periods of the marker signal. The marker polarity determines when the marker signal is high. For a positive polarity, this is during the marker points. For a negative polarity, this is when there are no marker points. To set a marker’s polarity, see “[:MPOLarity:MARKer1|2|3|4] on page 417. For more information on markers, see “[:MARKer[:SET]] on page 356.

NOTE
Do not use the ALC hold for more than 100 ms, because it can affect the waveform’s output amplitude.
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

The marker signal has a minimum of a two–sample delay in its response relative to the waveform signal response. To compensate for the marker signal delay, offset marker points from the waveform sample point at which you want the ALC sampling to begin.

The ALC hold setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings.

For more information on the marker ALC hold function, see the User’s Guide. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEAR” on page 353.
- For clearing all marker points, see “:MARKer:CLEAR:ALL” on page 355.
- For shifting marker points, see “:MARKer:ROTate” on page 355.
- For setting marker points, see “:MARKer[:SET]” on page 356.

NONE This terminates the marker ALC hold function.
M1–M4 These are the marker choices. The ALC hold feature uses only one marker at a time.

Example

The preceding example routes marker two to the ALC hold function.

*RST NONE

Key Entry None Marker 1 Marker 2 Marker 3 Marker 4
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

:MDESTination:PULSe

Supported N5166B/72B/82B with Option N5180430B

CAUTION

The pulse function incorporates ALC hold. Incorrect ALC sampling can
create a sudden unleveled condition that may create a spike in the RF
output, potentially damaging a DUT or connected instrument. Ensure that
you set markers to let the ALC sample over an amplitude that accounts for
the high power levels within the signal.

[:SOURce]:RADio:TTONe:ARB:MDESTination:PULSe
NONE|M1|M2|M3|M4
[:SOURce]:RADio:TTONe:ARB:MDESTination:PULSe?

This command disables the marker RF blanking/pulse function, or it enables
the marker RF blanking/pulse function for the selected marker.

This function automatically incorporates the ALC hold function, so there is no
need to select both functions for the same marker.

NOTE

Do not use ALC hold for more than 100 ms, because it can affect the
waveform’s output amplitude.

The signal generator blanks the RF output when the marker signal goes low.
The marker polarity determines when the marker signal is low. For a positive
polarity, this is during the marker points. For a negative polarity, this is when
there are no marker points. To set a marker’s polarity, see
“,:MPOLarity:MARKer1|2|3|4” on page 417. For more information on markers,
see “,:MARKer[:SET]” on page 356.

NOTE

Set marker points prior to using this function. Enabling this function
without setting marker points may create a continuous low or high marker
signal, depending on the marker polarity. This creates the condition where
there is either no RF output or a continuous RF output.

To configure marker points, refer to the following sections located in the Dual
ARB subsystem:

– For clearing a single marker point or a range of marker points,
 see “,:MARKer:CLEar” on page 353.
– For clearing all marker points, see “,:MARKer:CLEar:ALL” on page 355.
– For shifting marker points, see “,:MARKer:ROTate” on page 355.
– For setting marker points, see “,:MARKer[:SET]” on page 356.

The marker signal has a minimum of a two–sample delay in its response
relative to the waveform signal response. To compensate for the marker signal
delay, offset marker points from the waveform sample point at which you want
the RF blanking to begin.
Arb Commands
Two Tone Subsystem—N5166B/72B/82B with Option N5180430B
([[:SOURce]:RADio]:TTOne:ARB)

The RF blanking setting is part of the file header information, so saving the setting to the file header saves the current marker routing for the waveform file.

A waveform file that has unspecified settings in the file header uses the previous waveform’s routing settings. This could create the situation where there is no RF output signal, because the previous waveform used RF blanking.

For more information on the marker RF blanking function, see the User’s Guide.

Key Entry

<table>
<thead>
<tr>
<th>Marker</th>
<th>Key Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Marker 1</td>
</tr>
<tr>
<td>3</td>
<td>Marker 2</td>
</tr>
<tr>
<td>4</td>
<td>Marker 3</td>
</tr>
</tbody>
</table>

:MPOLarity:MARKer1|2|3|4

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTOne:ARB:MPOLarity:MARKer1|2|3|4
NEGative|POSitive

This command sets the polarity for the selected marker.

For a positive marker polarity, the marker signal is high during the marker points. For a negative marker polarity, the marker signal is high during the period of no marker points. To configure marker points, refer to the following sections located in the Dual ARB subsystem:

- For clearing a single marker point or a range of marker points, see “:MARKer:CLEar” on page 353.
- For clearing all marker points, see “:MARKer:CLEar:ALL” on page 355.
- For shifting marker points, see “:MARKer:ROTate” on page 355.
- For information on markers and setting marker points, see “:MARKer[:SET]” on page 356.

Example

:RAD:TTON:ARB:MPOL:MARK1 POS

The preceding example sets the polarity for marker one to positive.
Arb Commands
Two Tone Subsystem—N5166B/72B/82B with Option N5180430B ([:SOURce]:RADio:TTONe:ARB)

:*RST
POS

Key Entry
Marker 1 Polarity Neg
Pos
Marker 2 Polarity Neg
Pos
Marker 3 Polarity Neg
Pos
Marker 4 Polarity Neg Pos

*:NOISe:BANDwidth

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:BANDwidth <val><unit>
[:SOURce]:RADio:TTONe:ARB:NOISe:BANDwidth?

This command sets the flat noise bandwidth value for the two-tone waveform. This value is typically set wider than the carrier bandwidth.

To configure the AWGN, refer to the following sections located in the Two Tone subsystem:

– To set the bandwidth over which the noise power is integrated for calculating the carrier to noise ratio, refer to*:NOISe:CBWidth” on page 419.

– To set the carrier to noise ratio as the active function, refer to “*:NOISe:CN” on page 419.

– To enable the AWGN, refer to “*:NOISe[:STATe]” on page 424.

Range
Option 653: 1 sa to 75 Msa
Option 655: 1 sa to 150 Msa
Option 656: 1 sa to 100 Msa
Option 657: 1 sa to 200 Msa

:*RST
+1.00000000E+000

Key Entry
Noise Bandwidth

*:NOISe:CBRate

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:CBRate <val>
[:SOURce]:RADio:TTONe:ARB:NOISe:CBRate?

This command sets a value of the carrier bit rate (gross bit rate) for purposes of calculating the Eb/N0 (energy per bit over noise power density at the receiver). When the carrier to noise ratio format is set to Eb/N0 (refer to the :NOISe:CNFormat command), the adjustment of the carrier bit rate will have
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([[:SOURce]:RADio:TTONe:ARB])

an immediate impact on the carrier to noise ratio as specified by Eb/N0. The
carrier bit rate is derived from the symbol rate and bits per symbol of the
modulation. The carrier bit rate is a saved instrument state that is recorded in
the waveform header.

The query returns the current carrier bit rate setting.

Example

[:RAD:TTONeARB:NOIS:CBR 5

The preceding example sets the carrier bit rate to 5 bps.

Default
1.000 bps

Range
1 bps to 999Mbps

Key Entry
Carrier Bit Rate

:NOISe:CBWidth

Supported
N5166B/72B/82B with Options N5180430B and
N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:CBWidth <val><unit>
[:SOURce]:RADio:TTONe:ARB:NOISe:CBWidth?

This command selects the carrier bandwidth over which the AWGN (additive
white gaussian noise) is applied. The noise power will be integrated over the
selected bandwidth for the purposes of calculating C/N (carrier to noise ratio).
The carrier bandwidth is limited to the ARB sample rate but cannot exceed 125
MHz. For more information refer to “:NOISe[:STATe]” on page 424.

To configure the AWGN, refer to the following sections located in the Two Tone
subsystem:

– To set the AWGN noise bandwidth, refer to “:NOISe:BANDwidth” on
 page 418.

– To set the carrier to noise ratio as the active function, refer to “:NOISe:CN”
 on page 419.

– To enable the AWGN, refer to “:NOISe[:STATe]” on page 424.

*RST
+1.00000000E+000

Range
1Hz to 200MHz (Minimum increment is .001 MHz)

Key Entry
Carrier Bandwidth

:NOISe:CN

Supported
N5166B/72B/82B with Options N5180430B and
N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:CN <val><unit>
[:SOURce]:RADio:TTONe:ARB:NOISe:CN?
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

This command makes Carrier to Noise Ratio the active function. The value you enter sets noise power as a ratio of carrier power to noise power (C/N). Carrier power equals the total modulated signal power before noise is added. When you add noise, the power output from the signal generator does not change; it is the sum of carrier power and the added noise power. You can apply noise in real time while the waveform is playing.

To configure the AWGN, refer to the following sections located in the Two Tone subsystem:

- To set the AWGN noise bandwidth, refer to “:NOISe:BW:ARQ:ARB” on page 418.
- To set the bandwidth over which the noise power is integrated for calculating the carrier to noise ratio, refer to “:NOISe:BW:ARQ:ARB” on page 419.
- To enable the AWGN, refer to “:NOISe[:STATe]” on page 424.

*RST +0.00000000E+000

Range –100dB to 100dB

Key Entry Carrier to Noise Ratio

:NOISe:CNFormat

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:CNFormat CN|EBNO
[:SOURce]:RADio:TTONe:ARB:NOISe:CNFormat?

This command selects either the Carrier to Noise Ratio (C/N) or energy per bit over noise power density at the receiver (Eb/N0) as the variable controlling the ratio of carrier power to noise power in the carrier bandwidth.

Example

:RAD:TTON:ARB:NOIS:CNF EBNO

The preceding example sets the carrier to noise ratio format to EbNo.

Default Carrier to Noise Ratio Format C/N

Key Entry Carrier to Noise Ratio Format C/N Eb/No

:NOISe:EBNO

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:EBNO <ebno in dB>
[:SOURce]:RADio:TTONe:ARB:NOISe:EBNO?
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

This command allows the C/N to be set using the Eb/N0 (energy per bit over noise power density at the receiver) form. This requires that the carrier bit rate (:[NOISe:CBRate] on page 418) be set properly. The range of Eb/N0 is limited to the range that is equivalent to –100 to 100 dB of C/N. This value is only effective when Eb/N0 has been enabled by the :NOISe:CNFormat command.

The query returns the value of EBNO.

Default 0 dB
Range –100 to 100 dB
Key Entry Carrier to Noise Ratio Format Eb/No

:NOISe:MUX

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio[1]:TTONe:ARB:NOIS:MUX SUM|CARRier|NOISe
[:SOURce]:RADio[1]:TTONe:ARB:NOIS:MUX?

This command enables diagnostic control of additive noise, such that only the noise, only the carrier, or the sum of both the noise and the carrier are output from the internal baseband generator. With the ALC off, this feature enables direct measurement of just the carrier or the noise contributions to the total power. The system will still behave as if both the noise and the carrier are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

Example

:RAD:TTON:ARB:NOIS:MUX CARR

The preceding example enables the direct measurement of the carrier contribution to the total power.

Default Carrier+Noise
Key Entry Carrier+Noise | Carrier | Noise

:NOISe:POWer:CARRier

Supported N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:CARRier <carrierPower>
[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:CARRier?

This command sets the current carrier power level if noise is on.
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
(:SOURce):RADio:TTONe:ARB)

In the CARRier control mode, the total power will be adjusted to achieve the specified carrier power and the carrier power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the carrier power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total power is adjusted.

In the NOISe control mode, this will adjust the total noise power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total noise power is adjusted. See also :NOISe:POWer:CONTrol[:MODE] and :NOISe:POWer:NOISe:TOTal commands.

Range	The range varies based on the bounds of the total power that results from the noise settings.
Default	The appropriate value given the current total power and the current Carrier to Noise (C/N).
Key Entry	Carrier Power

:NOISe:POWer:CONTrol[:MODE]

| Supported | N5166B/72B/82B with Options N5180430B and N5180403B |

[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:CONTrol[:MODE]

TOTal|CARRier|NOISe

[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:CONTrol[:MODE]?

This command sets the power control to one of the three following modes:

| Total | This is the default mode where the total power and C/N are independent variables and the carrier power and total noise power are dependent variables set by the total power, C/N and the rest of the noise settings. The carrier power and total noise power will change as any noise parameter is adjusted to keep the total power and the C/N at their last specified values. |
| Carrier | In this mode the carrier power and C/N are independent variables and the total power and total noise power are dependent variables set by the carrier power, C/N and the rest of the noise settings. The total power and total noise power will change as any noise parameter is adjusted to keep the carrier power and the C/N at their last specified values. |
| Total Noise | In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total
Arb Commands

Two Tone Subsystem–N5166B/72B/82B with Option N5180430B

([SOURce]:RADio:TTONe:ARB)

power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

Default

Key Entry

Total Carrier Total Noise

:NOISe:POWer:NOISe:CHANnel?

Supported

N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:NOISe:CHANnel?

The query returns the current noise power across the carrier bandwidth in dBm.

:NOISe:POWer:NOISe:TOTal

Supported

N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:NOISe:TOTal

<totalNoisePowerInDbm>

[:SOURce]:RADio:TTONe:ARB:NOISe:POWer:NOISe:TOTal?

This command sets the current total noise power level if noise is on.

In the NOISe control mode, the total power will be adjusted to achieve the specified total noise power and the total noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the total noise power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the total power is adjusted.

In the CARRier control mode, this will adjust the carrier power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the carrier power is adjusted. See also :NOISe:POWer:CONTro[:MODE] command.

Range

The range varies based on the bounds of the total power that results from the noise settings.

Default

The appropriate value given the current total power and the current Carrier to Noise (C/N).

Key Entry

Total Noise Power
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURCE]:RADio:TTONe:ARB)

`:NOISe[:STATe]`

Supported
N5166B/72B/82B with Options N5180430B and N5180403B

[:SOURCE]:RADio:TTONe:ARB:NOISe[:STATe] ON|OFF|1|0

[:SOURCE]:RADio:TTONe:ARB:NOISe[:STATe]?

This command enables the Two-Tone modulation mode.

To configure the AWGN, refer to the following sections located in the Two Tone subsystem:

- To set the AWGN noise bandwidth, refer to “`:NOISe:BANDwidth`” on page 418.
- To set the bandwidth over which the noise power is integrated for calculating the carrier to noise ratio, refer to “`:NOISe:CBWidth`” on page 419.
- To set the carrier to noise ratio as the active function, refer to “`:NOISe:CN`” on page 419.

RST Off

Key Entry Real-Time AWGN Off On

`:PHASe:NOISe:F1`

Supported
N5172B/82B with Options N5180430B and N5180432B

[:SOURCE]:RADio:TTONe:ARB:PHASe:NOISe:F1 <value><unit>

[:SOURCE]:RADio:TTONe:ARB:PHASe:NOISe:F1?

This command sets the start frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :PHASe:NOISe:F2 command). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.

The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User’s Guide.

RST +1.00000000E+003

Range 0 Hz to 77.50052449 MHz

Key Entry Desired Start Freq (f1)

`:PHASe:NOISe:F1:ACTual?`

Supported
N5172B/82B with Options N5180430B and N5180432B

[:SOURCE]:RADio:TTONe:ARB:PHASe:NOISe:F1:ACTual?
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
(:SOURce):RADio:TTONe:ARB)

This query returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.

:PHASe:NOISe:F2

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:TTONe:ARB:PHASe:NOISe:F2 <value><unit>
[:SOURce]:RADio:TTONe:ARB:PHASe:NOISe:F2?

This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :PHASe:NOISe:F1 command). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User’s Guide.

*RST +3.00000000E+004
Range 1 Hz to 77.50052449 MHz
Key Entry Desired Stop Freq (f2)

:PHASe:NOISe:F2:ACTual?

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:TTONe:ARB:PHASe:NOISe:F2:ACTual?

This query returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

:PHASe:NOISe:LMID

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:TTONe:ARB:PHASe:NOISe:LMID <value>
[:SOURce]:RADio:TTONe:ARB:PHASe:NOISe:LMID?

This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator.

The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.
Arb Commands
Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

For more information on the phase noise impairment option, see the User’s Guide.

NOTE
The amplitude range varies depending on the f2 value (“:PHASe:NOIsE:F2” on page 425). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The range values are expressed in units of dBc/Hz.

<table>
<thead>
<tr>
<th>*RST</th>
<th>-7.00000000E+001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-300 to 100</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Desired Flat Amplitude (Lmid)</td>
</tr>
</tbody>
</table>

:PHASe:NOIsE:LMD:ACTual?

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:TTONe:ARB:PHASe:NOIsE:LMD:ACTual?

This query returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.

:PHASe:NOIsE[:STATe]

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:TTONe:ARB:PHASe:NOIsE[:STATe] ON|OFF|1|0

[:SOURce]:RADio:TTONe:ARB:PHASe:NOIsE[:STATe]?

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the User’s Guide.

<table>
<thead>
<tr>
<th>*RST</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Phase Noise Off On</td>
</tr>
</tbody>
</table>

:PHASe:NOIsE:TRACe?

Supported N5172B/82B with Options N5180430B and N5180432B

[:SOURce]:RADio:TTONe:ARB:PHASe:NOIsE:TRACe? <startFreq>,<stopFreq>,<numSamples>

This query returns the theoretical phase noise amplitude mask applied with the current settings if the phase noise feature is on. This mask does not take the natural phase noise of the instrument into account, only the impairment from
Arb Commands
Two Tone Subsystem—N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)

The phase noise feature. The output is over the start frequency to the stop frequency for the number of samples specified. The samples are taken at logarithmic frequency steps and the output is in dBc/Hz.

Range

startFreq	1 Hz to 100 MHz
stopFreq	1 Hz to 100 MHz
numSamples	1 to 8192

:SCLock:RATE

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB:SCLock:RATE <sample_clock_rate>
[:SOURce]:RADio:TTONe:ARB:SCLock:RATE?

This command sets the ARB sample clock rate.

The two tone generator should be on before executing this command. If this command is executed before the two tone generator is active, the entered value will be overridden by a calculated factory default value.

Example

:RAD:TTON:ARB:SCL:RATE 1MHZ

The preceding example sets the ARB sample clock to 1 MHz.

*RST +1.00000000E+008
Range 1E3 to 1E8
Key Entry ARB Sample Clock

[:STATe]

Supported N5166B/72B/82B with Option N5180430B

[:SOURce]:RADio:TTONe:ARB[:STATe] ON|OFF|1|0
[:SOURce]:RADio:TTONe:ARB[:STATe]?

This command enables or disables the on/off operational state of the two–tone waveform generator function.

Example

:RAD:TTON:ARB ON

The preceding example turns on the two–tone generator.

*RST 0
Key Entry Two Tone Off On
Arb Commands

Two Tone Subsystem–N5166B/72B/82B with Option N5180430B
([:SOURce]:RADio:TTONe:ARB)
6 Avionics VOR/ILS Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

This chapter describes SCPI commands used by Keysight X-Series signal generators with Option N5180302B during either VOR [VHF Omnidirectional Ranging] or ILS [Instrument Landing System] aircraft navigation receiver test. Avionics is a term used to describe the electronic instrumentation on aircraft.

This chapter contains the following sections:

- **Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVlonics:VOR** on page 430
- **Avionics Subsystem COM/ID—Option N5180302B [:SOURce]:AVlonics:CID** on page 436
- **Avionics Subsystem ILS Localizer—Option N5180302B [:SOURce]:AVlonics:ILSLocalizer** on page 439
- **Avionics Subsystem ILS Glide Slope—Option N5180302B [:SOURce]:AVlonics:ILSGslope** on page 446
- **Avionics Subsystem Marker Beacon—Option N5180302B [:SOURce]:AVlonics:MBEacon** on page 453
Avionics Subsystem VOR—Option N5180302B
[:SOURce]:AVIonics:VOR

:BEARing:ANGLe

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:BEARing:ANGLe <value>
[:SOURce]:AVIonics:VOR:BEARing:ANGLe?

This command sets the VOR Bearing Angle between the Variable Phase (VAR) and the Reference (REF) tones.

*RST 0 deg
Range 0 deg–360 deg
Key Entry Aux Fctn > Avionics > VOR > Bearing > ANGLe > <value> deg

:BEARing:DIRection

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:BEARing:DIRection FROM|TO
[:SOURce]:AVIonics:VOR:BEARing:DIRec tion?

This command sets the FROM or TO direction, effectively inverting the VOR Bearing Angle.

A VOR instrument in the aircraft can be set to either a FROM or a TO convention.

FROM - In the FROM convention, the VOR transmitter beacon is made the reference point and the Bearing Angle is between magnetic-North and the beacon-to-aircraft radial line (RL).

TO - In the TO convention, the aircraft is made the reference point and the Bearing Angle is between magnetic-North and the aircraft-to-beacon radial line (RL).

RL(TO) = 180° – RL(FROM)

*RST FROM
Choices FROM | TO
Key Entry Aux Fctn > Avionics > VOR > Bearing > Direction From | To
Avionics VOR/ILS Commands
Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVIonics:VOR

:DEPTh:SUBCarrier

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:DEPTh:SUBCarrier <value>
[:SOURce]:AVIonics:VOR:DEPTh:SUBCarrier?

This command sets the sub-carrier AM depth as it modulates the main carrier of a VOR signal.

*RST 30 PCT
Range 0 PCT–49.9 PCT
Key Entry Aux Fctn > Avionics > VOR > REF/VAR
> SubCarrier Depth > <value>%

:DEPTh:VAR

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:DEPTh:VAR <value>
[:SOURce]:AVIonics:VOR:DEPTh:VAR?

This command sets the AM depth of the 30 Hz variable phase tone for a VOR signal.

*RST 30 PCT
Range 0 PCT–49.9 PCT
Key Entry Aux Fctn > Avionics > VOR > REF/VAR
> VAR Depth > <value>%

:DEViation:REF

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:DEViation:REF <value>
[:SOURce]:AVIonics:VOR:DEViation:REF?

This command sets the amount of FM Deviation that the 30 Hz Reference (REF) tone causes on the sub-carrier for a VOR signal.

*RST 480 Hz
Range 0 Hz–1 kHz
Key Entry Aux Fctn > Avionics > VOR > REF/VAR
> REF Deviation > <value> Hz | kHz | MHz | GHz
Avionics VOR/ILS Commands
Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVIonics:VOR

:FREQuency:REFVar

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:FREQuency:REFVar <value>
[:SOURce]:AVIonics:VOR:FREQuency:REFVar?

This command sets the frequency of the 30 Hz Reference (REF) tone and the Variable Phase (VAR) tone for a VOR signal.

*RST 30 Hz
Range 10 Hz–60 Hz
Key Entry Aux Fctn > Avionics > VOR > REF/VAR
> REF/VAR Freq > <value> Hz | kHz | MHz | GHz

:FREQuency:SUBCarrier

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:FREQuency:SUBCarrier <value>
[:SOURce]:AVIonics:VOR:FREQuency:SUBCarrier?

This command sets the frequency of the SUBCarrier for a VOR signal.

*RST 9960 Hz
Range 0 Hz–20 kHz
Key Entry Aux Fctn > Avionics > VOR > REF/VAR
> SubCarrier Freq > <value> Hz | kHz | MHz | GHz

:FREQuency[:CARRier]:INDex

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:FREQuency[:CARRier]:INDex <value>
[:SOURce]:AVIonics:VOR:FREQuency[:CARRier]:INDex?

This command selects one of the standard VOR carrier frequencies.

The index you enter sets the VOR carrier frequency to one of the standard defined corresponding values and produces a VOR carrier from 108.00 to 117.95 MHz.

*RST 1 (108.00 MHz)
Range 1–160

Because ILS Localizer systems overlap with the VOR carrier frequency range (there are forty channels allocated to the ILS Localizer in the range from 108.10 to 111.95 MHz), only frequencies where tenths of a
Avionics VOR/ILS Commands
Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVIonics:VOR

Megacycle count is even are used as VOR Carrier Frequencies (MHz).

<table>
<thead>
<tr>
<th>VOR Carrier Frequencies (MHz)</th>
<th>Carrier Freq Index = 1 to 160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 32</td>
<td>33 to 64</td>
</tr>
<tr>
<td>108.00</td>
<td>111.20</td>
</tr>
<tr>
<td>108.05</td>
<td>111.25</td>
</tr>
<tr>
<td>108.20</td>
<td>111.40</td>
</tr>
<tr>
<td>108.25</td>
<td>111.45</td>
</tr>
<tr>
<td>108.40</td>
<td>111.60</td>
</tr>
<tr>
<td>108.45</td>
<td>111.65</td>
</tr>
<tr>
<td>108.60</td>
<td>111.80</td>
</tr>
<tr>
<td>108.65</td>
<td>111.85</td>
</tr>
<tr>
<td>108.80</td>
<td>112.00</td>
</tr>
<tr>
<td>108.85</td>
<td>112.05</td>
</tr>
<tr>
<td>109.00</td>
<td>112.10</td>
</tr>
<tr>
<td>109.05</td>
<td>112.15</td>
</tr>
<tr>
<td>109.20</td>
<td>112.20</td>
</tr>
<tr>
<td>109.25</td>
<td>112.25</td>
</tr>
<tr>
<td>109.40</td>
<td>112.30</td>
</tr>
<tr>
<td>109.45</td>
<td>112.35</td>
</tr>
<tr>
<td>109.60</td>
<td>112.40</td>
</tr>
<tr>
<td>109.65</td>
<td>112.45</td>
</tr>
<tr>
<td>109.80</td>
<td>112.50</td>
</tr>
<tr>
<td>109.85</td>
<td>112.55</td>
</tr>
<tr>
<td>110.00</td>
<td>112.60</td>
</tr>
<tr>
<td>110.05</td>
<td>112.65</td>
</tr>
<tr>
<td>110.20</td>
<td>112.70</td>
</tr>
<tr>
<td>110.25</td>
<td>112.75</td>
</tr>
<tr>
<td>110.40</td>
<td>112.80</td>
</tr>
<tr>
<td>110.45</td>
<td>112.85</td>
</tr>
<tr>
<td>110.60</td>
<td>112.90</td>
</tr>
<tr>
<td>110.65</td>
<td>112.95</td>
</tr>
</tbody>
</table>
Avionics VOR/ILS Commands
Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVionics:VOR

<table>
<thead>
<tr>
<th>110.80</th>
<th>113.00</th>
<th>114.60</th>
<th>116.20</th>
<th>117.80</th>
</tr>
</thead>
<tbody>
<tr>
<td>110.85</td>
<td>113.05</td>
<td>114.65</td>
<td>116.25</td>
<td>117.85</td>
</tr>
<tr>
<td>111.00</td>
<td>113.10</td>
<td>114.70</td>
<td>116.30</td>
<td>117.90</td>
</tr>
<tr>
<td>111.05</td>
<td>113.15</td>
<td>114.75</td>
<td>116.35</td>
<td>117.95</td>
</tr>
</tbody>
</table>

Key Entry

Aux Fctn > Avionics > VOR
> Carrier Freq Index > <value> Enter

.MODE

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVionics:VOR:MODE OFF|NORMal|VAR|SUBCarrier|SCFM
[:SOURce]:AVionics:VOR:MODE?

This command allows selection of a complete or partial VOR signal and can set the VOR Mode to one of the following:
OFF | NORMal | VAR | SUBCarrier | SCFM

- Selecting OFF turns off all VOR signals. When set to OFF, all VOR mode parameter settings are turned off.
- Selecting NORMal turns on all VOR signals so that a standard VOR signal is generated with a default VOR Bearing of zero degrees.
- Selecting VAR turns on the main VOR carrier and the variable phase 30 Hz tone (VAR signal); suppressed the SUBCarrier.
- Selecting SUBCarrier turns on the SUBCarrier without the 30 Hz reference tone; suppresses the main VOR carrier.
- Selecting SCFM turns on the SUBCarrier and the 30 Hz reference tone; suppresses the main VOR carrier.

*RST

OFF

Choices
OFF | NORMal | VAR | SUBCarrier | SCFM

Key Entry

Aux Fctn > Avionics > VOR
> VOR Mode
> OFF | NORM | VAR | Sub-carrier | Sub-carrier+FM
Avionics VOR/ILS Commands
Avionics Subsystem VOR—Option N5180302B [:SOURce]:AVIonics:VOR

[:PRESet]

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:VOR:PRESet

This command returns the VOR [VHF Omnidirectional Range] system parameters to their *RST (factory-defined) values.

*RST
N/A

Key Entry
Aux Fctn > Avionics > VOR
> More 1 of 2 > Recall Default Settings
Avionics Subsystem COM/ID—Option N5180302B
[:SOURce]:AVIonics:CID

:CODE

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:CID:CODE "<value>"
[:SOURce]:AVIonics:CID:CODE?

When entering `<value>`, enter a valid COM/ID code (airport identification code) by typing a 3-character code enclosed in single-quotes or double-quotes (for example, ‘STS’ or “STS”).

This command sets the airport communication identification code to be played by the COM/ID generator. (This code may also be referred to as an, “airport call–sign”.)

The COM/ID code is transmitted as a three letter-code signal of 1.02000 kHz and is placed on the VOR carrier; this COM/ID code is used to identify the VOR ground–based transmitting station.

Each COM/ID code (airport identification code) must correspond to one of the International Air Transport Association (IATA) codes.

IATA owns, controls, and has a copyright to the complete list of airport identification codes; STS is the airport identification code that refers to the Sonoma County Airport in Santa Rosa, CA, USA.

*RST STS

Range

To find a valid COM/ID code (airport communication identification code) for a particular area, refer to the following websites:

Airline Coding Directory (http://www.iata.org)

AirNav (http://www.airnav.com)

Key Entry

Aux Fctn > Avionics > VOR > COM/ID
> COM/ID Code `<value>` Enter

:DEPTh

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:CID:DEPTh `<value>`
[:SOURce]:AVIonics:CID:DEPTh?

This command sets the COM/ID tone AM depth.

*RST 10PCT

Range 0PCT–49.9PCT
Avionics VOR/ILS Commands
Avionics Subsystem COM/ID—Option N5180302B [:SOURce]:AVIonics:CID

Key Entry

Aux Fctn > Avionics > VOR > COM/ID >
Depth > <value>%

:FREQuency

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:CID:FREQuency <value>
[:SOURce]:AVIonics:CID:FREQuency?

This command sets the COM/ID tone or code modulating frequency.

*RST 1.02000 kHz
Range 0 Hz–20 kHz

Key Entry Aux Fctn > Avionics > VOR > COM/ID
> Frequency > <value> Hz | kHz | MHz | GHz

:PRESet

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:CID:PRESet

This command returns the COM/ID parameters to their *RST values.

*RST N/A

Key Entry Aux Fctn > Avionics > VOR > COM/ID
> More 1 of 2 > Recall Default Settings

:TYPE

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:CID:TYPE CODE|TONE
[:SOURce]:AVIonics:CID:TYPE?

This command toggles the COM/ID Type.

Code - When set to CODE, the signal generator plays the code associated with the COM/ID Code.

Tone - When set to TONE, the COM/ID Code setting is disabled and the signal generator plays a continuous tone based on the COM/ID Frequency setting;

Obtain this setting with:

[:SOURce]:AVIonics:CID:FREQuency?

*RST Code

Choices Code | Tone

Key Entry Aux Fctn > Avionics > VOR > COM/ID
> COM/ID Type Code | Tone
Avionics VOR/ILS Commands
Avionics Subsystem COM/ID—Option N5180302B [:SOURce]:AVIonics:CID

[:STATe]

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:CID[:STATe] OFF|ON|0|1
[:SOURce]:AVIonics:CID[:STATe]?

This command toggles COM/ID OFF (0) or ON (1).
OFF (0)—all COM/ID functions are turned off

*RST OFF

Choices OFF|ON|0|1

Key Entry Aux Fctn > Avionics > VOR > COM/ID
 > COM/ID Off | On
Avionics Subsystem ILS Localizer—Option N5180302B
[:SOURce]:AVIonic:ILSLocalizer

:DDM:DDM

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonic:ILSLocalizer:DDM:DDM <value>
[:SOURce]:AVIonic:ILSLocalizer:DDM:DDM?

This command sets a value for the “Difference in Depth of Modulation” (DDM).

DDM is defined to be the “percentage modulation depth of the larger signal” minus the “percentage modulation depth of the smaller signal”, divided by 100.

\[
DDM = \frac{[AM(90 \text{ Hz})\% - AM(150 \text{ Hz})\%]}{100}
\]

*RST 0.0000

Range –0.99 to 0.99

Use a value that is within the range of the current SDM value.

Key Entry Aux Fctn > Avionics > ILS Localizer
> DDM/SDM > DDM <value> Enter

Remarks Typically the SDM default value provides sufficient range (–0.40 to 0.40) for most applications.

If SDM is set to 99%, then the full range of DDM is available. The following demonstrates the limits of DDM’s range:

\((-\text{SDM}/100) \text{ to } (\text{SDM}/100)\)

As SDM’s value increases or decrease, so does DDM’s range.
Avionics VOR/ILS Commands
Avionics Subsystem ILS Localizer—Option N5180302B [:SOURce]:AVIonics:ILSLocalizer

:DDM:UAMPs

Supported N5171B/81B & N5172B/82B with Option N5180302B

[[:SOURce]:AVIonics:ILSLocalizer]:DDM:UAMPs <value>
[[:SOURce]:AVIonics:ILSLocalizer]:DDM:UAMPs?

This command sets a value for the difference in depth of modulation (DDM) in uA.

*RST 0.0 µA
Range –958.1 to 958.1 µA

Use a value that is within the range of the current SDM value.

Key Entry Aux Fctn > Avionics > ILS Localizer
> DDM/SDM > DDM uA <value> Enter

Remarks Typically the SDM default value provides sufficient range for most applications.

If SDM is set to 99%, then the full range of DDM uA is available. The following demonstrates the limits of DDM uA’s range:

\[
((-\text{SDM}/100) \times (150/0.155)) \text{ to } ((\text{SDM}/100) \times (150/0.155))
\]

As SDM’s value increases or decrease, so does the range.

:DDM[:PERCent]

Supported N5171B/81B & N5172B/82B with Option N5180302B

[[:SOURce]:AVIonics:ILSLocalizer]:DDM[:PERCent] <value>
[[:SOURce]:AVIonics:ILSLocalizer]:DDM[:PERCent]?

This command sets a value for the difference in depth of modulation (DDM) in percent (%).

*RST 0.00%
Range –99% to 99%

Use a value that is within the range of the current SDM value.

Key Entry Aux Fctn > Avionics > ILS Localizer
> DDM/SDM > DDM% <value> Enter

Remarks Typically the SDM default value provides sufficient range (–40% to 40%) for most applications.

If SDM is set to 99%, then the full range of DDM is
Avionics VOR/ILS Commands
Avionics Subsystem ILS Localizer—Option N5180302B [:SOURce]:AVIonics:ILSLocalizer

Available. The following demonstrates the limits of DDM’s range:

(-SDM) to (SDM)

As SDM’s value increases or decrease, so does DDM’s range.

:FLY:DIRection

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:FLY:DIRection LEFT|RIGHT

[:SOURce]:AVIonics:ILSLocalizer:FLY:DIRection?

This command sets the “Difference in Depth of Modulation” (DDM) polarity of the ILS Localizer signal to either:

- LEFT—positive
- RIGHT—negative

The ILS Localizer provides signals that indicate whether an aircraft is Left or Right of the glide path to the runway and enables a pilot to adjust the aircraft Left or Right correctly during landing. This lateral/horizontal correction is performed using two AM carriers with an AM depth of 20%, operating at a carrier frequency range from 108.10 to 111.95 MHz.

For an aircraft on approach, the left tone is modulated at a frequency of 90 Hz by default, and the right tone is modulated at a frequency of 150 Hz by default.

The primary mechanism which makes it possible for a pilot to obtain guidance to a runway is the aircraft receiver's ability to detect the “Difference in Depth of Modulation (DDM)” between the 90 Hz modulation and the 150 Hz modulation.

DDM is defined to be the “percentage modulation depth of the larger signal” minus the “percentage modulation depth of the smaller signal” divided by 100:

$$DDM = \frac{AM(90\text{ Hz})\% - AM(150\text{ Hz})\%}{100}$$

When this formula yields a positive DDM value, the left tone at 90 Hz is stronger; this is indicating that the aircraft is to the Left of the ILS Localizer centerline signal and would have to Fly “Right” to bring the DDM value back to zero so that the aircraft is back in-line with the centerline of the runway.

When this formula yields a negative DDM value, the right tone at 150 Hz is stronger; this is indicating that the aircraft is to the Right of the ILS Localizer centerline signal and would have to Fly “Left” to bring the DDM value back to zero so that the aircraft is back in-line with the centerline of the runway.

Example:

To correct if the left tone at 90 Hz is stronger at 0.2 DDM,
the aircraft would have to be pointed Right

:AVIonics:ILSLocalizer:FLY:DIRection RIGHT

with a DDM of 0.2.

:AVIonics:ILSLocalizer:DDM 0.2

Example:

To correct if the right tone at 150 Hz is stronger at –0.2 DDM,
the aircraft would have to be pointed Left

:AVIonics:ILSLocalizer:FLY:DIRection LEFT

with a DDM of –0.2.

:AVIonics:ILSLocalizer:DDM –0.2

*RST LEFT

Choices LEFT | RIGHT

Key Entry Aux Fctn > Avionics > ILS Localizer
> DDM/SDM > Fly Left | Right

:FLY:PHASe

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:FLY:PHASe <value>
[:SOURce]:AVIonics:ILSLocalizer:FLY:PHASe?

This command sets the phase of the right (150 Hz) ILS Localizer signal relative to the left (90 Hz) ILS Localizer signal.

*RST 0.00 deg

Range 0.00 deg–360 deg

Key Entry Aux Fctn > Avionics > ILS Localizer
> Left/Right Phase <value> deg
Avionics VOR/ILS Commands
Avionics Subsystem ILS Localizer—Option N5180302B [:SOURce]:AVIonics:ILSLocalizer

:FREQuency:LEFT

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:FREQuency:LEFT <value>
[:SOURce]:AVIonics:ILSLocalizer:FREQuency:LEFT?

This command sets the frequency of the LEFT ILS Localizer signal.

RST 90 Hz

Range 0 Hz–6 MHz

Key Entry
Aux Fctn > Avionics > ILS Localizer
> Left/Right > Left Frequency <value> Hz

:FREQuency:RIGHT

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:FREQuency:RIGHT <value>
[:SOURce]:AVIonics:ILSLocalizer:FREQuency:RIGHT?

This command sets the frequency of the RIGHT ILS Localizer signal.

RST 150 Hz

Range 0 Hz–10 MHz

Key Entry
Aux Fctn > Avionics > ILS Localizer
> Left/Right > Right Frequency <value> Hz

:FREQuency[:CARRier]:INDex

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:FREQuency[:CARRier]:INDex <value>
[:SOURce]:AVIonics:ILSLocalizer:FREQuency[:CARRier]:INDex?

This command sets a carrier index between 1 and 40. Each index corresponds to a standard defined ILS Localizer carrier channel.

RST 1 (108.10 MHz)

Range 1–40 (See table for index versus frequency.)

Key Entry
Aux Fctn > Avionics > ILS Localizer
> Carrier Freq Index > <value> Enter

Remarks
There are forty channels that are allocated to the ILS Localizer in the range from 108.10 to 111.95 MHz; each ILS Localizer carrier has a corresponding ILS Glide
Slope carrier frequency in the range from 329.15 to 335.00 MHz.

<table>
<thead>
<tr>
<th>ILS Localizer (MHz) Index 1-20</th>
<th>ILS Glide Slope (MHz) Index 1-20</th>
<th>ILS Localizer (MHz) Index 21-40</th>
<th>ILS Glide Slope (MHz) Index 21-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=108.10</td>
<td>1=334.70</td>
<td>21=110.10</td>
<td>21=334.40</td>
</tr>
<tr>
<td>2=108.15</td>
<td>2=334.55</td>
<td>22=110.15</td>
<td>22=334.25</td>
</tr>
<tr>
<td>3=108.30</td>
<td>3=334.10</td>
<td>23=110.30</td>
<td>23=335.00</td>
</tr>
<tr>
<td>4=108.35</td>
<td>4=333.95</td>
<td>24=110.35</td>
<td>24=334.85</td>
</tr>
<tr>
<td>5=108.50</td>
<td>5=329.90</td>
<td>25=110.50</td>
<td>25=329.60</td>
</tr>
<tr>
<td>6=108.55</td>
<td>6=329.75</td>
<td>26=110.55</td>
<td>26=329.45</td>
</tr>
<tr>
<td>7=108.70</td>
<td>7=330.50</td>
<td>27=110.70</td>
<td>27=330.20</td>
</tr>
<tr>
<td>8=108.75</td>
<td>8=330.35</td>
<td>28=110.75</td>
<td>28=330.05</td>
</tr>
<tr>
<td>9=108.90</td>
<td>9=329.30</td>
<td>29=110.90</td>
<td>29=330.80</td>
</tr>
<tr>
<td>10=108.95</td>
<td>10=329.15</td>
<td>30=110.95</td>
<td>30=330.65</td>
</tr>
<tr>
<td>11=109.10</td>
<td>11=331.40</td>
<td>31=111.10</td>
<td>31=331.70</td>
</tr>
<tr>
<td>12=109.15</td>
<td>12=331.25</td>
<td>32=111.15</td>
<td>32=331.55</td>
</tr>
<tr>
<td>13=109.30</td>
<td>13=332.00</td>
<td>33=111.30</td>
<td>33=332.30</td>
</tr>
<tr>
<td>14=109.35</td>
<td>14=331.85</td>
<td>34=111.35</td>
<td>34=332.15</td>
</tr>
<tr>
<td>15=109.50</td>
<td>15=332.60</td>
<td>35=111.50</td>
<td>35=332.90</td>
</tr>
<tr>
<td>16=109.55</td>
<td>16=332.45</td>
<td>36=111.55</td>
<td>36=332.75</td>
</tr>
<tr>
<td>17=109.70</td>
<td>17=333.20</td>
<td>37=111.70</td>
<td>37=333.50</td>
</tr>
<tr>
<td>18=109.75</td>
<td>18=333.05</td>
<td>38=111.75</td>
<td>38=333.35</td>
</tr>
<tr>
<td>19=109.90</td>
<td>19=333.80</td>
<td>39=111.90</td>
<td>39=331.10</td>
</tr>
<tr>
<td>20=109.95</td>
<td>20=333.65</td>
<td>40=111.95</td>
<td>40=330.95</td>
</tr>
</tbody>
</table>
Avionics VOR/ILS Commands
Avionics Subsystem ILS Localizer—Option N5180302B [:SOURce]:AVIonics:ILSLocalizer

:MODE

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:MODE OFF|NORMal|SLEFt|SRIGht

[:SOURce]:AVIonics:ILSLocalizer:MODE?

This command allows selection of a complete or partial ILS Localizer signal and can set the ILS Localizer Mode to one of the following:
OFF | NORM | SLEFt (Suppress Left) | SRIGht (Suppress Right)

*RST OFF
Turns off all ILS Localizer signals. When set to OFF, all ILS Localizer mode parameter settings are turned off.

Choices OFF|NORM|SLEF|SRIG

Key Entry Aux Fctn > Avionics > ILS Localizer
> ILS LOC Mode
> OFF | NORM | Suppress Left | Suppress Right

:PRESet

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:PRESet

This command returns the ILS Localizer parameters to their *RST values.

*RST N/A

Key Entry Aux Fctn > Avionics > ILS Localizer
> More 1 of 2 > Recall Default Settings

:SDM

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSLocalizer:SDM <value>

[:SOURce]:AVIonics:ILSLocalizer:SDM?

This command sets the sum of depth of modulation (SDM):
SDM = [AM(90 Hz) + AM(150 Hz)] / 100

*RST 40PCT

Range 0PCT–99PCT

Key Entry Aux Fctn > Avionics > ILS Localizer
> DDM/SDM > SDM <value>%
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

:DDM:DDM

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:DDM:DDM <value>
[:SOURce]:AVIonics:ILSGslope:DDM:DDM?

This command sets a value for the “Difference in Depth of Modulation” (DDM).

DDM is defined to be the “percentage modulation depth of the larger signal” minus the “percentage modulation depth of the smaller signal”, divided by 100.

$$DDM = \frac{AM(90\ Hz)\% - AM(150\ Hz)\%}{100}$$

*RST 0.0000

Range –0.99 to 0.99

Use a value that is within the range of the current SDM value.

Key Entry Aux Fctn > Avionics > ILS Glide Slope
> DDM/SDM > DDM <value> Enter

Remarks Typically the SDM default value provides sufficient range (–0.80 to 0.80) for most applications.

If SDM is set to 99%, then the full range of DDM is available. The following demonstrates the limits of DDM’s range:

(–SDM/100) to (SDM/100)

As SDM’s value increases or decrease, so does DDM’s range.
Avionics VOR/ILS Commands
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

:DDM:UAMPs

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:DDM:UAMPs <value>
[:SOURce]:AVIonics:ILSGslope:DDM:UAMPs?

This command sets a value for the difference in depth of modulation (DDM) in μA.

*RST
0.0 μA

Range
–848.6 to 848.6 μA

Use a value that is within the range of the current SDM value.

Key Entry
Aux Fctn > Avionics > ILS Glide Slope > DDM/SDM > DDM μA <value> Enter

Remarks
Typically the SDM default value provides sufficient range for most applications.

If SDM is set to 99%, then the full range of DDM μA is available. The following demonstrates the limits of DDM μA’s range:

\[
((-SDM/100)*(150/.175)) \text{ to } ((SDM/100)*(150/.175))
\]

As SDM’s value increases or decrease, so does the range.

:DDM[:PERCent]

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:DDM[:PERCent] <value>
[:SOURce]:AVIonics:ILSGslope:DDM[:PERCent]?

This command sets a value for the difference in depth of modulation (DDM) in %.

*RST
0.00%

Range
–99% to 99%

Use a value that is within the range of the current SDM value.

Key Entry
Aux Fctn > Avionics > ILS Glide Slope > DDM/SDM > DDM % <value> Enter

Remarks
Typically the SDM default value provides sufficient range (–80% to 80%) for most applications.

If SDM is set to 99%, then the full range of DDM is
Avionics VOR/ILS Commands
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

available. The following demonstrates the limits of DDM's range:

(-SDM) to (SDM)

As SDM's value increases or decrease, so does DDM's range.

:FLY:DIRection

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:FLY:DIRection UP|DOWN
[:SOURce]:AVIonics:ILSGslope:FLY:DIRection?

The ILS Glide Slope enables a pilot to adjust the aircraft up or down correctly during landing.

The ILS Glide Slope provides signals that indicate whether an aircraft is above, below, or in-line with the glide path to the runway and enables a pilot to adjust the aircraft Up or Down correctly during landing.

This is the same type of information as provided by the ILS Localizer, but for the vertical reference rather than the lateral/horizontal reference; the same modulation and antenna techniques are used.

This vertical adjustment is performed using two AM tones with an AM depth of 40% operating at a carrier frequency range from 329.15 to 335.00 MHz.

For aircraft approach, the upper tone is modulated at a frequency of 90 Hz AM by default, and the lower tone is modulated at a frequency of 150 Hz AM by default.

The primary mechanism which makes it possible for a pilot to obtain guidance to a runway is the aircraft receiver's ability to detect the “Difference in Depth of Modulation (DDM)” between the 90 Hz and the 150 Hz amplitude modulation.

DDM is defined to be the “percentage modulation depth of the larger signal” minus the “percentage modulation depth of the smaller signal”, divided by 100:

$$DDM = \frac{[AM(90 \text{ Hz})\% - AM(150 \text{ Hz})\%]}{100}$$

When this formula yields a positive DDM value, the upper tone at 90 Hz is stronger; this is indicating that the aircraft is Above the ILS Glide Slope centerline signal and would have to Fly “Down” to bring the DDM value back to zero so that the aircraft is back in-line with centerline of the runway.

When this formula yields a negative DDM value, the tone at 150 Hz is stronger; this is indicating that the aircraft is Below the ILS Glide Slope centerline signal and would have to Fly “Up” to bring the DDM value back to zero so that the
Avionics VOR/ILS Commands
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

a aircraft is back in-line with centerline of the runway

Example:

To correct if the upper tone at 90 Hz is stronger at 0.4 DDM,
the aircraft would have to be pointed Down

:AVIonics:ILSGslope:FLY:DIRection DOWN

with a DDM of 0.4

:AVIonics:ILSGslope:DDM 0.4

Example:

To correct if the lower tone at 150 Hz is stronger at –0.4 DDM,
the aircraft would have to be pointed Up

:AVIonics:ILSGslope:FLY:DIRection UP

with a DDM of –0.4.

:AVIonics:ILSGslope:DDM –0.4

*RST

UP | DOWN

Key Entry Aux Fctn > Avionics > ILS Glide Slope
> DDM/SDM > Fly Up | Down

:FLY:PHASe

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:FLY:PHASe <value>
[:SOURce]:AVIonics:ILSGslope:FLY:PHASe?

This command sets the phase of the Down (150 Hz) ILS Glide Slope signal
relative to the Up (90 Hz) ILS Glide Slope signal.

*RST 0.00 deg

Range 0.00 deg–360 deg

Key Entry Aux Fctn > Avionics > ILS Glide Slope
> Up/Down Phase <value> deg
Avionics VOR/ILS Commands
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

:FREQuency:DOWN

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:FREQuency:DOWN <value>
[:SOURce]:AVIonics:ILSGslope:FREQuency:DOWN?

This command sets the frequency of the Down ILS Glide Slope signal.

*RST 150 Hz
Range 0 Hz–10 MHz
Key Entry Aux Fctn > Avionics > ILS Glide Slope
> Up/Down
> Down Frequency <value> Hz | kHz | MHz | GHz

:FREQuency:UP

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:FREQuency:UP <value>
[:SOURce]:AVIonics:ILSGslope:FREQuency:UP?

This command sets the frequency of the Up ILS Glide Slope signal.

*RST 90 Hz
Range 0 Hz–6 MHz
Key Entry Aux Fctn > Avionics > ILS Glide Slope
> Up/Down
> Up Frequency <value> Hz | kHz | MHz | GHz

:FREQuency[:CARRier]:INDex

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:FREQuency[:CARRier]:INDex <val>
[:SOURce]:AVIonics:ILSGslope:FREQuency[:CARRier]:INDex?

This command sets a carrier index.

*RST 1 (334.70 MHz)
Range 1–40 (See table for index versus frequency.)
Key Entry Aux Fctn > Avionics > ILS Glide Slope
> Carrier Freq Index > <value> Enter

Remarks There are forty channels that are allocated to the ILS Localizer in the range from 108.10 to 111.95 MHz; each ILS Localizer carrier has a corresponding ILS Glide
Avionics VOR/ILS Commands
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

Slope carrier frequency in the range from 329.15 to 335.00 MHz.

ILS Localizer and Corresponding ILS Glide Slope Carrier Frequencies (MHz)

<table>
<thead>
<tr>
<th>ILS Localizer Index 1-20</th>
<th>ILS Glide Slope Index 1-20</th>
<th>ILS Localizer Index 21-40</th>
<th>ILS Glide Slope Index 21-40</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=108.10</td>
<td>1=334.70</td>
<td>21=110.10</td>
<td>21=334.40</td>
</tr>
<tr>
<td>2=108.15</td>
<td>2=334.55</td>
<td>22=110.15</td>
<td>22=334.25</td>
</tr>
<tr>
<td>3=108.30</td>
<td>3=334.10</td>
<td>23=110.30</td>
<td>23=335.00</td>
</tr>
<tr>
<td>4=108.35</td>
<td>4=333.95</td>
<td>24=110.35</td>
<td>24=334.85</td>
</tr>
<tr>
<td>5=108.50</td>
<td>5=329.90</td>
<td>25=110.50</td>
<td>25=329.60</td>
</tr>
<tr>
<td>6=108.55</td>
<td>6=329.75</td>
<td>26=110.55</td>
<td>26=329.45</td>
</tr>
<tr>
<td>7=108.70</td>
<td>7=330.50</td>
<td>27=110.70</td>
<td>27=330.20</td>
</tr>
<tr>
<td>8=108.75</td>
<td>8=330.35</td>
<td>28=110.75</td>
<td>28=330.05</td>
</tr>
<tr>
<td>9=108.90</td>
<td>9=329.30</td>
<td>29=110.90</td>
<td>29=330.80</td>
</tr>
<tr>
<td>10=108.95</td>
<td>10=329.15</td>
<td>30=110.95</td>
<td>30=330.65</td>
</tr>
<tr>
<td>11=109.10</td>
<td>11=331.40</td>
<td>31=111.10</td>
<td>31=331.70</td>
</tr>
<tr>
<td>12=109.15</td>
<td>12=331.25</td>
<td>32=111.15</td>
<td>32=331.55</td>
</tr>
<tr>
<td>13=109.30</td>
<td>13=332.00</td>
<td>33=111.30</td>
<td>33=332.30</td>
</tr>
<tr>
<td>14=109.35</td>
<td>14=331.85</td>
<td>34=111.35</td>
<td>34=332.15</td>
</tr>
<tr>
<td>15=109.50</td>
<td>15=332.60</td>
<td>35=111.50</td>
<td>35=332.90</td>
</tr>
<tr>
<td>16=109.55</td>
<td>16=332.45</td>
<td>36=111.55</td>
<td>36=332.75</td>
</tr>
<tr>
<td>17=109.70</td>
<td>17=333.20</td>
<td>37=111.70</td>
<td>37=333.50</td>
</tr>
<tr>
<td>18=109.75</td>
<td>18=333.05</td>
<td>38=111.75</td>
<td>38=333.35</td>
</tr>
<tr>
<td>19=109.90</td>
<td>19=333.80</td>
<td>39=111.90</td>
<td>39=331.10</td>
</tr>
<tr>
<td>20=109.95</td>
<td>20=333.65</td>
<td>40=111.95</td>
<td>40=330.95</td>
</tr>
</tbody>
</table>

:MODE

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:MODE OFF|NORMal|SUP|SDOWn

[:SOURce]:AVIonics:ILSGslope:MODE?

This command allows selection of a complete or partial ILS Glide Slope signal and can set the ILS Glide Slope Mode to one of the following:
OFF | NORM | SUP (Suppress Up) | SDOWn (Suppress Down).
Avionics VOR/ILS Commands
Avionics Subsystem ILS Glide Slope—Option N5180302B
[:SOURce]:AVIonics:ILSGslope

*RST
OFF (Default)
Turns off all ILS Glide Slope signals that includes all ILS Glide Slope mode parameter settings being turned off.

Choices
OFF|NORMal|SUP|SDOWn

Key Entry
Aux Fctn > Avionics > ILS Glide Slope > ILS GS Mode > OFF | NORM | Suppress Up | Suppress Down

:PRESet

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:PRESet
This command returns the ILS Glide Slope parameters to their *RST values.

*RST
N/A

Key Entry
Aux Fctn > Avionics > ILS Glide Slope > More 1 of 2 > Recall Default Settings

:SDM

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:ILSGslope:SDM <value>
[:SOURce]:AVIonics:ILSGslope:SDM?
This command sets the sum of depth of modulation (SDM):
SDM = [AM(90 Hz) + AM(150 Hz)] / 100

*RST
80PCT

Range
0–99PCT

Key Entry
Aux Fctn > Avionics > ILS Glide Slope > DDM/SDM > SDM <value>%
Avionics Subsystem Marker Beacon—Option N5180302B
[:SOURce]:AVIonics:MBEacon

:DEPTH

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:DEPTH <value>
[:SOURce]:AVIonics:MBEacon:DEPTH?

This command sets the AM depth on the Marker Beacon carrier.

*RST 95PCT
Range 0PCT–99.9PCT
Key Entry Aux Fctn > Avionics > Marker Beacon
> Marker Depth <value>%

:FREQuency:INNER

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:FREQuency:INNER <value>
[:SOURce]:AVIonics:MBEacon:FREQuency:INNER?

This command sets the frequency for the Inner Marker Beacon.

*RST 3000 Hz
Range 0 Hz–10 MHz
Key Entry Aux Fctn > Avionics > Marker Beacon
> Marker Beacon > Inner
> Marker Freq > <value> Hz | kHz | MHz | GHz

:FREQuency:MIDDLE

Supported
N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:FREQuency:MIDDLE <value>
[:SOURce]:AVIonics:MBEacon:FREQuency:MIDDLE?

This command sets the frequency for the Middle Marker Beacon.

*RST 1300 Hz
Range 0 Hz–10 MHz
Key Entry Aux Fctn > Avionics > Marker Beacon
> Marker Beacon > Middle
> Marker Freq > <value> Hz | kHz | MHz | GHz
Avionics VOR/ILS Commands
Avionics Subsystem Marker Beacon—Option N5180302B [:SOURce]:AVIonics:MBEacon

:FREQuency:OUTer

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:FREQuency:OUTer <value>
[:SOURce]:AVIonics:MBEacon:FREQuency:OUTer?

This command sets the frequency for the Outer Marker Beacon.

*RST 400 Hz
Range 0 Hz–10 MHz
Key Entry Aux Fctn > Avionics > Marker Beacon > Marker Beacon > Outer > Marker Freq > <val> Hz | kHz | MHz | GHz

:FREQuency[:CARRier]:INDex

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:FREQuency[:CARRier]:INDex <val>
[:SOURce]:AVIonics:MBEacon:FREQuency[:CARRier]:INDex?

This command sets the carrier frequency for the three Marker Beacons: Inner, Middle, and Outer.

*RST 17 (75.000 MHz)
Range 1–33

<table>
<thead>
<tr>
<th>ILS Marker Beacon Carrier Frequencies in MHz (Index = 1 to 33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1=74.600</td>
</tr>
<tr>
<td>2=74.625</td>
</tr>
<tr>
<td>3=74.650</td>
</tr>
<tr>
<td>4=74.675</td>
</tr>
<tr>
<td>5=74.700</td>
</tr>
<tr>
<td>6=74.725</td>
</tr>
<tr>
<td>7=74.750</td>
</tr>
<tr>
<td>8=74.775</td>
</tr>
<tr>
<td>9=74.800</td>
</tr>
<tr>
<td>10=74.825</td>
</tr>
<tr>
<td>11=74.850</td>
</tr>
</tbody>
</table>

Key Entry Aux Fctn > Avionics > Marker Beacon > Carrier Freq Index > <value> Enter
Avionics VOR/ILS Commands
Avionics Subsystem Marker Beacon—Option N5180302B [:SOURce]:AVIonics:MBEacon

:MODE

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:MODE OFF|INNER|MIDDLE|OUTER

This command selects a Marker Beacon Mode and can be one of the following:

OFF | INNER | MIDDLE | OUTER

*RST OFF

Range OFF | INNER | MIDDLE | OUTER

Key Entry Aux Fctn > Avionics > Marker Beacon
> Marker Beacon > Off | Inner | Middle | Outer

:PRESet

Supported N5171B/81B & N5172B/82B with Option N5180302B

[:SOURce]:AVIonics:MBEacon:PRESet

This command returns the ILS Marker Beacon parameters to their *RST values.

*RST N/A

Key Entry Aux Fctn > Avionics > Marker Beacon
> More 1 of 2 > Recall Default Settings
Avionics VOR/ILS Commands
Avionics Subsystem Marker Beacon—Option N5180302B [:SOURce]:AVIonics:MBEacon
7 Bit Error Rate Test (BERT) Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

For Keysight N5172B/82B X-Series signal generators with firmware version B.01.70 or later installed, before using BERT commands, ensure that the proper baseband operating mode choice is selected. For more information see “:OPERating:MODE” on page 120

This chapter describes SCPI commands used by Keysight X-Series signal generators with Option N5180UN7B.

This chapter contains the following sections:

- “Calculate Subsystem (:CALCulate:BERT[:BASeband])” on page 458
- “Data Subsystem (:DATA)” on page 460
- “Input Subsystem (:INPut:BERT[:BASeband])” on page 463
- “Route Subsystem (:ROUTE:LINE:BERT)” on page 468
- “Sense Subsystem (:SENSe:BERT[:BASeband])” on page 470
Calculate Subsystem (:CALCulate:BERT[:BASEband])

[:COMParator:MODE]

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5172B/82B with Option N5180UN7B</th>
</tr>
</thead>
</table>

[:CALCulate:BERT[:BASEband]:COMParator:MODE CEND|FHOLd

This command selects the pass/fail judgment mode of the comparator function.

- **CEND**
 - This choice selects the cycle end mode and each BER measurement result is compared with the limit value to make a pass/fail assessment at the end of a cycle.

- **FHOLd**
 - This choice selects the fail hold mode and only one fail judgment is allowed during that BER measurement loop. Any failed judgment after the first failure is ignored.

:*RST

CEND

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Cycle End</th>
<th>Fail Hold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td>For automated tests, the results of this command can be accessed from the rear panel BER TEST OUT pin on the AUX I/O connector. For more information about the rear panel AUX I/O connector pin configuration, refer to the X-Series Signal Generators User's Guide.</td>
<td></td>
</tr>
</tbody>
</table>

[:COMParator:THReshold]

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5172B/82B with Option N5180UN7B</th>
</tr>
</thead>
</table>

[:CALCulate:BERT[:BASEband]:COMParator:THReshold <value>

[:CALCulate:BERT[:BASEband]:COMParator:THReshold?

This command specifies the threshold value for the pass/fail judgment function.

The variable `<value>` is a decimal notation representing a percentage value.

:*RST

+1.00000000E-002

<table>
<thead>
<tr>
<th>Range</th>
<th>0.00000001–1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Entry</td>
<td>Pass/Fail Limits</td>
</tr>
<tr>
<td>Remarks</td>
<td>This command is valid only while the BER pass/fail command is active. Refer to “:COMParator[:STATE]” on page 459.</td>
</tr>
</tbody>
</table>
Bit Error Rate Test (BERT) Commands
Calculate Subsystem (:CALCulate:BERT[:BASEband])

:COMParator[:STATE]

Supported
N5172B/82B with Option N5180UN7B

:CALCulate:BERT[:BASEband]:COMParator[:STATE] ON|OFF|1|0
:CALCulate:BERT[:BASEband]:COMParator[:STATE]?

This command enables or disables the pass/fail judgment function.

*RST
0
Key Entry Pass/Fail Off On

:DISPlay:MODE:

Supported
N5172B/82B with Option N5180UN7B

:CALCulate:BERT[:BASEband]:DISPlay:MODE PERCent|SCIentific
:CALCulate:BERT[:BASEband]:DISPlay:MODE?

This command selects the display mode for the bit error rate (BER) measurement.

PERCent This choice reports measurement results as a percentage.
SCIentific This choice reports measurement results in scientific notation.

*RST PERC
Key Entry BER Display % Exp

:DISPlay:UPDate:

Supported
N5172B/82B with Option N5180UN7B

:CALCulate:BERT[:BASEband]:DISPlay:UPDate CEND|CONT
:CALCulate:BERT[:BASEband]:DISPlay:UPDate?

This command selects the display update mode during bit error rate (BER) measurements.

CEND This choice selects the cycle end mode and the previous BER measurement result is displayed during the current measurement cycle.
CONT This choice selects the continuous mode and the display shows the real-time intermediate results during that BER measurement cycle.

*RST CONT
Key Entry Update Display Cycle End Cont
Data Subsystem (:DATA)

:BERT:AUXout

Supported N5172B/82B with Option N5180UN7B

:DATA:BERT[:BASeband]:AUXout ERRor|REFerence|PN9
:DATA:BERT[:BASeband]:AUXout?

This command selects a pre-defined output signal configuration for pins on the AUX I/O rear panel connector. Refer to Table 7-1 for the output pin configuration and signal type.

- **ERRor**: This choice selects the bit error rate (BER) information output.
- **REFerence**: This choice selects the reference information output.
- **PN9**: This choice selects a pseudo-random data output.

Table 7-1 AUX I/O pin configurations

<table>
<thead>
<tr>
<th>Pin#</th>
<th>ERRor</th>
<th>REFerence</th>
<th>PN9</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>BER Meas End</td>
<td>BER Data Out</td>
<td>PN9 Data Out</td>
</tr>
<tr>
<td>16</td>
<td>BER Sync Loss</td>
<td>Sync Start</td>
<td>No signal</td>
</tr>
<tr>
<td>17</td>
<td>BER Test Out</td>
<td>BER Clock Out</td>
<td>PN9 Clock Out</td>
</tr>
<tr>
<td>18</td>
<td>BER Error Out</td>
<td>BER Error Out</td>
<td>BER Error Out</td>
</tr>
<tr>
<td>19</td>
<td>BER No Data</td>
<td>Reference Data</td>
<td>No signal</td>
</tr>
</tbody>
</table>

- **BER Meas End**: A signal at this pin indicates the status of the bit error rate (BER) measurements. BER measurements are being executed when the signal is high.
- **BER Sync loss**: A low signal at this pin indicates that the synchronization is lost. This signal is valid only when the signal at the BER Meas End pin is high.
- **BER Test Out**: A signal at this pin indicates the test result of the bit error rate measurements. The result is guaranteed at the falling edge of the BER Meas End signal. The result is pass when the signal is low; the result is fail when the signal is high. The signal is also high when the pass/fail judgment is set to off.
- **BER Error Out**: A signal at this pin indicates the number of the error bits. The output is normally low. One pulse signal (pulse width matches the input clock) indicates one error bit. Pulses for the error bits of one measurement cycle are
Bit Error Rate Test (BERT) Commands
Data Subsystem (:DATA)

not synchronized with the rear panel connector BER CLK IN signal and are output when the BER Meas End signal is high.

BER No Data A low signal at this pin indicates the no data status. The no data status is reported when there has been no clock inputs for more than 3 seconds or there has been no data change for more than 200 bits. This signal is valid only when the signal of the BER Meas End output signal is high.

BER Clock Out The BER Clock Out signal monitors the rear panel BER CLK IN signal after polarity control, delay control, and gate control (if applicable) have taken place.

BER Data Out This is a data stream for the bit error rate measurements. The clock signal is used to trigger the reading of the data.

Sync Start This signal indicates the timing when the PN generator starts to generate a PN sequence. This signal can also indicate if the hardware is triggering a PN synchronization or making a measurement when the signal is high.

PN9 Clock Out This signal is the clock signal for the PN9 Data. The falling edge of the PN9 Clock indicates the center of PN9 Data. The PN9 Clock rate is 37.5Mbits per second.

PN9 Data Out This signal is PN9 data for the self-loopback test.

Reference Data This signal uses the pseudo-random bit stream as the reference signal.

*RST ERRor

Key Entry Error Out Reference Out PN9 Out

:BERT[:BASEband][:DATA]

Supported N5172B/82B with Option N5180UN7B

:DATA:BERT[:BASEband] [:DATA]?
BEC | BITC | BER | ALL | TBEC | TBIT | TBER | JUDGE

This query returns the data measurement for the selected variable.

BEC This choice provides the intermediate bit error count result.

BITC This choice provides the intermediate bit count result.

BER This choice provides the intermediate bit error rate result.
Bit Error Rate Test (BERT) Commands

Data Subsystem (:DATA)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>This choice provides the values of the bit error count, bit error rate, and bit count in the following format: <code><bit count>, <error count>, <bit error rate></code></td>
</tr>
<tr>
<td>TBEC</td>
<td>This choice provides the total bit error count at the end of each cycle.</td>
</tr>
<tr>
<td>TBIT</td>
<td>This choice provides the total bit count at the end of each cycle.</td>
</tr>
<tr>
<td>TBER</td>
<td>This choice provides the total bit error rate at the end of each cycle.</td>
</tr>
<tr>
<td>JUDGe</td>
<td>This choice provides the pass or fail string.</td>
</tr>
</tbody>
</table>
Bit Error Rate Test (BERT) Commands
Input Subsystem (:INPut:BERT[: BASeband])

Input Subsystem (:INPut:BERT[: BASeband])

:CGATe:DELa:y:CLOCk

Supported: N5172B/82B with Option N5180UN7B

:INPut:BERT[: BASeband]:CGATe:DELa:y:CLOCk <value>
:INPut:BERT[: BASeband]:CGATe:DELa:y:CLOCk?

This command sets the number of delay bits for the signal applied to the BER GATE IN rear panel connector.

One bit corresponds with one bit of delay for the input clock.

*RST 1
Range 1–16384
Key Entry Gate Clk Delay
Remarks The gate delay mode must be set to CLOCk for this command to work. Refer to ":CGATe:DELa:y:MODE". Also, the gate and gate delay must be enabled for this command to work. Refer to ":CGATe[:STATe]" on page 465 and ":CGATe:DELa:y[:STATe]" on page 464.

:CGATe:DELa:y:MODE

Supported: N5172B/82B with Option N5180UN7B

:INPut:BERT[: BASeband]:CGATe:DELa:y:MODE TIME|CLOCk
:INPut:BERT[: BASeband]:CGATe:DELa:y:MODE:?

This command selects the operating mode of the gate delay.

TIME This choice selects the time mode which makes it possible to set the gate time delay in absolute time and the resolution.

CLOCk This choice selects the clock mode which enables you to set the gate delay by a set number of bits.

*RST TIME
Key Entry Gate Mode Time Clk
Remarks The gate state and gate delay state must be enabled for this command to work. Refer to "CGATe[:STATe]" on page 465 and "CGATe:DELa:y[:STATe]" on page 464.
Bit Error Rate Test (BERT) Commands
Input Subsystem (:INPut:BERT[: BASeband])

:CGATe:DELay:TIME

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CGATe:DELay:TIME <value><unit>
:INPut:BERT[:BASEband]:CGATe:DELay:TIME?

This command sets the delay time of the gate signal. The gate delay time must be the multiple of the minimum resolution value and if not, the delay resolution is automatically rounded to the nearest multiplied value of the gate time delay value.

The variable <value> is expressed in units of seconds (s), milliseconds (ms), microseconds (μs), and nanoseconds (ns).

*RST +2.67000000E−008
Range 2.67 ns–1.0 s
Key Entry Gate Time Delay
Remarks Gate Delay Off On must be set to On and Gate Mode Time Clk set to Time for this command to work. Refer to “:CGATe:DELay[:STATe]” on page 464 and “:CGATe:DELay:MODE” on page 463.

To set the resolution, refer to “:CLOCk:DELAy:RESolution” on page 465.

:CGATe:DELay[:STATe]

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CGATe:DELay[:STATe] ON|OFF|1|0
:INPut:BERT[:BASEband]:CGATe:DELay[:STATe]?

This command enables or disables the operating state of the gate delay.

ON This choice enables the gate delay adjustment function.
OFF This choice disables the gate delay adjustment function.

*RST 0
Key Entry Gate Delay Off On
Remarks The gate must be enabled for this command to work. To enable the gate, refer to “:CGATe[:STATe]” on page 465.

:CGATe:POLarity

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CGATe:POLarity POSitive|NEGative
:INPut:BERT[:BASEband]:CGATe:POLarity?
Bit Error Rate Test (BERT) Commands
Input Subsystem (:INPut:BERT[: BASEband])

This command sets the input polarity of the gate signal supplied to the BER GATE IN rear panel connector.

POS With this choice, the signal is valid when the gate signal is high.

NEG With this choice, the signal is valid when the gate signal is low.

*RST POS

Key Entry Gate Polarity Neg Pos

:CGATe[:STATe]

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CGATe[:STATe] ON|OFF|1|0

:INPut:BERT[:BASEband]:CGATe[:STATe]?

This command sets the operating state of the clock gate function.

ON This choice enables the clock gate function.

OFF This choice disables the clock gate function.

*RST 0

Key Entry Gate Off On

:CLOCk:DELAy:RESolution

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CLOCk:DELAy:RESolution <value><unit>

:INPut:BERT[:BASEband]:CLOCk:DELAy:RESolution?

This command sets the resolution of the clock delay. The minimum resolution is 5 ns and it corresponds to 1/200 MHz. The 200 MHz is the DAC clock for the C2 board. The input value must be a multiple of the minimum resolution. If the set value is not a multiple value, the delay resolution is automatically rounded to the nearest multiple value with reference to the set value.

*RST +1.00000000E−008

Range 5ns–80μs

Key Entry Resolution

Remarks The clock delay or the gate delay must be enabled for this command to work. Refer to “:CLOCk:DELAy[:STATe]” on page 466 and “:CGATe:DELAy[:STATe]” on page 464. A change in the resolution value can affect both the clock and the gate delay time automatically.
Bit Error Rate Test (BERT) Commands
Input Subsystem (:INPut:BERT[: BASeband])

:CLOCK:DELAy:TIME

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CLOCk:DELAy:TIME <value><unit>
:INPut:BERT[:BASEband]:CLOCk:DELAy:TIME?

This command sets the clock signal delay time.
The variable <value> is expressed in units of seconds (s), milliseconds (ms), microseconds (μs), and nanoseconds (ns).

*RST +2.67000000E−008

Range 26.7ns–999.9967600ms

Key Entry Clock Time Delay

Remarks The clock delay must be enabled for this command to work. Refer to “:CLOCk:DELAy[:STATe]” on page 466.

:CLOCk:DELAy[:STATe]

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CLOCk:DELAy[:STATe] ON|OFF|1|0
:INPut:BERT[:BASEband]:CLOCk:DELAy[:STATe]?

This command sets the operating state of the clock delay function.

ON This choice enables the clock delay adjustment.
OFF This choice disables the clock delay adjustment.

*RST 0

Key Entry Clock Delay Off On

:CLOCk:POLarity

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASEband]:CLOCk:POLarity POSitive|NEGative
:INPut:BERT[:BASEband]:CLOCk:POLarity?

This command sets the input polarity of the clock signal supplied to the BER CLK IN rear panel connector.

POS With this choice, the signal is valid when the clock signal is high.
NEG With this choice, the signal is valid when the clock signal is low.

*RST POS

Key Entry Clock Polarity Neg Pos
Bit Error Rate Test (BERT) Commands
Input Subsystem (:INPut:BERT[: BASeband])

:DATA:POLarity

Supported N5172B/82B with Option N5180UN7B

:INPut:BERT[:BASeband]:DATA:POLarity POSitive|NEGative
:INPut:BERT[:BASeband]:DATA:POLarity?

This command sets the input polarity of the data signal supplied to the BER DATA IN rear panel connector.

POS With this choice, the signal is valid when the data signal is high.

NEG With this choice, the signal is valid when the data signal is low.

*RST POS

Key Entry Data Polarity Neg Pos
Route Subsystem (:ROUTE:LINE:BERT)

:CLOCK:BNC:SOURce

Supported N5172B/82B with Option N5180UN7B

:ROUTE:LINE:BERT:CLOCK:BNC:SOURce?

This command sets the BERT clock source to the BBTRIG 1 rear panel BNC or None.

*RST None

Key Entry Clock BNC None BBTrig 1

Remarks When BERT is enabled (On), the clock source is automatically set to BBTRIG 1. Routing the BNC connectors in other modes can change this setting. (For example, routing a Marker to BBTRIG 1 will turn off the BERT functionality for this connector.) Use this command to re-enable the BERT clock source. Refer to the X-Series Signal Generators User's Guide for rear panel connector configurations.

:DATA:BNC:SOURce

Supported N5172B/82B with Option N5180UN7B

:ROUTE:LINE:BERT:DATA:BNC:SOURce?

This command sets the BERT data source to the EVENT 1 rear panel BNC or None.

*RST None

Key Entry Data BNC None Event 1

Remarks When BERT is enabled (On), the data source is automatically set to EVENT 1. Routing the BNC connectors in other modes can change this setting. (For example, routing a Marker to EVENT 1 will turn off the BERT functionality for this connector.) Use this command to re-enable the BERT data source. Refer to the X-Series Signal Generators User's Guide for rear panel connector configurations.
Bit Error Rate Test (BERT) Commands
Route Subsystem (:ROUTe:LINE:BERT)

:GATE:BNC:SOURce

Supported N5172B/82B with Option N5180UN7B

:ROUTe:LINE:BERT:GATE:BNC:SOURce?

This command sets the BERT gate source to the BBTRIG 2 rear panel BNC or NONE.

*RST None

Key Entry Gate BNC None BBTrig 2

Remarks
When BERT Gate Control is enabled (On), the gate source is automatically set to BBTRIG 2. Routing the BNC connectors in other modes can change this setting. (For example, routing a Marker to BBTRIG 2 will turn off the BERT functionality for this connector.) Use this command to re-enable the BERT gate source. Refer to the X-Series Signal Generators User's Guide for rear panel connector configurations.
Sense Subsystem (:SENSe:BERT[:BASeband])

:PRBS:FUNCTION:SPIGnore:DATA

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5172B/82B with Option N5180UN7B</th>
</tr>
</thead>
</table>

:SENSe:BERT[:BASeband]:PRBS:FUNCTION:SPIGnore:DATA

ALL_0|ALL_1

:SENSe:BERT[:BASeband]:PRBS:FUNCTION:SPIGnore:DATA?

This command selects the bit parameter of the special pattern ignore function.

| ALL_0 | This choice ignores a bit pattern of 160 or more consecutive 0's. |
| ALL_1 | This choice ignores a bit pattern of 160 or more consecutive 1's. |

*RST

Key Entry Spcl Pattern 0's 1's

Remarks This command is valid only when the special pattern ignore function is enabled (On). Refer to

":PRBS:FUNCTION:SPIGnore[:STATe]". The special pattern of 160 or more 1's or 0's can appear at any position in the bit stream.

:PRBS:FUNCTION:SPIGnore[:STATe]

<table>
<thead>
<tr>
<th>Supported</th>
<th>N5172B/82B with Option N5180UN7B</th>
</tr>
</thead>
</table>

:SENSe:BERT[:BASeband]:PRBS:FUNCTION:SPIGnore[:STATe]

ON|OFF|1|0

:SENSe:BERT[:BASeband]:PRBS:FUNCTION:SPIGnore[:STATe]?

This command enables (1) or disables (0) the special pattern ignore function. The special pattern ignore function enables the BER to neglect the consecutive 0's or 1's pattern data.

| ON | This choice detects 160 or more consecutive bits of 0's or 1's in the incoming bit stream and ignores these bits when making BER measurements. To select 0's or 1's refer to
":PRBS:FUNCTION:SPIGnore:DATA"
| OFF | This choice disables the special pattern ignore mode for the BER measurement. |

*RST

Key Entry Spcl Pattern Ignore Off On

Remarks This command is valid only when 2 Mbps mode is selected for the maximum data rate, and when the special pattern ignore function is enabled (On). Refer to
Bit Error Rate Test (BERT) Commands
Sense Subsystem (:SENSe:BERT[:BASEband])

```
"`:PRBS:FUNCtion:SPIGnore[:STATe]". The special pattern of 160 or more 1's or 0's can appear at any position in the bit stream.

`:PRBS[:DATA]

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT [:BASEband] :PRBS [:DATA] PN9 | PN11 | PN15 | PN20 | PN23
:SENSe:BERT [:BASEband] :PRBS [:DATA]?

This command selects the incoming data pattern for making BER measurements.

PN9–PN23 These choices select an internally generated pseudo-random pattern for BER measurements.

*RST PN9

Key Entry PN9 PN11 PN15 PN20 PN23

:RSYNc:THReshold

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT [:BASEband] :RSYNc:THReshold <value>
:SENSe:BERT [:BASEband] :RSYNc:THReshold?

This command specifies the threshold level for the resynchronizing function.

*RST 0.40

Range 0.05–0.40

Key Entry Resync Limits

Remarks This command is valid only when the BERT resynchronizing function is on. Refer to "`:RSYNc[:STATe]" on page 471.

:RSYNc[:STATe]

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT [:BASEband] :RSYNc[:STATe] ON|OFF|1|0
:SENSe:BERT [:BASEband] :RSYNc[:STATe]?

This command sets the operating state of the resynchronization function.

ON This choice enables the resynchronization function.
OFF This choice disables the resynchronization function.

*RST 1

Key Entry BERT Resync Off On
Bit Error Rate Test (BERT) Commands
Sense Subsystem (:SENSe:BERT[:BASeband])

**:STATe**

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASeband]:STATE ON|OFF|1|0
:SENSe:BERT[:BASeband]:STATE?

This command sets the operating state of the bit error rate test (BERT) measurement.

- **ON** This choice enables the BERT measurement.
- **OFF** This choice disables the BERT measurement.
- **RST** 0

Key Entry BERT Off On

**:STOP:CRIteria:EBIT**

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASeband]:STOP:CRIteria:EBIT <value>
:SENSe:BERT[:BASeband]:STOP:CRIteria:EBIT?

This command specifies the threshold limit to stop the measurement.

- **RST** 100
- **Range** 0–1000000000
- **Key Entry** Error Count
- **Remarks** When the stop mode criteria is set to EBIT, the signal generator monitors the error bits and when it exceeds the set value, the signal generator stops the current BER measurement and waits for the next trigger.

EBIT must be the selection for this command to work.
To select EBIT refer to “**:STOP:CRIteria[:SELeCt]”.

**:STOP:CRIteria[:SELeCt]**

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASeband]:STOP:CRIteria[:SELeCt] EBIT|NONE
:SENSe:BERT[:BASeband]:STOP:CRIteria[:SELeCt]?

This command determines which threshold criteria is used to prematurely stop the measurement.

- **EBIT** This choice enables a specified number of bit errors to prematurely stop the measurement.
- **NONE** This choice disables the stop measurement threshold criteria function.
Bit Error Rate Test (BERT) Commands
Sense Subsystem (:SENSe:BERT[:BASeband])

*:RST

Key Entry   Error Count   No Thresholds

Remarks     The measurement will terminate no later than 200 ms after the threshold is exceeded.

:TBITs

Supported    N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASeband]:TBITs <value>
:SENSe:BERT[:BASeband]:TBITs?

This command specifies the total bit count to be measured in one measurement cycle.

*RST    +10000

Range    100–4294967295

Key Entry   Total Bits

:TRIGger:BDELay

Supported    N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASeband]:TRIGger:BDELay <value>
:SENSe:BERT[:BASeband]:TRIGger:BDELay?

This command specifies the number of bits to delay the trigger signal.

*RST    0

Range    0–65535

Key Entry   Delay Bits

Remarks     This command is valid only when the trigger bit delay function is on. Refer to ":TRIGger:BDELay:STATe".

:TRIGger:BDELay:STATe

Supported    N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASeband]:TRIGger:BDELay:STATe ON|OFF|1|0
:SENSe:BERT[:BASeband]:TRIGger:BDELay:STATe?

This command sets the operating state of the trigger delay function.

ON     This choice enables the trigger delay function.
OFF    This choice disables the trigger delay function.

*RST    0

Key Entry   Bit Delay Off On

Keysight CXG, EXG, and MXG X-Series Signal Generators SCPI Command Reference 473
Bit Error Rate Test (BERT) Commands
Sense Subsystem (:SENSe:BERT[:BASEband])

Remarks
This command needs to be set to ON before the number of bits for the trigger delay can be set. Refer to “:TRIGger:BDELay”.

:TRIGger:COUNt

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASEband]:TRIGger:COUNt <value>
:SENSe:BERT[:BASEband]:TRIGger:COUNt?

This command sets the number of times the bit error rate test (BERT) measurements will repeat.

*RST 1
Range 0–65535
Key Entry Cycle Count
Remarks With 0 set, the BER measurements are repeated until you set the BERT operating state is set to off. Refer to “:STATE” on page 472.

:TRIGger:EXTernal[:SOURce]

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASEband]:TRIGger:EXTernal[:SOURce]?

This command selects the external trigger source.

Trigger 1 This choice allows you to trigger the BER measurement with the rear panel TRIG 1 connector.
Trigger 2 This choice allows you to trigger the BER measurement with the rear panel TRIG 2 connector.
Pulse This choice allows you to trigger the BER measurement with the rear panel PULSE connector.
*RST Trigger 1
Key Entry BERT Trigger EXT Trigger 1 Trigger 2 Pulse

:TRIGger:POLarity

Supported N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASEband]:TRIGger:POLarity POSitive|NEGative
:SENSe:BERT[:BASEband]:TRIGger:POLarity?

This command selects the polarity of the trigger signal.
Bit Error Rate Test (BERT) Commands
Sense Subsystem (:SENSe:BERT[:BASEband])

| POSitive | This choice triggers on the rising edge of the input data signal. |
| NEGaive | This choice triggers on the falling edge of the input data signal. |
| *RST | POS |

Key Entry

| Aux I/O Trigger Polarity | Pos Neg |

:TRIGger[:SOURce]

**Supported**
N5172B/82B with Option N5180UN7B

:SENSe:BERT[:BASEband]:TRIGger[:SOURce] IMMEDIATE|KEY|EXT|BUS|AUX

:SENSe:BERT[:BASEband]:TRIGger[:SOURce]?

This command selects the triggering type for starting the bit error rate test (BERT) measurements.

| IMMEDIATE | This choice begins the measurement directly after synchronization has been achieved. |
| KEY | This choice begins the measurement when the front panel Trigger key is pressed, provided that synchronization has been achieved. If synchronization has not occurred, the trigger is ignored. |
| EXT | This choice begins the measurement as soon as a trigger signal is applied to the rear panel connector provided that synchronization has been achieved. If synchronization has not occurred, the trigger is ignored. |
| BUS | This choice enables GPIB triggering using the *TRG or GET command or LAN and RS-232 triggering using the *TRG command. |
| AUX | This choice triggers an event using the rear panel AUX I/O connector pin #19. Refer to the X-Series Signal Generators User's Guide. |
| *RST | KEY |

Key Entry

| Immediate | Trigger Key | Ext | Bus | Aux I/O |
Bit Error Rate Test (BERT) Commands
Sense Subsystem (:SENSe:BERT[:BASEband])
8 Digital Signal Interface Module Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

For Keysight N5172B/82B X-Series signal generators with firmware version B.01.70 or later installed, before using the Keysight N5102A Digital Signal Interface Module commands, ensure that the proper baseband operating mode choice is selected. For more information see “:OPERating:MODE” on page 120

This chapter describes SCPI commands used by Keysight X-Series signal generators with Option 003, or 004, or both along with the N5102A module.

This chapter contains the following sections:

- “Digital Subsystem—Option 003 and 004 (:SOURce)” on page 478
Digital Subsystem—Option 003 and 004 ([:SOURce])

:DIGital:CLOCk:CPS 1|2|4

Supported N5172B/82B with Option 003 or 004 or both

This command selects the number of clock cycles per sample. The command is used with parallel or parallel interleaved port configurations. If this command is executed with a serial port configuration or an IF signal type, the parameter value is changed, but it is not used by the interface module until the port configuration is changed to parallel or parallel interleaved, and the signal type is changed to IQ.

The query returns the currently set value. Regardless of the port configuration, you must query all four states (clocks per sample, port configuration, data direction, and signal type) to know the interface module’s current setup.

Example

:DIG:CLOC:CPS 2

The preceding example sets two clock cycles for each sample.

*RST 1

Range 1, 2, or 4

Key Entry Clocks Per Sample

:DIGital:CLOCk:PHAS

Supported N5172B/82B with Option 003 or 004 or both

This command sets the phase for the clock relative to the leading edge transition of the data. At 0 degrees the clock and leading edge of the data signal are aligned. Any phase value between 0 and 360 degrees can be used in the command, however, the signal generator rounds up or down to get 90, 180, 270 and 0 degree settings. For example, entering 140 degrees will cause the signal generator to use the 180 degree setting.

If this command is executed when the clock rate is less than 10 MHz or greater than 200 MHz, the resolution changes to 180 degrees, and the maximum phase defaults to 180 degrees.

Example

:DIG:CLOC:PHAS 90DEG
The preceding example sets the clock phase to 90 degrees. The clock signal leading edge transition will be delayed by 1/4 of a clock period relative to the leading edge data transition.

*RST +0.00000000E+000
Range 0 – 360 deg

Key Entry Clock Phase

**:DIG:LOCK:POLarity**

**Supported** N5172B/82B with Option 003 or 004 or both

**:DIG:LOCK:POLarity** POSitive|NEGative
**:DIG:LOCK:POLarity?**

This command sets the alignment for the clock signal to positive or negative. Positive selects the leading edge transition of the clock signal to align with the leading edge data transition and negative selects the falling edge transition of the clock signal to align with the leading edge of the data.

**Example**

**:DIG:LOCK:POL NEG**

The preceding example sets the clock falling edge transition to align with the leading edge data transition.

*RST POS

Key Entry Clock Polarity

**:DIG:LOCK:RATE**

**Supported** N5172B/82B with Option 003 or 004 or both

**:DIG:LOCK:RATE** <value>
**:DIG:LOCK:RATE?**

This command sets the clock rate. If an external clock is used, the rate set with this command must match the external clock rate. Only clock phase settings of 0 or 180 degrees are valid for a clock rate setting below 10 MHz. The variable <value> is a expressed in hertz.

**Example**

**:DIG:LOCK:RATE 100MHZ**

The preceding example sets the clock rate to 100 megahertz.

*RST +1.00000000E+008
Range 1 kHz–200 MHz

Key Entry Clock Rate
:DIG:_CLOCK:REF:FREQ

**Supported**  N5172B/82B with Option 003 or 004 or both

:DIG:_CLOCK:REF:FREQ <freq>
:DIG:_CLOCK:REF:FREQ?

This command allows you to specify the frequency of the external reference supplied to the Freq Ref connector. This command is valid only when the clock source is set to internal.

If this command is executed when the clock source is not set to internal, the parameter value is changed, but it is not used by the signal generator until the clock source is changed to internal.

Because a query returns the currently set value, regardless of the clock source, you must query both states (reference frequency and clock source) to know the signal generator's current setup.

**Example**

:DIG:CLOC:REF:FREQ 50MHZ

The preceding example specifies a 50 megahertz external reference frequency.

* RST  +1.00000000E+007
Range  1 MHz–100 MHz
Key Entry  Reference Frequency

:DIG:_CLOCK:SKEW

**Supported**  N5172B/82B with Option 003 or 004 or both

:DIG:_CLOCK:SKEW <value>
:DIG:_CLOCK:SKEW?

This command sets the clock signal skew value. The skew is a fine-tune adjustment for the course tune clock phase function and helps to align the clock with valid data states. This is useful at high clock rates and available only for clock frequencies above 10 megahertz. The variable <value> is a expressed in nanoseconds.

**Example**

:DIG:CLOC:SKEW 2NS

The preceding example sets the clock skew to 2 nanoseconds.

* RST  +0.00000000E+000
Range  –5ns to 5ns
Key Entry  Clock Skew
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

**:DIGital:CLOCk:SOURce**

**Supported** N5172B/82B with Option 003 or 004 or both

**:DIGital:CLOCk:SOURce** INTernal|EXTernal|DEVice

**:DIG:CLOC:SOURCe?**

This command selects one of three possible clock sources.

**Example**

**:DIG:CLOC:SOUR DEV**

The preceding example uses the “Device Interface Connector” input clock.

*RST INT

**Key Entry** Clock Source

**:DIGital:DATA:ALIGnment**

**Supported** N5172B/82B with Option 003 or 004 or both

**:DIGital:DATA:ALIGnment** MSB|LSB

**:DIGital:DATA:ALIGnment?**

This command selects the bit alignment for a word less than 16 bits in length. The MSB (most significant bit) selection maintains the MSB of the word on the same data line while the LSB (least significant bit) will move depending on the word size. The opposite effect occurs when the alignment is set to LSB.

**Example**

**:DIG:DATA:ALIG MSB**

The preceding example sets the MSB word format.

*RST LSB

**Key Entry** Word Alignment

**:DIGital:DATA:BORDer**

**Supported** N5172B/82B with Option 003 or 004 or both

**:DIGital:DATA:BORDer** MSB|LSB

**:DIGital:DATA:BORDer?**

This command selects the bit order for data transmitted through the N5102A module. Data can be in least significant (LSB) bit first or most significant (MSB) bit first.

**Example**

**:DIG:DATA:BORD MSB**

The preceding example specifies data in MSB first format.
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([SOURce])

:DIG:DATA:DIR

Supported  N5172B/82B with Option 003 or 004 or both

:DIG:DATA:DIR OUTPut|INPut
:DIG:DATA:DIR?

This command selects an input or output direction for data flow through the N5102A module.

Example
:DIG:DATA:DIR INP

The preceding example selects input as the direction of data flow.

:DIG:DATA:INE

Supported  N5172B/82B with Option 003 or 004 or both

:DIG:DATA:INE OFF|ON|0|1
:DIG:DATA:INE?

This command enables or disables the negation of the I data sample. Negation changes the sample by expressing it in two's complement form, multiplying by negative one, and converting back to the selected numeric format. This can be done for I samples, Q samples, or both.

The sample or word represents a quantized analog voltage level. This analog voltage can be added or multiplied. For a 16-bit sample, the range is from 0 to 65535 in offset binary or -32768 to +32767 in 2's complement mode.

Example
:DIG:DATA:INE ON

The preceding example enables negation of the I data.
:DIGital:DATA:INPut:ATTen:AUTO

Supported N5172B/82B with option 004

:DIG:DATA:INP:ATT: AUTO ON|OFF|1|0
:DIG:DATA:INP:ATT: AUTO?
:DIG:DATA:INP:ATT <value><unit>
:DIG:DATA:INP:ATT?

This command selects Manual mode or Auto mode for the DSIM input attenuation.

When Auto mode is selected, the signal generator automatically optimizes the attenuation for the current conditions. When the Manual mode is selected, attenuation is the active function. The value entered sets the attenuation.

Example

:DIG:DATA:INP:ATT: 20

The preceding example sets the DSIM input attenuation to 20 dB.

*RST Auto

Range 0.00 to 50.00

Key Entry Input Atten

:DIG:DATA:INP:ATT: LEVel

Supported N5172B/82B with option 004

:DIG:DATA:INP:ATT: MODE DEFault|MANual
:DIG:DATA:INP:ATT: MODE?
:DIG:DATA:INP:ATT: LEVel <unit>
:DIG:DATA:INP:ATT: LEVel?

This command specifies the expected value of the IQ input signal.

Example

:DIG:DATA:INP:ATT: LEV 100MV

The preceding example sets the input attenuation to 100 mV.

*RST Default

Range 50.0 to 1.000 V

Key Entry Input Atten Level


Supported N5172B/82B with option 004

:DIG:DATA:INP:BASeband:FREQuency:OFFSet <value><unit>
:DIG:DATA:INP:BASeband:FREQuency:OFFSet?
This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed-through is not in the center.

Keysight X-Series vector signal generators provide automatic DAC over-range protection when the offset value is something other than 0 Hz. It scales down the playing I/Q data by 1/square root of 2.

**NOTE**

When setting Baseband Frequency Offset to a non-zero value and then back to a 0 value, the waveform will be at a random phase (and scaled down to avoid DAC over range). The Baseband Frequency Offset Phase Reset must be used to truly restore to a pre-frequency offset setup.

Also note that when using Baseband Frequency Offset to shift part of a signal outside of the flat bandwidth, DAC overrange errors may occur.

**Example**

```
:DIG:DATA:INP:BAS:FREQ:OFFS 10HZ
```

The preceding example sets the baseband frequency offset to 10 Hz.

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>*RST</td>
<td>+0.00000000E+000</td>
</tr>
<tr>
<td>Range</td>
<td>+8.0E7 to –8.0E7 Hz</td>
</tr>
<tr>
<td>Baseband Frequency Offset</td>
<td></td>
</tr>
</tbody>
</table>

```
```

This command clears the phase accumulation resulting in a phase shift of zero.

When the Baseband Frequency Offset is non-zero, the hardware rotator accumulates phase-shift of the baseband signal. This residual phase remains even after the offset value is returned to zero.

While there is a non-zero residual phase present in the signal, the DAC Over-Range Protection feature will automatically prevent DAC overrange errors from occurring by scaling the signal down by 1/square root of 2.

```
:DIGital:DATA:INPut:FILTer:ALPHa
```

This command changes the Nyquist or root Nyquist filter’s alpha value.
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

The filter alpha value can be set to a minimum level (0), a maximum level (1), or in between by using fractional numeric values (0.001–0.999).

**Example**

`:DIG:DATA:INP:FILT:ALPH 1`

The preceding example sets the filter alpha value to the maximum value of 1.

*RST* 0.500

Range 0.000 to 1.000

**Key Entry** Filter Alpha

`:DIG:DATA:INP:FILT:BBT`

**Supported** N5172B/82B with option 004

`:DIG:DATA:INP:FILT:BBT <value>`

`:DIG:DATA:INP:FILT:BBT?`

This command changes the bandwidth-multiplied-by-bit-time (BbT) filter parameter of the selected Gaussian filter.

The filter BbT value can be set to the maximum level (1) or in between the minimum level (0.100) and maximum level by using fractional numeric values (0.101–0.999).

**Example**

`:DIG:DATA:INP:FILT:BBT 1`

The preceding example sets the filter BbT value to the maximum value of 1.

*RST* 0.500

Range 0.000 to 1.000

**Key Entry** Filter Alpha
:DIGital:DATA:INPut:FILTer

**Supported**  N5172B/82B with option 004

:DIGital:DATA:INPut:FILTer
RNYQuist|NYQuist|GAUSsian|IS95|IS95_EQ|IS95_MOD|IS95_MOD_EQ|"<User FIR>"|WCDMA|RECTangle|EDGE|EDGE_Wide|EDGE_HSR|APCO_25_C4FM

This command selects the pre-modulation filter type.

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNYQuist</td>
<td>This choice selects a Root Nyquist (root raised cosine) filter. This filter is adjusted using Alpha.</td>
</tr>
<tr>
<td>NYQuist</td>
<td>This choice selects a Nyquist (raised cosine) filter. This filter is adjusted using Alpha.</td>
</tr>
<tr>
<td>GAUSsian</td>
<td>This choice selects a Gaussian filter which is adjusted using Bbt values.</td>
</tr>
<tr>
<td>IS95</td>
<td>This choice selects a filter that meets the criteria of the IS-95 standard.</td>
</tr>
<tr>
<td>IS95_EQ</td>
<td>This choice selects a filter which is a combination of the IS-95 filter (above) and the equalizer filter described in the IS-95 standard. This filter is only used for IS-95 baseband filtering.</td>
</tr>
<tr>
<td>IS95_MOD</td>
<td>This choice selects a filter that meets the criteria of the IS-95 error function (for improved adjacent channel performance) with lower passband rejection than the filter specified in the IS-95 standard.</td>
</tr>
<tr>
<td>IS95_MOD_EQ</td>
<td>This choice selects a filter which is a combination of the equalizer filter described in the IS-95 standard and a filter that meets the criteria of the IS-95 error function (for improved adjacent channel performance), with lower passband rejection.</td>
</tr>
<tr>
<td>&quot;&lt;user FIR&gt;&quot;</td>
<td>This variable is any filter file that you have stored into memory. Refer to “File Name Variables” on page 43 for information on the file name syntax.</td>
</tr>
<tr>
<td>WCDMA</td>
<td>This choice selects the W-CDMA filter, which is the equivalent of a root Nyquist filter with an Alpha value of 0.22.</td>
</tr>
<tr>
<td>Rectangle</td>
<td>This choice selects a one-symbol-wide rectangular filter.</td>
</tr>
<tr>
<td>EDGE</td>
<td>This choice selects a linearized Gaussian filter as defined in GSM 05.04.</td>
</tr>
<tr>
<td>EDGE_Wide</td>
<td>This choice selects an EDGE spectrally wide pulse shape filter as per 3GPP TS 45.004.</td>
</tr>
</tbody>
</table>
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

**EDGE_HSR**  This choice selects an EDGE high symbol rate spectrally narrow pulse shape filter as per 3GPP TS 45.004

**APCO_25_C4FM**  This choice selects a predefined Nyquist filter with alpha of 0.2 combined with a shaping filter. This satisfies the requirements of ITIA/EIA 102.BAAA Sec-9 for the APCO-25 Common Air Interface.

**Example**

`:DIG:DATA:INP:FILT Nyquist`

The preceding example selects the Nyquist filter.

```
*RST RNYQ
```

**Key Entry**

<table>
<thead>
<tr>
<th>Root Nyquist</th>
<th>Nyquist</th>
<th>Gaussian</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-95 w/EQ</td>
<td>IS-95 Mod</td>
<td>IS-95 Mod w/EQ</td>
<td></td>
</tr>
</tbody>
</table>

**User FIR**  | **WCDMA**  | **Rectangle**  | **EDGE**

**EDGE**  | **EDGE**  | **APCO 25 C4FM**

**Wide**  | **HSR**  |

**:DIG:DATA:INP:FILTER:CHANnel**

**Supported**  N5172B/82B with option 004

**:DIG:DATA:INP:FILTER:CHANnel EVM|ACP**

**:DIG:DATA:INP:FILTER:CHANnel?**

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

**EVM**  This choice provides the most ideal passband.

**ACP**  This choice improves stopband rejection.

**Example**

**:DIG:DATA:INP:FILT:CHAN EVM**

The preceding example selects error vector magnitude.

```
*RST EVM
```

**Key Entry**  Optimize FIR for EVM

**:DIG:DATA:INP:IQ:SCALe**

**Supported**  N5172B/82B with option 004
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([::SOURce])

`:DIGital:DATA:INPut:IQ:SCALe <value>
`:DIGital:DATA:INPut:IQ:SCALe?`

This command sets the amplitude of the I/Q outputs for better adjacent channel power (ACP); lower scaling values equate to better ACP.

The variable `<value>` is expressed in units of percent.

**Example**

`:DIG:DATA:INP:IQ:SCAL 30`

The preceding example sets the amplitude of the I/Q outputs to 30%.

*RST 100
Range 1 to 100
Key Entry I/Q Scaling


**Supported** N5172B/82B with option 004

`:DIGital:DATA:INPut:MDEStination:AAMPlitude NONE|M1`

`:DIGital:DATA:INPut:MDEStination:AAMPlitude?

This command opens a menu in which you can select a marker to select the alternate amplitude functionality.

Further setups need to be done in the Amplitude > Alternate Amplitude menu to use the functionality.

**Example**

`:DIGital:DATA:INPut:MDES:AAMP M1`

The preceding example routes marker 1 to Alternate Amplitude.

*RST None
Key Entry Alternate Amplitude

`:DIGital:DATA:INPut:MDEStination:ALCHold

**Supported** N5172B/82B with option 004

`:DIGital:DATA:INPut:MDEStination:ALCHold NONE|M1`

`:DIGital:DATA:INPut:MDEStination:ALCHold?


Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

Opens a menu in which you can select a marker to enable the automatic leveling control (ALC) hold function (or select None to disable the hold feature). The hold selection remains until you reconfigure it, press the Preset key, or cycle the signal generator power.

**CAUTION**

Incorrect ALC settings can cause a sudden unleveled condition to occur. An unleveled RF output can damage a DUT or connected instrument. Ensure that you set markers such that the ALC obtains a sample that accounts for the high power levels within the signal.

**Example**

[:DIGital:DATA:INPut:MDES:ALCH M1]

The preceding example routes marker 1 to ALC Hold.

* RST None

Key Entry ALC Hold

[:DIGital:DATA:INPut:MDEStination:PULSe]

Supported N5172B/82B with option 004

[:DIGital:DATA:INPut:MDEStination:PULSe NONE|M1]

[:DIGital:DATA:INPut:MDEStination:PULSe?]

Opens a menu in which you can select a marker for the Pulse/RF blanking function.

ALC Hold is automatically enabled during RF output blanking.

**Example**

[:DIGital:DATA:INPut:MDES:PULS M1]

The preceding example routes marker 1 to Pulse.

* RST None

Key Entry Pulse/RF Blank

[:DIGital:DATA:INPut:MPOLarity:MARKer1]

Supported N5172B/82B with option 004

[:DIGital:DATA:INPut:MPOLarity:MARKer1 NORMal|INVerted]

[:DIGital:DATA:INPut:MPOLarity:MARKer1?]

Selects whether marker 1 polarity is inverted or not.

**Example**

[:DIG:DATA:INP:MPOL:MARK NORM]

The preceding example sets the marker 1 polarity as not inverted.
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

*RST       Normal
Key Entry   Marker 1 Polarity Normal/Invert
:DIGital:DATA:INPut:NOISe:BANDwidth

**Supported**  
N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:BANDwidth <value><unit>
:DIGital:DATA:INPut:NOISe:BANDwidth?

This command selects the flat noise bandwidth value of the real–time noise for an ARB waveform. Typically, this value is set slightly wider than the signal bandwidth. The minimum increment value is 0.001 Hz.

**Example**

:DIG:DATA:INP:NOIS:BAND 8MHZ

The preceding example sets the flat noise bandwidth to 8 MHz.

*RST  
+1.00000000E+000

**Range**  
1 Hz to 160 MHz (depends on the installed baseband generator option)

**Key Entry**  
Flat Noise Bandwidth

:DIGital:DATA:INPut:NOISe:CBRate

**Supported**  
N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:CBRate <1bps - 999Mbps>
:DIGital:DATA:INPut:NOISe:CBRate?

This command sets a value of the carrier bit rate (gross bit rate) for purposes of calculating the Eb/N0 (energy per bit over noise power density at the receiver). When the carrier to noise ratio format is set to Eb/N0 (refer to the :DIGital:DATA:INPut:NOISe:CNFormat command), the adjustment of the carrier bit rate will have an immediate impact on the carrier to noise ratio as specified by Eb/N0. The carrier bit rate is derived from the symbol rate and bits per symbol of the modulation. The carrier bit rate is a saved instrument state that is recorded in the waveform header.

The query returns the current carrier bit rate setting.

**Example**

:DIG:DATA:INP:NOIS:CBR 5

The preceding example sets the carrier bit rate to 5 bps.

**Default**  
1.000 bps

**Range**  
1 bps to 999 Mbps

**Key Entry**  
Carrier Bit Rate
:DIGital:DATA:INPut:NOISe:CBWidth

**Supported**  N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:CBWidth <value><unit>

:DIGital:DATA:INPut:NOISe:CBWidth?

This command selects the carrier bandwidth over which the additive white gaussian noise (AWGN) is applied. The carrier RMS power and the noise power will be integrated over the selected carrier–bandwidth for the purposes of calculating carrier to noise ratio (C/N). The minimum increment value is 0.001 Hz. For more information, refer to the ":DIGital:DATA:INPut:NOISe[:STATe]" command and the ":DIGital:DATA:INPut:NOISe:BANDwidth" command.

*RST  +1.00000000E+000

Range  1 Hz to 200 MHz

Key Entry  Carrier Bandwidth

:DIGital:DATA:INPut:NOISe:CN

**Supported**  N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:CN <value><unit>

:DIGital:DATA:INPut:NOISe:CN?

This command sets the carrier to noise ratio (C/N) in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to :DIGital:DATA:INPut:NOISe:CBWidth.

**Example**

:DIG:DATAN:INP:NOIS:CN 50DB

The preceding example sets the carrier to noise ratio to 50 dB.

*RST  +0.00000000E+000

Range  –100 to 100 dB

Key Entry  Carrier to Noise Ratio

:DIGital:DATA:INPut:NOISe:CNFormat

**Supported**  N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:CNFormat CN|EBNO

:DIGital:DATA:INPut:NOISe:CNFormat?

This command selects either the Carrier to Noise Ratio (C/N) or energy per bit over noise power density at the receiver (E_b/N_0) as the variable controlling the ratio of carrier power to noise power in the carrier bandwidth.

**Example**
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([::SOURce])

:DIG:DATA:INP:NOIS:CNF EBNO

The preceding example sets the carrier to noise ratio format to EbNo. Set the EbNo value with the :DIGital:DATA:INPut:NOISe:EBNO command.

**Default**
Carrier to Noise Ratio Format C/N

**Key Entry**
Carrier to Noise Ratio Format  C/N  Eb/No


**Supported**
N5172B/82B with option 004


This command allows the C/N to be set using the Eb/N0 (energy per bit over noise power density at the receiver) form. This requires that the carrier bit rate (:DIGital:DATA:INPut:NOISe:CBRate) be set properly. The range of Eb/N0 is limited to the range that is equivalent to −100 to 100 dB of C/N. This value is only effective when Eb/N0 has been enabled by the :DIGital:DATA:INPut:NOISe:CNFormat command.

The query returns the value of EBNO.

**Example**

:DIG:DATA:INP:NOIS:EBNO

The preceding example enables the direct measurement of the carrier contribution to the total power.

**Default**
0 dB

**Range**
−100 to 100 dB

**Key Entry**
Eb/No

:DIGital:DATA:INPut:NOISe:MUX

**Supported**
N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:MUX SUM|CARRier|NOISe
:DIGital:DATA:INPut:NOISe:MUX?

This command enables diagnostic control of additive noise, such that only the noise, only the carrier, or the sum of both the noise and the carrier are output from the internal baseband generator. With the ALC off, this feature enables direct measurement of just the carrier or the noise contributions to the total power. The system will still behave as if both the noise and the carrier are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

**Example**

:DIG:DATA:INP:NOIS:MUX CARR
The preceding example enables the direct measurement of the carrier contribution to the total power.

**Default**  
Carrier + Noise

**Key Entry**  
Carrier + Noise | Carrier | Noise

\[:DIGital:DATA:INPut:NOISe:POWer:CARRier\]

**Supported**  
N5172B/82B with option 004

\[:DIGital:DATA:INPut:NOISe:POWer:CARRier <value>\]  
\[:DIGital:DATA:INPut:NOISe:POWer:NOISe:CARRier?\]

This command sets the current carrier power level if noise is on.

In the CARRier control mode, the total power will be adjusted to achieve the specified carrier power and the carrier power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the carrier power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total power is adjusted.

In the NOISe control mode, this will adjust the total noise power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total noise power is adjusted. See also \[:DIGital:DATA:INPut:NOISe:POWer:CONTrol[:MODE]\] and \[:DIGital:DATA:INPut:NOISe:POWer:NOISe:TOTal\] commands.

In the other control modes, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted.

**Range**  
The range varies based on the bounds of the total power that results from the noise settings.

**Default**  
The appropriate value given the current total power and the current Carrier to Noise (C/N).

**Key Entry**  
Carrier Power

\[:DIGital:DATA:INPut:NOISe:POWer:CONTrol[:MODE]\]

**Supported**  
N5172B/82B with option 004

\[:DIGital:DATA:INPut:NOISe:POWer:NOISe:CONTrol[:MODE]TOTal|CARRier|NOISe|NChannel\]  
\[:DIGital:DATA:INPut:NOISe:POWer:NOISe:CONTrol[:MODE]?\]

This command sets the power control to one of the three following modes:
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

Total  This is the default mode where the total power and C/N are independent variables and the carrier power and total noise power are dependent variables set by the total power, C/N and the rest of the noise settings. The carrier power and total noise power will change as any noise parameter is adjusted to keep the total power and the C/N at their last specified values.

Carrier  In this mode the carrier power and C/N are independent variables and the total power and total noise power are dependent variables set by the carrier power, C/N and the rest of the noise settings. The total power and total noise power will change as any noise parameter is adjusted to keep the carrier power and the C/N at their last specified values.

Total Noise  In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

N Channel  In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

Default  Total

Key Entry  Total  Carrier  Total Noise


Supported  N5172B/82B with option 004


This command sets the power within the channel bandwidth. The instrument power is changed in relation to this setting if AWGN is turned on. The channel noise power is only settable from the front panel when the Power Control mode is set to channel noise power.

The variable <value> is expressed in units of dBm.

The query returns the current noise power across the carrier bandwidth in dBm.

Example

The preceding example sets the power in the channel bandwidth to 10 dBm.

*RST      Depends on model and options.
Key Entry  Channel Noise Power


Supported  N5172B/82B with option 004


This command sets the current total noise power level if noise is on.

In the NOISe control mode, the total power will be adjusted to achieve the specified total noise power and the total noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the total noise power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the total power is adjusted.

In the CARRier control mode, this will adjust the carrier power once for the specified total noise power level, after which the total noise power could change if any noise parameters are adjusted or the carrier power is adjusted. See also :DIGital:DATA:INPut:NOISe:POWer:CONTROL[:MODE] command.

Range      The range varies based on the bounds of the total power that results from the noise settings.
Default    The appropriate value given the current total power and the current Carrier to Noise (C/N).
Key Entry  Total Noise Power

:DIgital:DATA:INPut:PHASe:NOISe:F1

Supported  N5172B/82B with option 004

:DIgital:DATA:INPut:PHASe:NOISe:F1 <value><unit>
:DIgital:DATA:INPut:PHASe:NOISe:F1?

This command sets the start frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :DIgital:DATA:INPut:PHASe:NOISe:F2 command). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 (:SOURce)

The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User’s Guide.

**NOTE**

The phase noise is added to the base phase noise of the instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIGital:DATA:INPut:PHASe:NOISe:F1:ACTual?</td>
<td>This SCPI command returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.</td>
</tr>
</tbody>
</table>

*RST +1.00000000E+003
Range 0 Hz to 77.500524490 MHz
Key Entry Desired Start Freq (f1)

Supported N5172B/82B with option 004

This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :DIGital:DATA:INPut:PHASe:NOISe:F1 command). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User’s Guide.

**NOTE**

The phase noise is added to the base phase noise of the instrument.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:DIGital:DATA:INPut:PHASe:NOISe:F2</td>
<td>This command sets the stop frequency value of the flat area for the phase noise impairment.</td>
</tr>
</tbody>
</table>

*RST +3.00000000E+004
Range 1 Hz to 77.500524490 MHz
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

Key Entry          Desired Stop Freq (f2)


Supported           N5172B/82B with option 004


This SCPI command returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

The phase noise is added to the base phase noise of the instrument.

*RST          +3.00000000E+004

Range       1 Hz to 77.500524490 MHz

Key Entry          Desired Start Freq (f2)

:DIGital:DATA:INPut:PHASe:NOISe:LMID

Supported           N5172B/82B with option 004

:DIGital:DATA:INPut:PHASe:NOISe:LMID <value>

This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator. The actual value can vary by approximately 0.28 dBc/Hz. The effect of this value can be determined by examining the graphic on the front panel or the actual output.

The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.

The amplitude range varies depending on the f2 value (see the “:DIGital:DATA:INPut:PHASe:NOISe:F2” on page 497). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The phase noise is added to the base phase noise of the instrument.

The range values are expressed in units of dBc/Hz.

*RST          -

          7.00000000E+001
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

Range -
300 to 100

Key Entry Desired Flat Amplitude (Lmid)

[:DIGit:DATA:INPut:PHASe:NOISe:LMID:ACTual?]

Supported N5172B/82B with option 004

[:DIGit:DATA:INPut:PHASe:NOISe:LMID:ACTual?]

This SCPI command returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.

The amplitude range varies depending on the f2 value (see the “[:DIGit:DATA:INPut:PHASe:NOISe:F2” on page 497). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The phase noise is added to the base phase noise of the instrument.

The range values are expressed in units of dBC/Hz.

*RST -
7.00000000E+001

Range -
300 to 100

Key Entry Desired Flat Amplitude (Lmid)

::DIGit:DATA:INPut:PHASe:NOISe:TRACe? <startFreq:1 - 100MHz>,<stopFreq:1 - 100MHz>,<numSamples:1 - 8192>

Supported N5172B/82B with option 004

::DIGit:DATA:INPut:PHASe:NOISe:TRACe? <startFreq:1 - 100MHz>,<stopFreq:1 - 100MHz>,<numSamples:1 - 8192>

This SCPI query returns the theoretical phase noise amplitude mask applied with the current settings if the phase noise feature is on. This mask does not take the natural phase noise of the instrument into account, only the
impairment from the phase noise feature. The output is over the start frequency to the stop frequency for the number of samples specified. The samples are taken at logarithmic frequency steps and the output is in dBc/Hz.

<table>
<thead>
<tr>
<th>Range</th>
<th>&lt;startFreq&gt;</th>
<th>1 Hz to 100 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>&lt;stopFreq&gt;</td>
<td>1 Hz to 100 MHz</td>
</tr>
<tr>
<td></td>
<td>&lt;numSamples&gt;</td>
<td>1 to 8192</td>
</tr>
</tbody>
</table>

:DIGital:DATA:INPut:PHASe:NOISe[:STATe]

Supported
N5172B/82B with option 004

:DIGital:DATA:INPut:PHASe:NOISe[:STATe] ON|OFF|1|0
:DIGital:DATA:INPut:PHASe:NOISe[:STATe]?  

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the User's Guide.

The actual performance of the added phase noise can only be determined by examining the graphic on the front panel or the actual output, as the parameters simply guide the phase noise response.

**NOTE**

The phase noise is added to the base phase noise of the instrument.

*RST Off

Key Entry Phase Noise Off On


Supported
N5172B/82B with option 004

:DIGital:DATA:INPut:NOISe:POWer:NOISe:CHANnel <value>
:DIGital:DATA:INPut:NOISe:POWer:NOISe:CHANnel?

This command sets the current channel noise power level if noise is on. In the "Channel Noise" control mode, the total power will be adjusted to achieve the specified channel noise power and the channel noise power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the channel noise power setting appropriately to maintain the C/N ratio.

In the other control modes, this will adjust the total power once for the specified channel noise power level, after which the channel noise power could change if any noise parameters are adjusted.

The range varies based on the bounds of the total power that results from the noise settings.
The query returns the current noise power across the carrier bandwidth in dBm.

The variable <value> is expressed in units of dBm.

**Example**


The preceding example sets the channel noise power level to 0 dBm.

*RST  \(-144\)

Range  \(-144\) to 30

**Key Entry**  Channel Noise Power

:DIG:DATA:INP:NOIS[:STATe]

**Supported**  N5172B/82B with option 004

:DIG:DATA:INP:NOIS[:STATe] ON|OFF|1|0

:DIG:DATA:INP:NOIS[:STATe]?

This command enables or disables the real-time noise generator.

**Example**

:DIG:DATA:INP:NOIS[:STAT] ON

The preceding example enables the real-time noise generator.

*RST  Off

**Key Entry**  Real-Time AWGN Off On

:DIG:DATA:IQSWap

**Supported**  N5172B/82B with Option 003 or 004 or both

:DIG:DATA:IQSWap OFF|ON|0|1

:DIG:DATA:IQSWap?

This command enables or disables swapping of the I and Q data. When enabled, the I data is sent to the N5102A’s Q bus and the Q data is sent to the I bus.

**Example**

:DIG:DATA:IQSW ON

The preceding example enables swapping of I and Q data.

*RST  0

**Key Entry**  Swap IQ
:DIGital:DATA:NFORmat

**Supported**
N5172B/82B with Option 003 or 004 or both

:DIGital:DATA:NFORMat TCOMplement|OBINary
:DIGital:DATA:NFORMat?

This command selects the binary format used to represent the transmitted data values. The selections are offset binary or 2’s complement.

**Example**
:DIG:DATA:NFOR OBIN

The preceding example selects the offset binary format to represent data values.

*RST TCOM

**Key Entry**
Numeric Format

:DIGital:DATA:OUTPut:IGain

**Supported**
N5172B/82B with Option 003 or 004 or both

:DIGital:DATA:OUTPut:IGain <value>
:DIGital:DATA:OUTPut:IGain?

This command adjusts the gain of the I data in the N5102A module. The adjustment does not affect the Q data.

The variable <value> is expressed as a percentage based on 100% being equivalent to a gain of 1. The offset is an adjustment to the analog level that is represented by the digital sample. The analog voltage is limited to a 16-bit data sample.

**Example**
:DIG:DATA:OUTP:IG 90

The preceding example sets the I data gain to 90%.

*RST +0.00000000E+000

**Range**
87.5 to 112.5%

**Key Entry**
I Gain

:DIGital:DATA:OUTPut:IOFFset

**Supported**
N5172B/82B with option 003

:DIGital:DATA:OUTPut:IOFFset <value>
:DIGital:DATA:OUTPut:IOFFset?
This command adjusts the DC offset for I data. The command is available for the N5102A module output mode. The variable <value> is expressed as a +/- 100% of the full scale value.

Example

:DIG:DATA:OUTP:IOFF 40

The preceding example sets the I offset to 40% of full scale.

*RST +0.00000000E+000
Range –100 to 100
Key Entry I Offset

:DIG:DATA:OUTP:POLarity:FRAME

Supported N5172B/82B with Option 003 or 004 or both

:DIG:DATA:OUTP:POLarity:FRAME POSitive|NEGative

This command selects the polarity of the frame marker for serial transmission. The frame marker indicates the beginning of each sample or byte of data. The command is valid for serial transmission only.

POS This choice selects a positive polarity. The frame marker is high for the first data sample.

NEG This choice selects a negative polarity. The frame marker is low for the first data sample.

Example

:DIG:DATA:OUTP:POL:FRAM NEG

The preceding example selects a negative polarity for the frame marker.

*RST POS

Key Entry Frame Polarity

:DIG:DATA:OUTP:QGain

Supported N5172B/82B with Option 003 or 004 or both

:DIG:DATA:OUTP:QGain <value>

This command adjusts the gain for Q data in the N5102A module. The adjustment does not affect the I data.

The variable <value> is expressed as a percentage based on 100% being equivalent to a gain of 1. The offset is an adjustment to the analog level that is represented by the digital sample. The analog voltage is limited to a 16-bit data sample.
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

Example

:DIG:DATA:OUTP:QG 90

The preceding example sets the gain for Q data to 90%.

*RST +0.00000000E+000
Range 87.5 to 112.5%
Key Entry Q Gain

:DIGital:DATA:OUTPut:QOFFset

Supported N5172B/82B with option 003

:DIGital:DATA:OUTPut:QOFFset <value>
:DIGital:DATA:OUTPut:QOFFset?

This command adjusts the DC offset for Q data. The command is available for the N5102A module output mode. The variable <value> is expressed as a +/-100% of the full scale value.

Example

:DIG:DATA:OUTP:QOFF 40

The preceding example sets the Q offset to 40% of full scale.

*RST +0.00000000E+000
Range -100 to 100
Key Entry Q Offset

:DIGital:DATA:OUTPut:ROTation

Supported N5172B/82B with option 003

:DIGital:DATA:OUTPut:ROTation <value>
:DIGital:DATA:OUTPut:ROTation?

This command rotates the IQ data in the IQ plane. This command is valid for the N5102A output mode. The variable <value> is expressed in degrees with a range from 0 to 360.

Example

:DIG:DATA:OUTP:ROT 45

The preceding example rotates the IQ constellation 45 degrees.

*RST +0.00000000E+000
Range 0 to 360
Key Entry Rotation
:DIG:DATA:OUTP:SCAL

Supported: N5172B/82B with option 003

:DIG:DATA:OUTP:SCAL <value>
:DIG:DATA:OUTP:SCAL?

This command enables scaling of the I and Q data to the level indicated by the 
<value> variable. This command is valid for the N5102A output mode. The 
variable <value> is expressed as a percentage.

Example

:DIG:DATA:OUTP:SCAL 50

The preceding example scales the I and Q data amplitude to 50%.

*RST +0.700000000E+002
Range 0 to 100
Key Entry Scaling

:DIG:DATA:OUTP:SSI:BPRF

Supported: N5172B/82B with Option 003 or 004 or both

:DIG:DATA:OUTP:SSI:BPRF <value>
:DIG:DATA:OUTP:SSI:BPRF?

This command sets how many bits of data are output between TXFS inputs for 
SSI output.

Example

:DIG:DATA:OUTP:SSI:BPRF 40

The preceding example sets the number of bits per frame to 40.

Range 1–64
Key Entry SSI Output Bits Per Frame

:DIG:DATA:OUTP:SSI:SDEL

Supported: N5172B/82B with Option 003 or 004 or both

:DIG:DATA:OUTP:SSI:SDEL
:DIG:DATA:OUTP:SSI:SDEL?

This command sets the expected time between the DMCS output being 
asserted and the first TXFS input (during which time the TXFS signal is ignored) 
for SSI output.

Example

:DIG:DATA:OUTP:SSI:SDEL 250
The preceding example sets the delay to 250 $\mu$s.

```
Range 0s–648 μs
```

**Key Entry**  SSI Output Sync Delay

### :DIGital:DATA:OUTPut:STYPe

**Supported**  N5172B/82B with option 003

```
:DIGital:DATA:OUTPut:STYPe IQ|IF
:DIGital:DATA:OUTPut:STYPe?
```

This command selects the output format for the IQ data. The IQ selection outputs digital I and Q data. Whereas the IF (intermediate frequency) selection modulates the I and Q data onto the IF frequency. The IF is calculated as 1/4 the clock sample rate. This command is valid only for the N5102A output mode.

- **IQ**  This choice outputs I and Q digital data.
- **IF**  This choice outputs a modulated signal.

**Example**

```
:DIG:DATA:STYP IF
```

The preceding example sets the I and Q output data to modulate the intermediate frequency.

```
*RST IQ
```

**Key Entry**  Signal Type

### :DIGital:DATA:POLarity:IQ

**Supported**  N5172B/82B with Option 003 or 004 or both

```
:DIGital:DATA:POLarity:IQ POSitive|NEGative
:DIGital:DATA:POLarity:IQ?
```

This command selects the logic level for I and Q data. Positive selects a high logic level at the output as a digital one and negative selects a low logic level at the output as a digital one.

- **POS**  This choice selects a logic high level as digital one.
- **NEG**  This choice selects a logic low level as a digital one.

**Example**

```
:DIG:DATA:POL:IQ NEG
```

The preceding example sets low level logic.

```
*RST POS
```

**Key Entry**  IQ Polarity
**Digital Signal Interface Module Commands**  
**Digital Subsystem—Option 003 and 004 ([:SOURce])**

`:DIGital:DATA:QNEGate`

**Supported** N5172B/82B with Option 003 or 004 or both

`:DIGital:DATA:QNEGate OFF|ON|0|1`  
`:DIGital:DATA:QNEGate?`

This command enables or disables the negation of the Q data sample. Negation changes the sample by expressing it in two's complement form, multiplying by negative one, and converting back to the selected numeric format.

The sample or word represents a quantized analog voltage level. This analog voltage can be added or multiplied. For a 16-bit sample, the range is from 0 to 65535 in offset binary or -32768 to +32767 in 2's complement mode.

**Example**

`:DIG:DATA:QNEG ON`  
The preceding example enables negation of the Q data.

* RST 0

**Key Entry** Negate Q Data

`:DIGital:DATA:SIZE`

**Supported** N5172B/82B with Option 003 or 004 or both

`:DIGital:DATA:SIZE <value>`  
`:DIGital:DATA:SIZE?`

This command selects the number of bits in each sample. A sample can have a maximum word length of 16 bits.

**Example**

`:DIG:DATA:SIZE 8`  
The preceding example sets the sample word size to eight bits.

* RST +1.600000000E+001

**Range** 4–16

**Key Entry** Word Size

`:DIGital:DATA:TYPE`

**Supported** N5172B/82B with Option 003 or 004 or both

`:DIGital:DATA:TYPE SAMPles|PFSamples`  
`:DIGital:DATA:TYPE?`

This command selects filtered baseband data or unfiltered baseband data as the transmitted data type.
If this command is executed while an ARB modulation format is active, the parameter choice is changed, but it is not used by the interface module until a real-time modulation format is turned on.

Because a query returns the current choice, regardless of whether or not an ARB format is active, you must query both states (data type and the modulation format) to know the signal generator’s current setup.

**Example**

```
:DIG:DATA:OUTP:TYPE PFS
```

The preceding example sets the data type to pre-filtered I and Q data.

**Key Entry**

- **Data Type**
- **SAMP**
- **PFS**

**:DIGital:DIAGnostic:LOOPback**

**Supported**

N5172B/82B with Option 003 or 004 or both

```
:DIGital:DIAGnostic:LOOPback? DIGBus|CABLe|N5102A|DEVice
```

This command selects and executes a loop back test that validates the integrity of digital data.

**Example**

```
:DIG:DIAG:LOOP? DEV
```

The preceding example runs the diagnostic test on the Single Ended IO Dual 40 Pin device and returns a pass or fail condition.
:DIGital:LOGic[:TYPE]

**Supported** N5172B/82B with Option 003 or 004 or both

:DIGital:LOGic[:TYPE]
LVDS|LVTT1|CMOS15|CMOS18|CMOS25|CMOS33|SSI
:DIGital:LOGic[:TYPE]?

This command selects the logic data type used by the device being tested.

- **LVDS** This choice selects low voltage differential signaling as the logic data type.
- **LVTT1** This choice selects a low voltage TTL signal as the logic data type.
- **CMOS15** This choice selects a 1.5 volt CMOS signal as the logic data type.
- **CMOS18** This choice selects a 1.8 volt CMOS signal as the logic data type.
- **CMOS25** This choice selects a 2.5 volt CMOS signal as the logic data type.
- **CMOS33** This choice selects a 3.3 volt CMOS signal as the logic data type.
- **SSI** This key sets the logic type of the device interface to SSI (simple serial interface). This logic type uses single ended I/O and a 3.3 V supply.

**Example**

:DIG:LOG CMOS15
The preceding example selects 1.5 volt CMOS as the logic data type.

**Key Entry** Logic Type

:DIGital:PCONfig

**Supported** N5172B/82B with Option 003 or 004 or both

:DIGital:PCONfig PARallel|SERial|PINTIQ|PINTQI
:DIGital:PCONfig?

This command selects the data transmission type used for communication between the N5102A module and the device under test.

- **PARallel** This choice selects parallel data transmission.
- **SERial** This choice selects serial data transmission.
Digital Signal Interface Module Commands
Digital Subsystem—Option 003 and 004 ([:SOURce])

PINTIQ  This choice selects parallel interleaving data transmission. The I data is transmitted on the rising clock edge and the Q data on the falling edge.

PINTQI  This choice selects parallel interleaving data transmission. The Q data is transmitted on the rising clock edge and the I data on the falling edge.

Example
:DIG:PCON PINTQI
The preceding example selects parallel interleaving format

*RST  PAR
Key Entry  Port Config

:DIGital:PRESet:PTHRough

Supported  N5172B/82B with Option 003 or 004 or both

:DIGital:PRESet:PTHRough
This command sets up the preset condition for the N5102A module and allows transmission of data through the module with no modifications. The command is valid only when a modulation format is active.

Example
:DIG:PRES:PTHR
The preceding example sets the N5102A module to a preset condition and allows data to pass through unmodified.

Key Entry  Pass Through Preset

:DIGital[:STATe]

Supported  N5172B/82B with Option 003 or 004 or both

:DIGital[:STATe]  0|1|OFF|ON
:DIGital[:STATe]?

This command enables or disables the operating state of the N5102A module.

Example
:DIG ON
The preceding example turns on the N5102A module.

*RST  OFF
Key Entry  N5102A Off On
# 9 Real-Time Commands

With firmware version B.01.75 or later, the following options have changed to a new eight-digit format:

- Option 302 to Option N5180302B
- Option 320 to Option N5180320B
- Option 403 to Option N5180403B
- Option 430 to Option N5180430B
- Option 431 to Option N5180432B
- Option 432 to Option N5180431B
- Option UN7 to Option N5180UN7B

Only software options are changed to the eight-digit format. Hardware options remain with three-digits.

This chapter describes SCPI commands used by Keysight X-Series signal generators for real–time signal generation during either component or receiver test.

This chapter contains the following sections:

- **All Subsystem ([SOURce]:RADio)** on page 512
- **AWGN Real–Time Subsystem–Option N5180403B ([SOURce]:RADio:AWGN:RT)** on page 513
- **Custom Subsystem–Option N5180431B ([SOURce]:RADio:CUSTom)** on page 516
- **Fsimulator Subsystem–Option 660 ([SOURce])** on page 549
- **Phase Noise Subsystem–Option N5180432B ([SOURce]:RADio:PHASe:NOISe)** on page 550
Real-Time Commands
All Subsystem ([:SOURce]:RADio)

All Subsystem ([:SOURce]:RADio)

:ALL:OFF

**Supported**
N5166B/72B/82B

[:SOURce]:RADio:ALL:OFF

This command turns off all digital modulation formats.

**Remarks**
This command does not affect analog modulation.
Real-Time Commands
AWGN Real–Time Subsystem–Option N5180403B ([:SOURce]:RADio:AWGN:RT)

AWGN Real–Time Subsystem–Option N5180403B ([:SOURce]:RADio:AWGN:RT)

:BWIDth

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT:BANDwidth|BWIDth <value>
[:SOURce]:RADio:AWGN:RT:BANDwidth|BWIDth?

This command adjusts the flat bandwidth of the real–time AWGN waveform. The variable <value> is expressed in units of Hertz (Hz–MHz).

*RST +1.00000000E+006

Range
Option 653 1 Hz to 60 MHz
Option 655 1 Hz to 120 MHz
Option 656 1 Hz to 80 MHz
Option 657 1 Hz to 160 MHz

Key Entry Bandwidth

:CBWidth

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT:CBWidth <value>
[:SOURce]:RADio:AWGN:RT:CBWidth?

This command sets the channel bandwidth, or the portion of the bandwidth specified by the bandwidth ratio. The variable <value> is expressed in units of Hertz (Hz–MHz).

*RST +1.00000000E+006

Range 1 to the Option 65x maximum bandwidth, not to exceed the flat noise bandwidth

Key Entry Bandwidth

:IQ:MODulation:ATTen

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT:IQ:MODulation:ATTen <value>
[:SOURce]:RADio:AWGN:RT:IQ:MODulation:ATTen?

This command attenuates the I/Q signals being modulated through the signal generator's RF path.
Real-Time Commands

AWGN Real-Time Subsystem—Option N5180403B ([SOURce]:RADio:AWGN:RT)

The variable <value> is expressed in units of decibels (dB).

*RST  
Varies (instrument dependent)

Range  
0 to 50

Key Entry  
Modulator Atten Manual Auto

**:IQ:**MODulation:**ATTen:**AUTO

**Supported**  
N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT:**IQ:**MODulation:**ATTen:**AUTO ON|OFF|1|0  
[:SOURce]:RADio:AWGN:RT:**IQ:**MODulation:**ATTen:**AUTO?

This command enables or disables the I/Q attenuation auto mode.

ON (1)  
This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0)  
This choice holds the attenuator at its current setting or at a selected value. Refer to “**:IQ:**MODulation:**ATTen**” on page 513 for setting the attenuation value.

*RST  
1

Key Entry  
Modulator Atten Manual Auto

**:POWer:**CONTrol

**Supported**  
N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT:**POWer:**CONTrol[:MODE] TOTal|NCHannel  
[:SOURce]:RADio:AWGN:RT:**POWer:**CONTrol[:MODE]?

This command selects whether the instrument power is set by the displayed instrument power or the channel noise power when the AWGN is turned on.

TOTal  
This choice selects the displayed instrument power for control.

NChannel  
This choice selects the channel noise power for control. The channel noise power is only settable from the front panel when the Power Control mode is set to channel noise power.

*RST  
TOTal

Key Entry  
Power Control Mode Total Nchannel

**:POWer:**NOISe:**CHANnel

**Supported**  
N5166B/72B/82B with Option N5180403B
Real-Time Commands
AWGN Real–Time Subsystem–Option N5180403B [:SOURce]:RADio:AWGN:RT

[:SOURce]:RADio:AWGN:RT:POWer:NOISe:CHANnel <value>
[:SOURce]:RADio:AWGN:RT:POWer:NOISe:CHANnel?

This command sets the power within the channel bandwidth. The instrument power is changed in relation to this setting if AWGN is turned on. The channel noise power is only settable from the front panel when the Power Control mode is set to channel noise power.

The variable <value> is expressed in units of dBm.

* RST Depends on model and options.
Key Entry Channel Noise Power

:RATio

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT:RATio <value>
[:SOURce]:RADio:AWGN:RT:RATio?

This command sets the amount of channel bandwidth compared to the amount of flat bandwidth.

The variable <value> is expressed in units of Hertz (Hz–MHz).

* RST 1.0
Key Entry Bandwidth Ratio

[:STATe]

Supported N5166B/72B/82B with Option N5180403B

[:SOURce]:RADio:AWGN:RT[:STATe] ON|OFF|1|0
[:SOURce]:RADio:AWGN:RT[:STATe]?

This command enables or disables the operating state of real–time AWGN.

* RST 0
Key Entry Real–Time AWGN Off On
Real-Time Commands
Custom Subsystem–Option N5180431B ([::SOURce]:RADio:CUSTom)

Custom Subsystem–Option N5180431B ([::SOURce]:RADio:CUSTom)

:ALPha

**Supported**  
N5166B/72B/82B with Option N5180431B  

[:SOURce]:RADio:CUSTom:ALPHa <val>  
[:SOURce]:RADio:CUSTom:ALPHa?

This command changes the Nyquist or root Nyquist filter's alpha value.

The filter alpha value can be set to a minimum level (0), a maximum level (1), or in between by using fractional numeric values (0.001–0.999).

*RST  
+3.50000000E−001  
Range  
0.000–1.000  
Key Entry  
Filter Alpha  
Remarks  
To change the current filter type, refer to “:FILTert” on page 526.

:BASeband:FREQuency:OFFSet

**Supported**  
N5166B/72B/82B with Option N5180431B  

[:SOURce]:RADio:CUSTom:BASeband:FREQuency:OFFSet <value><unit>  
[:SOURce]:RADio:CUSTom:BASeband:FREQuency:OFFSet?

This command offsets the baseband frequency relative to the carrier. The feature is useful for moving the signal such that the carrier feed-through is not in the center.

Keysight X-Series signal generator provide automatic DAC over-range protection when the offset value is something other than 0 Hz. It scales down the playing I/Q data by $1/\sqrt{2}$.

*RST  
+0.00000000E+000  
Range  
+8.0E7 to −8.0E7 Hz  
Key Entry  
Baseband Frequency Offset

:BASeband:FREQuency:OFFSet:PHASe:RESet

**Supported**  
N5166B/72B/82B with Option N5180431B  

[:SOURce]:RADio:CUSTom:BASeband:FREQuency:OFFSet:PHASe:RESet

This command clears the phase accumulation resulting in a phase shift of zero.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

When the Baseband Frequency Offset is non–zero, the hardware rotator accumulates phase–shift of the baseband signal. This residual phase remains even after the offset value is returned to zero. While there is a non–zero residual phase present in the signal, the DAC Over–Range Protection feature will automatically prevent DAC over-range errors from occurring by scaling the signal down by 1/square root of 2.

Key Entry Baseband Frequency Offset Phase Reset

:BBT

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BBT <val>
[:SOURce]:RADio:CUSTom:BBT?

This command changes the bandwidth-multiplied-by-bit-time (BbT) filter parameter.

The filter BbT value can be set to the maximum level (1) or in between the minimum level (0.100) and maximum level by using fractional numeric values (0.101–0.999).

*RST +5.00000000E−001
Range 0.100–1.000
Key Entry Filter BbT
Remarks This command is effective only after choosing a Gaussian filter. It does not have an effect on other types of filters.

To change the current filter type, refer to “:FILTer” on page 526.

:BRATe

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BRATe <val>
[:SOURce]:RADio:CUSTom:BRATe?

This command sets the bit rate in bits per second (bps–Mbps). The maximum bit rate depends on the modulation type as shown in the following tables.

The IQ digital data stream is shaped by a FIR filter.

To change the modulation type, refer to “:MODulation[:TYPE]” on page 530.

When the bit rate is changed, the signal generator reconfigures the baseband generator. The time required to reconfigure the baseband generator is inversely proportional to the bit rate: lower bit rates require more time.

*RST +2.00000000E+006

Key Entry Baseband Frequency Offset Phase Reset
Real-Time Commands
Custom Subsystem–Option N5180431B ([[:SOURce]:RADio:CUSTom])

The following table lists the range for PRAM or external serial data in the Custom format.

<table>
<thead>
<tr>
<th>Range</th>
<th>Bits/Symbol</th>
<th>Min Bit Rate</th>
<th>N5166B/72B Opt 653 Max Bit Rate</th>
<th>N5166B/72B Opt 655 Max Bit Rate</th>
<th>N5182B Opt 656 Max Bit Rate</th>
<th>N5182B Opt 657 Max Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>1</td>
<td>1 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>2 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>3</td>
<td>3 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>4</td>
<td>4 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>5</td>
<td>5 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>6</td>
<td>6 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>7</td>
<td>7 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>8</td>
<td>8 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>9</td>
<td>9 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
<tr>
<td>10</td>
<td>10 bps</td>
<td>37.5 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
<td>50 Mbps</td>
</tr>
</tbody>
</table>

The following table shows the various data rates by modulation type when the internal data generator is used.

<table>
<thead>
<tr>
<th>Range</th>
<th>Bits/Symbol</th>
<th>Min Bit Rate</th>
<th>N5166B/72B Opt 653 Max Bit Rate</th>
<th>N5166B/72B Opt 655 Max Bit Rate</th>
<th>N5182B Opt 656 Max Bit Rate</th>
<th>N5182B Opt 657 Max Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>37.5 Mbps</td>
<td>75 Mbps</td>
<td>50 Mbps</td>
<td>100 Mbps</td>
</tr>
<tr>
<td>1</td>
<td>1 bps</td>
<td>37.5 Mbps</td>
<td>75 Mbps</td>
<td>150 Mbps</td>
<td>100 Mbps</td>
<td>200 Mbps</td>
</tr>
<tr>
<td>2</td>
<td>2 bps</td>
<td>75 Mbps</td>
<td>150 Mbps</td>
<td>150 Mbps</td>
<td>100 Mbps</td>
<td>200 Mbps</td>
</tr>
<tr>
<td>3</td>
<td>3 bps</td>
<td>112 Mbps</td>
<td>225 Mbps</td>
<td>225 Mbps</td>
<td>150 Mbps</td>
<td>300 Mbps</td>
</tr>
<tr>
<td>4</td>
<td>4 bps</td>
<td>150 Mbps</td>
<td>300 Mbps</td>
<td>300 Mbps</td>
<td>200 Mbps</td>
<td>400 Mbps</td>
</tr>
<tr>
<td>5</td>
<td>5 bps</td>
<td>187 Mbps</td>
<td>375 Mbps</td>
<td>375 Mbps</td>
<td>250 Mbps</td>
<td>500 Mbps</td>
</tr>
<tr>
<td>6</td>
<td>6 bps</td>
<td>225 Mbps</td>
<td>450 Mbps</td>
<td>450 Mbps</td>
<td>300 Mbps</td>
<td>600 Mbps</td>
</tr>
<tr>
<td>7</td>
<td>7 bps</td>
<td>262 Mbps</td>
<td>525 Mbps</td>
<td>525 Mbps</td>
<td>350 Mbps</td>
<td>700 Mbps</td>
</tr>
<tr>
<td>8</td>
<td>8 bps</td>
<td>300 Mbps</td>
<td>600 Mbps</td>
<td>600 Mbps</td>
<td>400 Mbps</td>
<td>800 Mbps</td>
</tr>
<tr>
<td>9</td>
<td>9 bps</td>
<td>337 Mbps</td>
<td>450 Mbps</td>
<td>450 Mbps</td>
<td>450 Mbps</td>
<td>900 Mbps</td>
</tr>
<tr>
<td>10</td>
<td>10 bps</td>
<td>375 Mbps</td>
<td>500 Mbps</td>
<td>500 Mbps</td>
<td>500 Mbps</td>
<td>1000 Mbps</td>
</tr>
</tbody>
</table>
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

The bits per symbol are determined by the modulation type:

<table>
<thead>
<tr>
<th>Bits/Symbol</th>
<th>Modulation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Lvl FSK, ASK, BPSK, MSK</td>
</tr>
<tr>
<td>2</td>
<td>4-Lvl FSK, 4QAM, C4FM, Gray Coded QPSK, IS95 OQPSK, IS95 QPSK, OQPSK, QPSK, pi/4 DQPSK, Unbalanced QPSK</td>
</tr>
<tr>
<td>3</td>
<td>8-Lvl FSK, 8PSK, D8PSK, EDGE</td>
</tr>
<tr>
<td>4</td>
<td>16-Lvl FSK, 16PSK, 16QAM, VSA 16QAM</td>
</tr>
<tr>
<td>5</td>
<td>32QAM, VSA 32QAM</td>
</tr>
<tr>
<td>6</td>
<td>64QAM, VSA 64QAM</td>
</tr>
<tr>
<td>7</td>
<td>128QAM, VSA 128QAM</td>
</tr>
<tr>
<td>8</td>
<td>256QAM, VSA 256QAM</td>
</tr>
<tr>
<td>9</td>
<td>VSA 512QAM</td>
</tr>
<tr>
<td>10</td>
<td>1024QAM, VSA 1024QAM</td>
</tr>
</tbody>
</table>

Key Entry | Symbol Rate
:BURSt:SHAPe:FALL:DELay | Supported N5166B/72B/82B with Option N5180431B
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:DELay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:DELay?

This command sets the burst shape fall delay.

The variable <val> is expressed in bits.

*RST +0.00000000E+000

Range (depends on modulation type and symbol rate)

Key Entry Fall Delay

Remarks
To change the modulation type, refer to “:MODulation[:TYPE]” on page 530. Refer to “:SRATe” on page 540 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHAPe:FDELay” on page 520 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User’s Guide.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

:BURSt:SHAPe:FALL:TIME

Supported
N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:TIME <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FALL:TIME?

This command sets the burst shape fall time.

The variable <val> is expressed in bits.

*RST +5.00000000E+000
Range (depends on modulation type and symbol rate)
Key Entry Fall Time
Remarks To change the modulation type, refer to “:MODulation[:TYPE]” on page 530. Refer to “:SRATe” on page 540 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHAPe:FTIMe” on page 521 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

:BURSt:SHAPe:FDELay

Supported
N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FDELay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:FDELay?

This command sets the burst shape fall delay.

The variable <val> is expressed in bits.

*RST +0.00000000E+000
Range (depends on modulation type and symbol rate)
Key Entry Fall Delay
Remarks To change the modulation type, refer to “:MODulation[:TYPE]” on page 530. Refer to “:SRATe” on page 540 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHAPe:FALL:DELay” on page 519 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User’s Guide.
### :BURST:SHAPE:FTIME

**Supported**  
N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPE:FTIMe <val>  
[:SOURce]:RADio:CUSTom:BURSt:SHAPE:FTIMe?

This command sets the burst shape fall time.

The variable <val> is expressed in bits.

<table>
<thead>
<tr>
<th>*RST</th>
<th>+5.00000000E+000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>(depends on modulation type and symbol rate)</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Fall Time</td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
</tr>
</tbody>
</table>

To change the modulation type, refer to "MODulation[:TYPE]" on page 530. Refer to "SRATe" on page 540 for a list of the minimum and maximum symbol rate values.

"BURSt:SHAPE:FALL:TIME" on page 520 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

### :BURST:SHAPE:RDELay

**Supported**  
N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPE:RDELay <val>  
[:SOURce]:RADio:CUSTom:BURSt:SHAPE:RDELay?

This command sets the burst shape rise delay.

The variable <val> is expressed in bits.

<table>
<thead>
<tr>
<th>*RST</th>
<th>+0.00000000E+000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>(depends on modulation type and symbol rate)</td>
</tr>
<tr>
<td>Key Entry</td>
<td>Rise Delay</td>
</tr>
<tr>
<td>Remarks</td>
<td></td>
</tr>
</tbody>
</table>

To change the modulation type, refer to "MODulation[:TYPE]" on page 530. Refer to "SRATe" on page 540 for a list of the minimum and maximum symbol rate values.

"BURSt:SHAPE:RISE:DELay" on page 522 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

:BURSt:SHAPe:RISE:DElay

Supported  N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:RISE:DElay <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:RISE:DElay?

This command sets the burst shape rise delay.

The variable <val> is expressed in bits.

*RST  +0.000000000E+000
Range  (depends on modulation type and symbol rate)
Key Entry  Rise Delay
Remarks  To change the modulation type, refer to “:MODulation[:TYPE]” on page 530. Refer to “:SRATe” on page 540 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHAPe:RDELay” on page 521 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

:BURSt:SHAPe:RISE:TIME

Supported  N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:RISE:TIME <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:RISE:TIME?

This command sets the burst shape rise time.

The variable <val> is expressed in bits.

*RST  +5.000000000E+000
Range  (depends on modulation type and symbol rate)
Key Entry  Rise Time
Remarks  To change the modulation type, refer to “:MODulation[:TYPE]” on page 530. Refer to “:SRATe” on page 540 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHAPe:RTIMe” on page 523 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

:BURSt:SHAPe:RTIMe

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPe:RTIMe <val>
[:SOURce]:RADio:CUSTom:BURSt:SHAPe:RTIMe?

This command sets the burst shape rise time.

The variable <val> is expressed in bits.

*RST +5.00000000E+000
Range (depends on modulation type and symbol rate)
Key Entry Rise Time
Remarks To change the modulation type, refer to “:MODulation[:TYPE]” on page 530. Refer to “:SRATe” on page 540 for a list of the minimum and maximum symbol rate values.

“:BURSt:SHAPe:RISE:TIME” on page 522 performs the same function; in compliance with the SCPI standard, both commands are listed.

For concept information on burst shaping, refer to the User's Guide.

:BURSt:SHAPe[:TYPE]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:BURSt:SHAPe[:TYPE] SINE"<file name>"
[:SOURce]:RADio:CUSTom:BURSt:SHAPe[:TYPE]?

This command specifies the burst shape ("<file name>").

SINE This choice selects a burst shape that is defined by the burst rise and fall *RST values, as the default burst shape type.

"<file name>" This choice selects a user designated file from signal generator memory (non-volatile).

*RST SINE

Key Entry Sine User File

:CHANnel

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:CHANnel EVM|ACP
[:SOURce]:RADio:CUSTom:CHANnel?
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

This command optimizes the Nyquist and root Nyquist filters to minimize error vector magnitude (EVM) or to minimize adjacent channel power (ACP).

EVM This choice provides the most ideal passband.
ACP This choice improves stopband rejection.

*RST ACP

Key Entry Optimize FIR For EVM ACP

Remarks To change the current filter type, refer to “:FILTER” on page 526.

:DATA

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:DATA
PN9|PN11|PN15|PN20|PN23|FIX4|"<file name>"|
EXT|P4|P8|P16|P32|P64|PRAM
[:SOURce]:RADio:CUSTom:DATA?

This command sets the data pattern for unframed transmission.

*RST PN23

Key Entry PN9  PN11  PN15  PN20  PN23  FIX4  User File

Ext  4 1’s & 4 0’s  8 1’s & 8 0’s

16 1’s & 16 0’s  32 1’s & 32 0’s  64 1’s & 64 0’s  PRAM  File

Remarks Refer to “File Name Variables” on page 43 for information on the file name syntax.

:DATA:FIX4

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:DATA:FIX4 <val>
][:SOURce]:RADio:CUSTom:DATA:FIX4?

This command sets the binary, 4-bit repeating sequence data pattern for unframed transmission according to the modulation type, symbol rate, filter, and burst shape selected for the custom modulation format.

*RST #B0000

Range #B0000–#B1111 or 0–15
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

### :DATA:PRAM

**Key Entry** FIX4

**Remarks** FIX4 must be already be defined as the data type. To change the data type, refer to “:DATA” on page 524.

**Supported** N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:DATA:PRAM "<file_name>"

This command selects a pattern RAM (PRAM) file as the pattern data type for a custom communications format.

"<file_name>" This variable designates the PRAM file in the signal generator’s volatile memory (WFM). Refer to “File Name Variables” on page 43 for information on the file name syntax.

**Key Entry** PRAM File

**Remarks** Selecting this data source forces the burst source to INTERNAL to allow framing control.

The PRAM file must reside in the signal generator’s volatile memory (WFM) in order to be accessed by this command.

### :DENCode

**Key Entry** Diff Data Encode Off On

**Remarks** Executing this command encodes the data bits prior to modulation; each modulated bit is 1 if the data bit is different from the previous one, or 0 if the data bit is the same as the previous one.

**Supported** N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:DENCode ON|OFF|1|0

This command enables or disables the differential data encoding function.

**RST** 0

### :EDATa:DELay

**Supported** N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:EDATa:DELay?
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

This query returns the amount of delay (in symbols) from the external data input to the beginning of the symbol on the I OUT and Q OUT rear panel connectors and the front-panel RF OUTPUT connector.

Remarks When the format is turned off, the delay value is unchanged; the query will return the same delay value if the format is on or off.

:EDCLock

Supported N5166B/72B/82B with Option N5180431B

[[:SOURce]:RADio:CUSTom:EDCLock SYMBol|NORMal
[[:SOURce]:RADio:CUSTom:EDCLock?

This command sets the external data clock use.

SYMBol This choice specifies that a continuous symbol clock signal must be provided to the SYMBOL SYNC input connector.

NORMal This choice specifies that the DATA CLOCK input connector requires a bit clock. The SYMBOL SYNC input connector requires a (one-shot or continuous) symbol sync signal.

*RST NORM

Key Entry Ext Data Clock Normal Symbol

:FILTer

Supported N5166B/72B/82B with Option N5180431B

[[:SOURce]:RADio:CUSTom:FILTer
RNYQuist|NYQuist|GAUSsian|RECTangle|IS95|
IS95_EQ|IS95_MOD|IS95_MOD_EQ|AC4Fm|UGGaussian|"<user FIR>"
[[:SOURce]:RADio:CUSTom:FILTer?

This command selects the pre-modulation filter type.

IS95 This choice selects a filter that meets the criteria of the IS-95 standard.

IS95_EQ This choice selects a filter which is a combination of the IS-95 filter (above) and the equalizer filter described in the IS-95 standard. This filter is only used for IS-95 baseband filtering.

IS95_MOD This choice selects a filter that meets the criteria of the IS-95 error function (for improved adjacent channel performance) with lower passband rejection than the filter specified in the IS-95 standard.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

IS95_MOD_EQ  This choice selects a filter which is a combination of the equalizer filter described in the IS-95 standard and a filter that meets the criteria of the IS-95 error function (for improved adjacent channel performance), with lower passband rejection.

AC4Fm  This choice selects a predefined Association of Public Safety Communications Officials (APCO) specified compatible 4-level frequency modulation (C4FM) filter.

UGGaussian  This choice selects a GSM Gaussian filter (Gaussian filter with a fixed BbT value of 0.300).

"<user FIR>"  This variable is any filter file that you have stored into memory. Refer to “File Name Variables” on page 43 for information on the file name syntax.

*RST  RNYQ

Key Entry  Root Nyquist  Nyquist  Gaussian

Rectangle  IS-95  IS-95 w/EQ  IS-95 Mod

IS-95 Mod  APCO 25  UN3/4 GSM
w/EQ  C4FM  Gaussian

User FIR  UN3/4 GSM  User FIR  Gaussian

:IQ:MODulation:ATTen

Supported  N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:IQ:MODulation:ATTen  <value>

[:SOURce]:RADio:CUSTom:IQ:MODulation:ATTen?

This command sets the attenuation level of the I/Q signals being modulated through the signal generator RF path.

The variable <value> is expressed in units of decibels (dB).

*RST  Varies (instrument dependent)

Range  0 to 50

Key Entry  Modulator Atten Manual Auto

:IQ:MODulation:ATTen:AUTO

Supported  N5166B/72B/82B with Option N5180431B
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

[:SOURce]:RADio:CUSTom:IQ:MODulation:ATTen:AUTO ON|OFF|1|0
[:SOURce]:RADio:CUSTom:IQ:MODulation:ATTen:AUTO?

This command enables or disables the I/Q attenuation auto mode.

ON (1)  This choice enables the attenuation auto mode which optimizes the modulator attenuation for the current conditions.

OFF (0)  This choice holds the attenuator at its current setting or at a selected value. Refer to the :IQ:MODulation:ATTen command for setting the attenuation value.

*RST 1
Key Entry Modulator Atten Manual Auto

:IQ:SCALe

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:IQ:SCALe <val>
[:SOURce]:RADio:CUSTom:IQ:SCALe?

This command sets the amplitude of the I/Q outputs for better adjacent channel power (ACP); lower scaling values equate to better ACP.

The variable <val> is expressed in units of percent.

*RST +70
Range 1–100
Key Entry I/Q Scaling
Remarks This command has no effect with MSK or FSK modulation.

:MODulation:ASK[:DEPTh]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:MODulation:ASK[:DEPTh] <0% - 100%>
[:SOURce]:RADio:CUSTom:MODulation:ASK[:DEPTh]?

This command changes the depth for the amplitude shift keying (ASK) modulation. Depth is set as a percentage of the full power on level.

*RST +1.00000000E+002
Range 0 to 100
Key Entry ASK Depth 100%
Remarks The modulation is applied to the I signal, the Q value is always kept at zero.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

:MODulation:FSK[:DEViation]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation] <val>
[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation]?

This command sets the symmetric FSK frequency deviation value.

The variable <val> is expressed in units of Hertz and the maximum range value equals the current symbol rate value multiplied by four, limited to 20 MHz.

*RST +4.00000000E+002
Range 0–2E7
Key Entry Freq Dev
Remarks To change the modulation type, refer to “:MODulation[:TYPE]” on page 530.
Refer to “SRATe” on page 540 for a list of the minimum and maximum symbol rate values.
To set an asymmetric FSK deviation value, refer to the User's Guide for more information.

:MODulation:MSK[:PHASe]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:MODulation:MSK[:PHASe] <val>
[:SOURce]:RADio:CUSTom:MODulation:MSK[:PHASe]?

This command sets the MSK phase deviation value.

The variable <val> is expressed in units of degrees.

*RST +9.00000000E+001
Range 0–100
Key Entry Phase Dev

:MODulation:UFSK

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:MODulation:UFSK "<file name>"
[:SOURce]:RADio:CUSTom:MODulation:UFSK?

This command selects a user-defined FSK file from the signal generator memory.

Key Entry User FSK
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

Remarks
The user-defined FSK file is held in signal generator memory until the command that selects user FSK as the modulation type is sent. Refer to “>:MODulation[:TYPE]” on page 530 to change the current modulation type.

Refer to “File Name Variables” on page 43 for information on the file name syntax.

>:MODulation:UIQ

Supported
N5166B/72B/82B with Option N5180431B

[[:SOURce]:RADio:CUSTom]:MODulation:UIQ "<file name>"
[[:SOURce]:RADio:CUSTom]:MODulation:UIQ?

This command selects a user-defined I/Q file from the signal generator memory.

Key Entry
User I/Q

Remarks
The user-defined I/Q file is held in signal generator memory until the command that selects user I/Q as the modulation type is sent. Refer to “>:MODulation[:TYPE]” on page 530 to change the current modulation type.

Refer to “File Name Variables” on page 43 for information on the file name syntax.

>:MODulation[:TYPE]

Supported
N5166B/72B/82B with Option N5180431B

[[:SOURce]:RADio:CUSTom]:MODulation[:TYPE]
ASK | BPSK | QPSK | UQPSK | IS95QPSK | GRAYQPSK |
OQPSK | IS95QPSK | P4DQPSK | FSK8 | FSK16 | D8PSK | EDGE | MSK | FSK2 | FSK4 |
FSK8 | FSK16 | C4FM |
QAM4 | QAM16 | QAM32 | QAM64 | QAM128 | QAM256 | QAM1024 | UIQ | UFSK | VSAQAM 16 | VSAQAM32 | VSAQAM64 |
VSAQAM128 | VSAQAM256 | VSAQAM512 | VSAQAM1024
[[:SOURce]:RADio:CUSTom]:MODulation[:TYPE]?

This command sets the modulation type for the Custom personality.

*RST

P4DQPSK

Key Entry
ASK | BPSK | QPSK | Unbalanced QPSK

IS–95 | Gray Coded | QPSK | QPSK

530
Keysight CXG, EXG, and MXG X-Series Signal Generators SCPI Command Reference
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

:NOISe:Bandwidth

**Supported**
N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:Bandwidth <value><unit>
[:SOURce]:RADio:CUSTom:NOISe:Bandwidth?

This command selects the flat noise bandwidth value of the real–time noise for an ARB waveform. Typically, this value is set slightly wider than the signal bandwidth. The minimum increment value is 0.001 Hz.

*RST +1.00000000E+000

**Range**
1 Hz to 160 MHz (depends on the installed baseband generator option)

**Key Entry**
Noise Bandwidth

:NOISe:CBRate

**Supported**
N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:CBRate <val>
[:SOURce]:RADio:CUSTom:NOISe:CBRate?

This command sets a value of the carrier bit rate (gross bit rate) for purposes of calculating the Eb/N0 (energy per bit over noise power density at the receiver). When the carrier to noise ratio format is set to Eb/N0 (refer to the :NOISe:CNFormat command), the adjustment of the carrier bit rate will have an immediate impact on the carrier to noise ratio as specified by Eb/N0. The
carrier bit rate is derived from the symbol rate and bits per symbol of the modulation. The carrier bit rate is a saved instrument state that is recorded in the waveform header.

The query returns the current carrier bit rate setting.

Example

:RAD:ARB:NOIS:CBR 5

The preceding example sets the carrier bit rate to 5 bps.

*RST 1.000 bps
Range 1 bps to 999 Mbps
Key Entry Carrier Bit Rate

:NOISe:CBWidth

Supported N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:CBWidth <value><unit>
[:SOURce]:RADio:CUSTom:NOISe:CBWidth?

This command selects the carrier bandwidth over which the additive white gaussian noise (AWGN) is applied. The carrier RMS power and the noise power will be integrated over the selected carrier–bandwidth for the purposes of calculating carrier to noise ratio (C/N). The minimum increment value is 0.001 Hz. For more information, refer to the “:NOISe[:STATe]” command and the “:NOISe:BANDwidth” command.

*RST +1.00000000E+000
Range 1 Hz to 200 MHz
Key Entry Carrier Bandwidth

:NOISe:CN

Supported N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:CN <value><unit>
[:SOURce]:RADio:CUSTom:NOISe:CN?

This command sets the carrier to noise ratio (C/N) in dB. The carrier power is defined as the total modulated signal power without noise power added. The noise power is applied over the specified bandwidth of the carrier signal. For more information, refer to “:NOISe:CBWidth” on page 532.

Example

:RAD:ARB:NOIS:CN 50DB

The preceding example sets the carrier to noise ratio to 50 dB.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

*RST +0.00000000E+000
Range –100 to 100 dB
Key Entry Carrier to Noise Ratio

:NOISe:CNFormat

Supported N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:CNFormat CN|EBNO
[:SOURce]:RADio:CUSTom:NOISe:CNFormat?

This command selects either the Carrier to Noise Ratio (C/N) or energy per bit over noise power density at the receiver (Eb/N0) as the variable controlling the ratio of carrier power to noise power in the carrier bandwidth.

Example

:RAD:ARB:NOIS:CNF EBNO

The preceding example sets the carrier to noise ratio format to EbNo.

*RST Carrier to Noise Ratio Format C/N
Key Entry Carrier to Noise Ratio Format C/N Eb/No

:NOISe:EBNO

Supported N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:EBNO <ebno in dB>
[:SOURce]:RADio:CUSTom:NOISe:EBNO?

This command allows the C/N to be set using the Eb/N0 (energy per bit over noise power density at the receiver) form. This requires that the carrier bit rate (:NOISe:CBRate on page 531) be set properly. The range of Eb/N0 is limited to the range that is equivalent to –100 to 100 dB of C/N. This value is only effective when Eb/N0 has been enabled by the :NOISe:CNFormat command.

The query returns the value of EBNO.

*RST 0 dB
Range –100 to 100 dB
Key Entry Carrier to Noise Ratio Format Eb/No

:NOISe:MUX

Supported N5166B72B/82B with Options N5180431B and N5180403B
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

[:SOURce]:RADio:CUSTom:NOISe:MUX SUM|CARRier|NOISe
[:SOURce]:RADio:CUSTom:NOISe:MUX?

This command enables diagnostic control of additive noise, such that only the noise, only the carrier, or the sum of both the noise and the carrier are output from the internal baseband generator. With the ALC off, this feature enables direct measurement of just the carrier or the noise contributions to the total power. The system will still behave as if both the noise and the carrier are present on the output when it comes to determining the Auto Modulation Attenuation and the RMS level for RMS Power Search.

**Example**

:RAD:CUST:NOIS:MUX CARR

The preceding example enables the direct measurement of the carrier contribution to the total power.

*RST Carrier+Noise

**Key Entry** Carrier+Noise | Carrier | Noise

:NOISe:POWer:CARRier

**Supported** N5166B72B/82B with Options N5180431B and N5180403B

[:SOURce]:RADio:CUSTom:NOISe:POWer:CARRier <carrierPower>
[:SOURce]:RADio:CUSTom:NOISe:POWer:CARRier?

This command sets the current carrier power level if noise is on.

In the CARRier control mode, the total power will be adjusted to achieve the specified carrier power and the carrier power level will be maintained regardless of changes to the other noise parameters. A change to the total power will change the carrier power setting appropriately to maintain the C/N ratio.

In the TOTal control mode, this will adjust the total power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total power is adjusted.

In the NOISe control mode, this will adjust the total noise power once for the specified carrier power level, after which the carrier power could change if any noise parameters are adjusted or the total noise power is adjusted. See also :NOISe:POWer:CONTrol[:MODE] and :NOISe:POWer:NOISe:TOTal commands.

*RST The appropriate value given the current total power and the current Carrier to Noise (C/N).

**Range** The range varies based on the bounds of the total power that results from the noise settings.

**Key Entry** Carrier Power
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURCE]:RADIO:CUSTOM)

:NOISE:POWER:CONTROL[:MODE]

- **Supported**: N5166B72B/82B with Options N5180431B and N5180403B

[:SOURCE]:RADIO:CUSTOM:NOISE:POWER:CONTROL[:MODE] TOTAL|CARRIER|NOISE

[:SOURCE]:RADIO:CUSTOM:NOISE:POWER:CONTROL[:MODE]?

This command sets the power control to one of the three following modes:

- **Total**: This is the default mode where the total power and C/N are independent variables and the carrier power and total noise power are dependent variables set by the total power, C/N and the rest of the noise settings. The carrier power and total noise power will change as any noise parameter is adjusted to keep the total power and the C/N at their last specified values.

- **Carrier**: In this mode the carrier power and C/N are independent variables and the total power and total noise power are dependent variables set by the carrier power, C/N and the rest of the noise settings. The total power and total noise power will change as any noise parameter is adjusted to keep the carrier power and the C/N at their last specified values.

- **Total Noise**: In this mode the total noise power and C/N are independent variables and the total power and carrier power are dependent variables set by the total noise power, C/N and the rest of the noise settings. The total power and carrier power will change as any noise parameter is adjusted to keep the total noise power and the C/N at their last specified values.

*RST Total

**Key Entry** Total Carrier Total Noise

:NOISE:POWER:NOISE:CHANNEL?

- **Supported**: N5166B72B/82B with Options N5180431B and N5180403B

[:SOURCE]:RADIO:CUSTOM:NOISE:POWER:NOISE:CHANNEL?

The query returns the current noise power across the carrier bandwidth in dBm.

:NOISE:POWER:NOISE:TOTAL

- **Supported**: N5166B72B/82B with Options N5180431B and N5180403B
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

<totalNoisePowerInDbm>

This command sets the current total noise power level if noise is on.

In the NOISe control mode, the total power will be adjusted to achieve the
specified total noise power and the total noise power level will be maintained
regardless of changes to the other noise parameters. A change to the total
power will change the total noise power setting appropriately to maintain the
C/N ratio.

In the TOTal control mode, this will adjust the total power once for the
specified total noise power level, after which the total noise power could
change if any noise parameters are adjusted or the total power is adjusted.

In the CARRier control mode, this will adjust the carrier power once for the
specified total noise power level, after which the total noise power could
change if any noise parameters are adjusted or the carrier power is adjusted.
See also :NOISe:POWer:CONTrol[:MODE] command.

Range  The range varies based on the bounds of the total
power that results from the noise settings.

*RST  The appropriate value given the current total power and
the current Carrier to Noise (C/N).

Key Entry  Total Noise Power

:NOISe[:STATe]

Supported  N5166B72B/82B with Options N5180431B and
N5180403B

[ :SOURce ] :RADio:CUSTom:NOISe[:STATe]  ON|OFF|1|0
[ :SOURce ] :RADio:CUSTom:NOISe[:STATe]?

This command enables or disables adding real-time additive white gaussian
noise (AWGN) to the carrier modulated by the waveform being played by the
dual ARB waveform player.

Example

:RAD:CUST:NOIS ON

The preceding example applies real-time AWGN to the carrier.

*RST  0

Key Entry  Real-Time AWGN Off On

:PHASe:NOISe:F1

Supported  N5172B/82B with Options N5180431B and N5180432B
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

[[:SOURce]:RADio:CUSTom]:PHASe:NOISe:F1 <value><unit>
[[:SOURce]:RADio:CUSTom]:PHASe:NOISe:F1?
This command sets the start frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :F2 command). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.

The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User's Guide.

*RST +1.00000000E+003
Range 0 Hz to 77.500524490 MHz
Key Entry Desired Start Freq (f1)

:PHASe:NOISe:F1:ACTual?
Supported N5172B/82B with Options N5180431B and N5180432B

[[:SOURce]:RADio:CUSTom]:PHASe:NOISe:F1:ACTual?
This SCPI command returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.

:PHASe:NOISe:F2
Supported N5172B/82B with Options N5180431B and N5180432B

[[:SOURce]:RADio:CUSTom]:PHASe:NOISe:F2 <value><unit>
[[:SOURce]:RADio:CUSTom]:PHASe:NOISe:F2?
This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see the :PHASE:NOISe:F1 command). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User's Guide.

*RST +3.00000000E+004
Range 1 Hz to 77.500524490 MHz
Key Entry Desired Stop Freq (f2)

:PHASe:NOISe:F2:ACTual?
Supported N5172B/82B with Options N5180431B and N5180432B
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

[:SOURce]:RADio:CUSTom:PHAse:NOISe:F2:ACTual?

This SCPI command returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

:PHAse:NOISe:LMID

Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:CUSTom:PHAse:NOISe:LMID <value>
[:SOURce]:RADio:CUSTom:PHAse:NOISe:LMID?

This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator.

The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.

For more information on the phase noise impairment option, see the User’s Guide.

The range values are expressed in units of dBc/Hz.

*RST –7.00000000E+001
Range –300 to 100
Key Entry Desired Flat Amplitude (Lmid)

:PHAse:NOISe:LMID:ACTual?

Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:CUSTom:PHAse:NOISe:LMID:ACTual?

This query returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.

:PHASe:NOISe[:STATe]

Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:CUSTom:PHAse:NOISe[:STATe] ON|OFF|1|0
[:SOURce]:RADio:CUSTom:PHAse:NOISe[:STATe]?

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the User’s Guide.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

*RST 0
Key Entry Phase Noise Off On

:PHASe:NOISe:TRACe?

Supported N5172B/82B with Options N5180431B and N5180432B

[:SOURce]:RADio:CUSTom:PHASe:NOISe:TRACe? <startFreq>,<stopFreq>,<numSamples>

This query returns the theoretical phase noise amplitude mask applied with the current settings if the phase noise feature is on. This mask does not take the natural phase noise of the instrument into account, only the impairment from the phase noise feature. The output is over the start frequency to the stop frequency for the number of samples specified. The samples are taken at logarithmic frequency steps and the output is in dBc/Hz.

Range <startFreq> 1 Hz to 100 MHz
<stopFreq> 1 Hz to 100 MHz
<numSamples> 1 to 8192

:POLarity[:ALL]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:POLarity[:ALL] NORMal|INVerted
[:SOURce]:RADio:CUSTom:POLarity[:ALL]?

This command sets the rotation direction of the phase modulation vector.

NORMal This choice selects normal phase polarity.
INVerted This choice inverts the internal Q signal.

*RST NORM
Key Entry Phase Polarity Normal Invert

:RETRigger

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:RETRigger ON|OFF|1|0|IMMediate
[:SOURce]:RADio:CUSTom:RETRigger?

This command enables or disables the ARB retriggering mode. The retrigger mode controls how the retriggering function performs while a waveform is playing.
Real-Time Commands
Custom Subsystem–Option N5180431B ([::SOURce]:RADio:CUSTom)

ON (1)  This choice (Buffered Trigger) specifies that if a trigger occurs while a waveform is playing, the waveform will retrigger at the end of the current waveform sequence and play once more.

OFF (0)  This choice (No Retrigger) specifies that if a trigger occurs while a waveform is playing, the trigger will be ignored.

IMMediate  This choice (Restart on Trigger) specifies that if a trigger occurs while a waveform is playing, the waveform will reset and replay from the start immediately upon receiving a trigger.

*RST  ON

Key Entry

<table>
<thead>
<tr>
<th></th>
<th>No Retrigger</th>
<th>Buffered Trigger</th>
<th>Restart on Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This command applies to the single trigger type only.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

:SRATe

Supported  N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:SRATe <val>
[:SOURce]:RADio:CUSTom:SRATe?

This command sets the transmission symbol rate. Symbol rate is the bit rate divided by the bits per symbol. A change in the symbol rate affects the bit rate. Refer to “:BRATe” on page 517 for information on bit rate.

The variable <val> is expressed in units of symbols per second (sps–Msps) and the maximum symbol rate depends on the filter. Refer to “:FILTer” on page 526 for minimum filter symbol widths.

The filter may have to be truncated down to 32 or 16 symbols wide to achieve the highest symbol rate. The signal generator’s internal filters are not truncated below their minimum filter length and user-defined FIR filters are not truncated. If the filter cannot be truncated then the symbol rate is limited to the maximum rate of the narrowest filter size possible.

The relative timing of the modulated data, as well as the actual filter response is affected when the filter is truncated.

When the symbol rate changes, the signal generator reconfigures the baseband generator. The time required to reconfigure the baseband generator is inversely proportional to the symbol rate: lower symbol rates require more time.

To change the modulation type, refer to “:MODulation[:TYPE]” on page 530.

*RST  +1.00000000E+06
Real-Time Commands
Custom Subsystem–Option N5180431B ([::SOURce]:RADio:CUSTom)

The following table shows the symbol range for internal Custom data operation.

<table>
<thead>
<tr>
<th>Range</th>
<th>Min Symbol Rate</th>
<th>N5166B/72B Opt 653 Max Symbol Rate</th>
<th>N5166B/72B Opt 655 Max Symbol Rate</th>
<th>N5182B Opt 656 Max Symbol Rate</th>
<th>N5182B Opt 657 Max Symbol Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sps</td>
<td>37.5 Msps</td>
<td>57 Msps</td>
<td>50 Msps</td>
<td>100 Msps</td>
<td></td>
</tr>
</tbody>
</table>

The limits shown in the following table apply to Custom PRAM and Custom external serial data.

<table>
<thead>
<tr>
<th>Range</th>
<th>Bits/Symbol</th>
<th>Min Symbol Rate</th>
<th>N5166B/72B Opt 653 Max Symbol Rate</th>
<th>N5166B/72B Opt 655 Max Symbol Rate</th>
<th>N5182B Opt 656 Max Symbol Rate</th>
<th>N5182B Opt 657 Max Symbol Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 sps</td>
<td>37.5 Msps</td>
<td>50.0 Msps</td>
<td>50.0 Msps</td>
<td>50.0 Msps</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 sps</td>
<td>18.7 Msps</td>
<td>37.5 Msps</td>
<td>25.0 Msps</td>
<td>50.0 Msps</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 sps</td>
<td>12.5 Msps</td>
<td>25.0 Msps</td>
<td>16.6 Msps</td>
<td>33.3 Msps</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 sps</td>
<td>9.3 Msps</td>
<td>18.7 Msps</td>
<td>12.5 Msps</td>
<td>25.0 Msps</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 sps</td>
<td>7.5 Msps</td>
<td>15.0 Msps</td>
<td>10.0 Msps</td>
<td>20.0 Msps</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1 sps</td>
<td>6.2 Msps</td>
<td>12.5 Msps</td>
<td>8.3 Msps</td>
<td>16.6 Msps</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 sps</td>
<td>5.3 Msps</td>
<td>10.7 Msps</td>
<td>7.1 Msps</td>
<td>14.2 Mbss</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1 sps</td>
<td>4.6 Msps</td>
<td>9.3 Msps</td>
<td>6.2 Msps</td>
<td>12.5 Msps</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 sps</td>
<td>4.1 Msps</td>
<td>8.3 Msps</td>
<td>5.5 Msps</td>
<td>11.1 Msps</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1 sps</td>
<td>3.7 Msps</td>
<td>7.5 Msps</td>
<td>5.0 Msps</td>
<td>10.0 Msps</td>
<td></td>
</tr>
</tbody>
</table>

The bits per symbol are determined by the modulation type:

Table 9-1

<table>
<thead>
<tr>
<th>Bits/Symbol</th>
<th>Modulation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Lvl FSK, ASK, BPSK, MSK</td>
</tr>
<tr>
<td>2</td>
<td>4-Lvl FSK, 4QAM, C4FM, Gray Coded QPSK, IS95 OQPSK, IS95 QPSK, OQPSK, QPSK, pi/4 DQPSK, Unbalanced QPSK</td>
</tr>
<tr>
<td>3</td>
<td>8-Lvl FSK, 8PSK, 8BPSK, EDGE</td>
</tr>
<tr>
<td>4</td>
<td>16-Lvl FSK, 16PSK, 16QAM, VSA 16QAM</td>
</tr>
<tr>
<td>5</td>
<td>32QAM, VSA 32QAM</td>
</tr>
<tr>
<td>6</td>
<td>64QAM, VSA 64QAM</td>
</tr>
</tbody>
</table>
Table 9-1

<table>
<thead>
<tr>
<th>Key Entry</th>
<th>Symbol Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128QAM, VSA 128QAM</td>
</tr>
<tr>
<td>8</td>
<td>256QAM, VSA 256QAM</td>
</tr>
<tr>
<td>9</td>
<td>VSA 512QAM</td>
</tr>
<tr>
<td>10</td>
<td>1024QAM, VSA 1024QAM</td>
</tr>
</tbody>
</table>

:STANdard:SElECT

**Supported**
N5166B/72B/82B with Option N5180431B

[:SOURce]:RADIo:CUSTom:STANdard:SElECT
NONE|AC4Fm|ACQPsK|BLUEtooth|CDPD
[:SOURce]:RADIo:CUSTom:STANdard:SElECT?

This command selects a predefined setup for Custom (with the appropriate defaults) and/or clears the selection.

- **NONE**: This choice clears the current predefined Custom format.
- **AC4Fm**: This choice sets up an Association of Public Safety Communications Officials (APCO) compliant, compatible 4-level frequency modulation (C4FM) format.
- **ACQPsK**: This choice sets up an Association of Public Safety Communications Officials (APCO) compliant, compatible quadrature phase shift keying (CQPSK) format.
- **BLUEtooth**: This choice sets up a Bluetooth® (2-level frequency shift keying) format.
- **CDPD**: This choice sets up a minimum shift keying Cellular Digital Packet Data (CDPD) format.

*RST

Key Entry Non APCO APCO 25
    e 25w/C4FM w/CQPSK

:TRIGger:TYPE

**Supported**
N5166B/72B/82B with Option N5180431B
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

[:SOURce]:RADio:CUSTom:TRIGger:TYPE CONTinuous|SINGle|GATE
[:SOURce]:RADio:CUSTom:TRIGger:TYPE?

This command sets the trigger type.

CONTinuous  The framed data sequence repeats continuously; the sequence restarts every time the previous playback is completed. To customize continuous triggering, refer to “:TRIGger:TYPE:CONTinuous[:TYPE]” on page 543.

SINGle  The framed data sequence plays once for every trigger received.

GATE  An external trigger signal interrupts the playback while the gating signal is in the inactive state. Playback resumes when the external control signal returns to the active state. The active state can be set to high or low.

*RST  CONT

Key Entry Continuous Single Gated

:TRIGger:TYPE:CONTinuous[:TYPE]

Supported  N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:CONTinuous[:TYPE]
FREE|TRIGger|RESet
[:SOURce]:RADio:CUSTom:TRIGger:TYPE:CONTinuous[:TYPE]?

This command selects the waveform’s response to a trigger signal while using the continuous trigger mode.

For more information on triggering and to select the continuous trigger mode, see “:TRIGger:TYPE” on page 542.

The following list describes the waveform’s response to each of the command choices:

FREE  Turning the ARB format on immediately triggers the waveform. The waveform repeats until you turn the format off, select another trigger, or choose another waveform file.

TRIGger  The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously until you turn the format off, select another trigger, or choose another waveform file.

RESet  The waveform waits for a trigger before play begins. When the waveform receives the trigger, it plays continuously. Subsequent triggers reset the waveform to the beginning. For a waveform sequence, this means to the beginning of the first segment in the sequence.
Real-Time Commands
Custom Subsystem—Option N5180431B ([:SOURce]:RADio:CUSTom)

*RST       FREE
Key Entry     Free Run     Trigger & Run     Reset & Run

:TRIGger:TYPE:GATE:ACTive

Supported   N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger:TYPE:GATE:ACTive LOW|HIGH
[:SOURce]:RADio:CUSTom:TRIGger:TYPE:GATE:ACTive?

This command selects the active state (gate polarity) of the gate while using the gating trigger mode.

The LOW and HIGH selections correspond to the low and high states of an external trigger signal. For example, when you select HIGH, the active state occurs during the high of the trigger signal. When the active state occurs, the signal generator stops the waveform playback at the last played sample point, then restarts the playback at the next sample point when the inactive state occurs. For more information on triggering and to select gating as the trigger mode, see “:TRIGger:TYPE” on page 542.

The following list describes the gating behavior for the polarity selections:

- **LOW**: The waveform playback stops when the trigger signal goes low (active state) and restarts when the trigger signal goes high (inactive state).
- **HIGH**: The waveform playback stops when the trigger signal goes high (active state) and restarts when the trigger signal goes low (inactive state).

*RST     HIGH
Key Entry     Gate Active Low High

:TRIGger[:SOURce]

Supported   N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce] KEY|EXT|BUS
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]?

This command sets the trigger source.

For more information on triggering, see “:TRIGger:TYPE” on page 542. The following list describes the command choices:

- **KEY**: This choice enables manual triggering by pressing the front-panel Trigger key.
- **EXT**: An externally applied signal triggers the waveform. This is the only choice that works with gating. The following conditions affect an external trigger:
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

— The input connector selected for the trigger signal. You have a choice between the rear-panel PATTERN TRIG IN connector or the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector. To make the connector selection, see “:TRIGger[:SOURce]:EXTernal[:SOURce]” on page 547.

For more information on the connectors and on connecting the cables, see the User’s Guide.

— The trigger signal polarity:
  – gating mode, see “:TRIGger:TYPE:GATE:ACTive” on page 544
  – continuous and single modes, see “:TRIGger[:SOURce]:EXTernal:SLOPe” on page 546

— The time delay between when the signal generator receives a trigger and when the waveform responds to the trigger. There are two parts to setting the delay:
  – setting the amount of delay, see “:TRIGger[:SOURce]:EXTernal:DELay” on page 545
  – turning the delay on, see “:TRIGger[:SOURce]:EXTernal:DELay:STATe” on page 546

BUS This choice enables triggering over the GPIB or LAN using the *TRG or GET commands or the AUXILIARY INTERFACE (RS-232) using the *TRG command.

*RST KEY

:TRIGger[:SOURce]:EXTernal:DELay

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay <val>
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay?

This command sets the number of bits to delay the signal generator’s response to an external trigger.
The bit delay is a delay between when the signal generator receives the trigger and when it responds to the trigger. The delay uses the clocks of the bit-clock to time the delay. After the signal generator receives the trigger and the set number of delay bits (clocks) occurs, the signal generator transmits the data pattern.

The delay occurs after you enable the state. See “:TRIGger[:SOURce]:EXTernal:DELay:STATe” on page 546. You can set the number of bits either before or after enabling the state.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 544.

*RST +0

Range 0–1048575

Key Entry Ext Delay Bits

:TRIGger[:SOURce]:EXTernal:DELay:STATe

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:DELay:STATe ON|OFF|1|0

This command enables or disables the operating state of the external trigger delay function.

For setting the delay time, see “:TRIGger[:SOURce]:EXTernal:DELay” on page 545, and for more information on configuring an external source, see “:TRIGger[:SOURce]” on page 544.

*RST 0

Key Entry Ext Delay Off On

:TRIGger[:SOURce]:EXTernal:SLOPe

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal:SLOPe POSitive|NEGative

This command sets the polarity for an external trigger signal while using the continuous, single triggering mode. To set the polarity for gating, see “:TRIGger:TYPE:GATE:ACTive” on page 544.

The POSitive and NEGative selections correspond to the high (positive) and low (negative) states of the external trigger signal. For example, when you select POSitive, the waveform responds (plays) during the high state of the trigger.
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

signal. When the signal generator receives multiple trigger occurrences when only one is required, the signal generator uses the first trigger and ignores the rest.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 544.

*RST NEG

Key Entry Ext Polarity Neg Pos

:TRIGger[:SOURce]:EXTernal[:SOURce]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal[:SOURce]
EPT1|EPT2|
EPTRIGGER1|EPTRIGGER2
[:SOURce]:RADio:CUSTom:TRIGger[:SOURce]:EXTernal[:SOURce]?

This command selects which PATTERN TRIG IN connection the signal generator uses to accept an externally applied trigger signal when external is the trigger source selection.

For more information on configuring an external trigger source and to select external as the trigger source, see “:TRIGger[:SOURce]” on page 544. For more information on the rear-panel connectors, see the User’s Guide.

The following list describes the command choices:

EPT1 This choice is synonymous with EPTRIGGER1 and selects the PATTERN TRIG IN rear-panel connector.
EPT2 This choice is synonymous with EPTRIGGER2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.
EPTRIGGER1 This choice is synonymous with EPT1 and selects the PATTERN TRIG IN rear-panel connector.
EPTRIGGER2 This choice is synonymous with EPT2 and selects the PATT TRIG IN 2 pin on the rear-panel AUXILIARY I/O connector.

*RST EPT1

Key Entry Patt Trig In 1 Patt Trig In 2

[:STATe]

Supported N5166B/72B/82B with Option N5180431B

[:SOURce]:RADio:CUSTom[:STATe] ON|OFF|1|0
[:SOURce]:RADio:CUSTom[:STATe]?
Real-Time Commands
Custom Subsystem–Option N5180431B ([:SOURce]:RADio:CUSTom)

This command enables or disables the Custom modulation.

*RST 0

Key Entry Custom Off On

Remarks Although the Custom modulation is enabled with this command, the RF carrier is not modulated unless you also activate the front-panel Mod On/Off key.
Fsimulator Subsystem–Option 660 ([:SOURce])

:FSIMulator:FADer:MODE

**Supported**

N5172B/82B with Option 660

[[:SOURce]:FSIMulator:FADer:MODE OFF|ON|THR
[[:SOURce]:FSIMulator:FADer:MODE?

This command sets the state of Real-Time Fading simulation.

– Selecting **OFF** sets the state of Real-Time Fading simulation to OFF; do not route through the Fading path.

– Selecting **ON** sets the state of Real-Time Fading simulation to **ON**; route through the Fading path with the Fader in operation; the Fader can only be set to On when a digital personality is on. If all digital personalities are off, the Fader is turned off.

– Selecting **THR** sets the state of Real-Time Fading simulation to Pass-Through; route through the Fading path with the Fader having only a latency and scale effect.

**NOTE**

Before Real-Time Fading can be set to On or **Pass-Through**, a modulation format must be selected and Real-Time Custom Modulation must be set to On; if this is not done, an Error: -221 Setting Conflict is generated and written to the error queue.

If an error occurs, clear the error queue and turn on a modulation format.

To clear the error queue, see **CLS** on page 152.
Phase Noise Subsystem–Option N5180432B
([SOURce:RADio:PHASe:NOISe])

:F1

**Supported** N5172B/82B with Option N5180432B

[:SOURce]:RADio:PHASe:NOISe:F1 <value><unit>

[:SOURce]:RADio:PHASe:NOISe:F1?

This command sets the start frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see :F2). If the value is set greater than the stop frequency value, the signal generator resets the stop value to equal the start value.

The actual value may vary logarithmically depending on the value of the stop frequency. This behavior is more noticeable at higher frequency values. For more information, see the User’s Guide.

*RST +1.00000000E+003
Range 0 Hz to 77.500524490 MHz
Key Entry Desired Start Freq (f1)
Key Path Mode > More 2 of 2 > Real-Time Phase Noise Impairment > Desired Start Freq (f1)

:F1:ACTual?

**Supported** N5172B/82B with Option N5180432B

[:SOURce]:RADio:PHASe:NOISe:F1:ACTual?

This query returns the actual f1 in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when f1 is varied, based on the capabilities of the hardware.

:F2

**Supported** N5172B/82B with Option N5180432B

[:SOURce]:RADio:PHASe:NOISe:F2 <value><unit>

[:SOURce]:RADio:PHASe:NOISe:F2?

This command sets the stop frequency value of the flat area for the phase noise impairment.

Ensure that this value is less than or equal to the stop frequency value (see :F1). If the value is set less than the start frequency value, the signal generator resets the start value to equal the stop value.
Real-Time Commands
Phase Noise Subsystem–Option N5180432B ([SOURce:RADio:PHASe:NOISe])

The actual value may vary logarithmically, which is more noticeable at higher frequency offset values. For more information, see the User’s Guide.

*RST +3.00000000E+004
Range 1 Hz to 77.500524490 MHz
Key Entry Desired Stop Freq (f2)
Key Path Mode > More 2 of 2 > Real-Time Phase Noise Impairment > Desired Stop Freq (f2)

:F2:ACTual?

Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:PHASe:NOISe:F2:ACTual?
This query returns the actual f2 in use with the current set of desired values. This value may or may not vary if the desired f2 value is changed, based on the capabilities of the hardware.

:LMD

Supported N5172B/82B with Option N5180432B

[:SOURce]:RADio:PHASe:NOISe:LMD <value>
[:SOURce]:RADio:PHASe:NOISe:LMD?
This command sets the level amplitude of the flat area for the phase noise impairment. This phase noise is added to the base phase noise of the signal generator.

The signal generator has an automatic DAC over-range protection feature that is always on for this subsystem.

For more information on the phase noise impairment option, see the User’s Guide.

The amplitude range varies depending on the f2 value (“:F2” on page 550). As f2 increases in value, the range for Lmid decreases. If the current Lmid setting is too high for the new f2 value, the signal generator changes the Lmid value and generates an error.

The range values are expressed in units of dBc/Hz.

*RST -7.00000000E+001
Range -300 to 100
Key Entry Desired Flat Amplitude (Lmid)
Key Path Mode > More 2 of 2 > Real-Time Phase Noise Impairment > Desired Flat Amplitude (Lmid)
Real-Time Commands
Phase Noise Subsystem–Option N5180432B ([SOURce:RADio:PHAse:NOISe])

:[LMI]D:ACTual?

**Supported**  N5172B/82B with Option N5180432B

This query returns the actual Lmid in use with the current set of desired values. This value may vary if the desired f2 value is changed, and may or may not vary when Lmid is varied, based on the capabilities of the hardware.

[:STATe]

**Supported**  N5172B/82B with Option N5180432B

This command turns the phase noise impairment on or off. For more information on the phase noise impairment option, see the *User's Guide*.

*RST  0

**Key Entry**  Phase Noise Off On

**Key Path**  Mode > More 2 of 2 > Real-Time Phase Noise Impairment > Phase Noise Off On

:[TRACe]?

**Supported**  N5172B/82B with Option N5180432B

This query returns the theoretical phase noise amplitude mask applied with the current settings if the phase noise feature is on. This mask does not take the natural phase noise of the instrument into account, only the impairment from the phase noise feature. The output is over the start frequency to the stop frequency for the number of samples specified. The samples are taken at logarithmic frequency steps and the output is in dBc/Hz.

**Range**

- `<startFreq>`  1 Hz to 100 MHz
- `<stopFreq>`  1 Hz to 100 MHz
- `<numSamples>`  1 to 8192

---

---
Index

AVIonics

CID

CODE 436
DEPTh 436
FREQuency 437
PRESet 437
TYPE 437

ILSslope

DDM

DDM 446
UAMPs 447
FLY

DIRection 448
PHASe 449
FREQuency

DOWN 450
UP 450
MODE 451
PRESet 452
SDM 452

ILSLocalizer

DDM

DDM 439
UAMPs 440
FLY

DIRection 441
PHASe 442
FREQuency

LEFT 443
RIGHT 443
MODE 445
PRESet 445
SDM 445

MBEacon

DEPTh 453
FREQuency

INNer 453
MIDDle 453
OUTer 454
MODE 455
PRESet 455

VOR

BEARing

ANGLe 430

DIRection 430
DEPTh

SUBCarrier 431
VAR 431
DEViation

REF 431
FREQuency

SUBCarrier 432
MODE 434, 549
PRESet 435

Avionics

VOR

FREQuency

REFVar 432, 446

AVIonics

ILSslope

FREQuency 450

ILSLocalizer

FREQuency 443

MBEacon

FREQuency 454

INDex 432, 443, 450, 454

AVIonics

ILSslope

DDM 447
ILSLocalizer

DDM 440
CID 438

Symbols

ΦM Dev 297
FM ΦM Normal High BW 286
ΦM Off On 296
ΦM Sweep Time 293
ΦM Sweep Time softkey 292
*CLS

clear status 152
*ESE

standard event status enable 152
*ESE?

standard event status enable 152
*ESR?

standard event status register 152
*OPC

operation complete 153
*OPC?
operation complete 153
*OPT?
options 153
*PSC
  power on status clear 154
*PSC?
power-on status clear 154
*RST
  reset command 154
*SRE
  service request enable 155
*SRE?
  service request enable 156
*STB?
  read status byte 156
*TRG
  trigger 156
*WAI
  wait to continue command 157
# of Carriers softkey 333, 336
# of Points softkey 50
# Points 2 softkey 51
# Points softkey 94
# Skipped Points softkey 356

Numerics
1024QAM softkey
  See Dmodulation subsystem keys
128QAM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
16 1's & 16 0's softkey
  See custom subsystem keys
16PSK softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
16QAM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
2 kHz softkey 99
20 kHz softkey 99
200 Hz softkey 99
256QAM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
2-Lvl FSK softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
32 1's & 32 0's softkey
   See custom subsystem keys
   See Dmodulation subsystem keys
32QAM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
3410 softkey 217, 232
4 1's & 4 0's softkey
  See custom subsystem keys
4-Lvl FSK softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
4QAM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
64 1's & 64 0's softkey
  See custom subsystem keys
64QAM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
8 1's & 8 0's softkey
  See custom subsystem keys
8662 or 8663 softkeys 217, 232
8663B softkeys 217, 232
8PSK softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
A
  abort
    list/step sweep 242
Activate Restricted Display softkey 238
Activate Secure Display softkey 238
Add Comment To Seq[n] Reg[nn] softkey 182
Adjust Phase softkey 79
ALC
  BW
    Auto 99
    Off, On 99
ALC BW Setting
  Auto 99
ALC BW softkey 99
ALC Hold 414
ALC hold markers
  two tone subsystem 414
alc hold markers
  Dmodulation subsystem 316
dual arb subsystem 362
multitone subsystem 394, 395
ALC level 100
ALC Off On softkey 106, 107
Alignment Left Cent Right softkey 391, 411
All softkey 164, 180
call subsystem digital formats, disabling 310, 512
Alt Ampl Off On softkey 110
Alt Ampl Trigger softkey 109
alternate amplitude markers
demodulation subsystem 315
dual arb subsystem 362
multitone arb subsystem 393
multitone subsystem 393
AM softkeys
AM Depth 250
AM Depth Couple Off On 250
AM Mode Normal Deep 260
AM Off On 261, 262
AM Path 1 2 WB 262
AM Phase Offset 254
AM Rate 254
AM Source 260
AM Start Freq 255
AM Stop Freq 256
AM Sweep Rate 256, 258
AM Sweep Shape 257
AM Sweep Times Coupled Off On 257
AM Sweep Waveform 256
AM Tone 1 Waveform 253
AM Tone 2 Ampl % of Peak 252
AM Tone 2 Phase Offset 252
AM Tone 2 Waveform 253
AM Type LIN EXP 262
AM Waveform 254
Bus 258
EXT 258
Ext 258
Ext Coupling DC AC 251, 252
Free Run softkey 258
Incr Set 251
Int 258
Int/Ext Trigger Polarity Neg Pos softkey 260
Neg Ramp 253, 255, 256
Noise Gen 1 255
Noise Gen 2 255
Pos Ramp 253, 255, 256
Pulse 258
Pulse Sync 259
Pulse Video 259
Trigger 1 258
Trigger Key 258
Amplitude key 113
Amplitude Markers Off On softkey 96
amplitude modulation subsystem keys
AM Depth 250
AM Depth Couple Off On 250
AM Mode Normal Deep 260
AM Off On 261, 262
AM Path 1 2 WB 262
AM Phase Offset 254
AM Rate 254
AM Source 260
AM Start Freq 255
AM Stop Freq 256
AM Sweep Rate 256, 258
AM Sweep Shape 257
AM Sweep Times Coupled Off On 257
AM Sweep Waveform 256
AM Tone 1 Waveform 253
AM Tone 2 Ampl % of Peak 252
AM Tone 2 Phase Offset 252
AM Tone 2 Waveform 253
AM Type LIN EXP 262
AM Waveform 254
Bus 258
EXT 258
Ext 258
Ext Coupling DC AC 251, 252
Free Run softkey 258
Incr Set 251
Int 258
Int/Ext Trigger Polarity Neg Pos softkey 260
Neg Ramp 253, 255, 256
Noise Gen 1 255
Noise Gen 2 255
Pos Ramp 253, 255, 256
Pulse 258
Pulse Sync 259
Pulse Video 259
Trigger 1 258
Trigger 2 258
Trigger Key 258
Amplitude softkeys
ALC BW Auto 99
Ampl Start 83
Ampl Stop 83
AMPTD 83
Optimize Signal to Noise 114
User Power Max 117
User Power Max enable 117
amplitude state, setting
display subsystem 148
amplitude units, setting
display subsystem 148
Amptd softkeys
Amptd Offset 112
Amptd Ref Off On 116
Amptd Ref Set 115
Amptd Start 116
Amptd Stop 116
APCO 25 C4FM softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
APCO 25 w/C4FM softkey 332, 333, 334
APCO 25 w/C4QPSK softkey 332, 333, 334
APCO 25 w/CQPSK softkey 542
Apply Settings softkey 411
Apply to Waveform softkey 353, 356
ARB Off On softkey 389
ARB Sample Clock softkey 332, 377, 405, 427
arbitrary waveform
  runtime scaling 376
  scaling files 376
ASK
  See Dmodulation subsystem keys
Atten Bypass Off On softkey 111, 112
Atten Hold Off On softkey 111, 112
attenuator 56, 57, 58, 413
attenuator auto 57
Auto softkey 99
automatic leveling control 107
Aux I/O Trigger Polarity Pos Neg softkey 474
Aux softkey
  See sense subsystem keys
Auxiliary Software Options softkey 144
AWGN
  carrier bandwidth 322, 366, 397, 419, 532
  carrier bit rate
    setting 322, 366, 397, 418, 531
  carrier power
    setting 324, 368, 400, 421, 534
  carrier to noise ratio
    setting 323, 367, 398, 419, 532
  carrier to noise ratio format
    selecting 323, 367, 398, 420, 533
    setting Eb/No 324, 367, 399, 420, 533
  noise bandwidth 321, 365, 396, 418, 531
  noise power query 326, 370, 401, 423, 535
  output multiplexer (MUX-Carrier+Noise) 324, 368, 399, 421, 533
  power control mode
    selecting 325, 369, 400, 422, 535
  real-time awgn off on 327, 370, 402, 424, 536
  total noise power
    setting 326, 370, 401, 423, 535
  AWGN real-time subsystem keys
    Modulator Atten Manual Auto 513, 514
  AWGN subsystem keys
    Bandwidth 513, 514, 515
B
  Bandwidth softkey 513, 514, 515
  Baseband Frequency Offset Phase Reset softkey 311, 344, 392, 412, 516
  Baseband Frequency Offset softkey 311, 344, 391, 411, 516
  BB TRIG 1 BNC softkey 109
  BB TRIG 2 BNC softkey 109
  BBG sync
    initiate sync 361
    listen for sync 360
    master/slave 358
    number of instruments 359, 360
    slave position 361
    status 374
  BER Display % Exp softkey 459
  BERT 457
  BERT Off On softkey 472
  BERT Resync Off On softkey 471
  Binary softkey 158, 182
  binary values 47
  Bit Delay Off On softkey 473
  Bit Error Rate Test Commands 457
  Bit Order softkey 481
  Bit softkey 158
  Bluetooth softkey 542
  boolean SCPI parameters 40
  boolean, numeric response data 41
  BPSK softkey
    See custom subsystem keys
    See Dmodulation subsystem keys
    Brightness softkey 149
    Buffered Trig softkey 375, 539
    Build New Waveform Sequence softkey 377
    burst
      shape 175
    Burst Envelope Off On softkey 56
    Burst Gate In Polarity Neg Pos softkey 190, 191
    Bus softkey 131
      list trigger source 90
      See amplitude modulation subsystem keys
      See Dmodulation subsystem keys
      See dual ARB subsystem keys
      See frequency modulation subsystem keys
See phase modulation subsystem keys
See sense subsystem keys
See trigger subsystem keys

C
calculate subsystem keys
   BER Display % Exp 459
   Cycle End 120, 458
   Fail Hold 120, 458
   Pass/Fail Limits 458
   Pass/Fail On Off 459
   Update Display Cycle End Cont 459

calibration subsystem keys
   Calibration Type DC User Full 137
   DCFM/DCΦM Cal 134
   Execute ALC Modulator Bias Adjustment 134
   Execute Cal 134, 135, 137
   Revert to Default Cal Settings 135
   Start Frequency 136
   Stop Frequency 136

AVIonics
   VOR
      FREQuency 432
   Carrier Bandwidth 322, 366, 397, 419, 532
   Carrier Bit Rate 366, 397, 418, 531
   Carrier Bit Rate softkey 322
   Carrier Phases Fixed Random 334
   Carrier Power 324, 368, 400, 421, 534
   Carrier to Noise Ratio 323, 367, 398, 419, 532
   Carrier to Noise Ratio Format 323, 367, 398, 420, 533
   Carrier to Noise Ratio Format Eb/No 324, 367, 399, 420, 533
   Carrier+Noise 421
   Carrier+Noise (output mux) 324, 368, 399, 533
   CDPD softkey 332, 333, 334, 542
   channel number 72
   channels 70
   Clear Header softkey 185, 314, 350, 392, 412
   clearing markers 353
   Clipping Type |I+Q|, |I|, |Q| softkey 344
   Clock Delay Off On softkey 466
   Clock Per Sample softkey 478
   Clock Phase softkey 478
   Clock Polarity Neg Pos softkey 466
   Clock Polarity softkey 479
   Clock Rate softkey 479
   Clock Skew softkey 480
   Clock Source softkey 481

Clock Time Delay softkey 466
   color palette, setting display subsystem 150
   COM/ID Commands 436
   command syntax 34
      special characters 34
      command tree, SCPI 37
      command types 36
   Commands 430
   commands
      clear status
      *CLS 152
      operation complete
      *OPC 153
      power on status clear
      *PSC 154
      reset
      *RST 154
      service request enable
      *SRE 155
      standard event status enable
      *ESE 152
      trigger
      *TRG 156
      wait to continue
      *WAI 157

common listings 32
   Common Mode I/Q Offset Range softkey 61
   Common Mode I/Q Offset softkey 61
   common terms 33
communication subsystem
   Domain Name 140
   LAN identify 141
   Local 138
   Restore LAN Settings to Default Values 139, 143
   web description command 139
communication subsystem keys
   Connection Type 54
   Connection Type USB device 55
   Default Gateway 141
   DNS Server 140
   Dynamic DNS Naming Off On 140
   GPIB Address 138
   Hostname 141
   IP Address 142
   LAN Config 138
   mDNS/DNS-SD Off On 142
   Subnet Mask 143
   USB device list 55
Configure Cal Array softkey | 51
Connection Type softkey | 54, 55
Continuous segment advance | 383
Continuous softkey
  - See custom subsystem keys
  - See Dmodulation subsystem keys
  - See dual ARB subsystem keys
Copy File softkey | 164, 183
Correction subsystem keys
  # of Points | 50
  # Points 2 | 51
Configure Cal Array | 51
Flatness Off On | 55
Freq Start | 52
Freq Stop | 52
Load Cal Array From Step Array | 50
Load From Selected File | 50
Preset List | 51
Store To File | 52
Creating a waveform sequence, dual ARB | 377
Creating a waveform, multitone | 391
cross reference
  key and data field | 32
Custom Digital Mod State softkey | 333, 334
Custom Off On softkey | 547
custom subsystem keys
  128QAM | 530
  16 1's & 16 0's | 524
  16PSK | 530
  16QAM | 530
  256QAM | 530
  2-Lvl FSK | 530
  32 1's & 32 0's | 524
  32QAM | 530
  4 1's & 4 0's | 524
  4-Lvl FSK | 530
  4QAM | 530
  64 1's & 64 0's | 524
  64QAM | 530
  8 1's & 8 0's | 524
  8PSK | 530
  APCO 25 C4FM | 526
  APCO 25 w/CQPSK | 542
  Baseband Frequency Offset | 516
  Bit Rate | 517
  Bluetooth | 542
  BPSK | 530
  Bus | 544
  CDPD | 542
  Continuous | 542
  Custom Off On | 547
  D8PSK | 530
  Diff Data Encode Off On | 525
  Ext | 524, 544
  Ext Data Clock Normal Symbol | 526
  Ext Delay Bits | 545
  Ext Delay Off On | 546
  Ext Polarity Neg Pos | 546
  Fall Delay | 519, 520
  Fall Time | 520, 521
  Filter Alpha | 516
  Filter BbT | 517
  FIX4 | 524
  Free Run | 543
  Freq Dev | 529
  Gate Active Low High | 544
  Gated | 542
  Gaussian | 526
  Gray Coded QPSK | 530
  I/Q Scaling | 528
  IS-95 | 526
  IS-95 Mod | 526
  IS-95 Mod w/EQ | 526
  IS-95 QPSK | 530
  IS-95 w/EQ | 526
  MSK | 530
  None | 542
  Nyquist | 526
  Optimize FIR For EVM ACP | 523
  OQPSK | 530
  π/4 DQPSK | 530
  Patt Trig In 1 | 547
  Patt Trig In 2 | 547
  Phase Dev | 529
  Phase Polarity Normal Invert | 539
  PN11 | 524
  PN15 | 524
  PN20 | 524
  PN23 | 524
  PN9 | 524
  PRAM Files | 525
  QPSK | 530
  Rectangle | 526
  Reset & Run | 543
  Rise Delay | 521, 522
Rise Time 522, 523
Root Nyquist 526
Single 542
Symbol Rate 540
Trigger & Run 543
Trigger Key 544
UN3/4 GSM Gaussian 526
User File 524
User FIR 526
User FSK 529, 530
User I/Q 530
Cycle Count softkey 474
Cycle End softkey 120, 458

D
DBPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
DAC Over range Protection Off On softkey 345
data
  memory subsystem 165
data append
  memory subsystem 166
data bit 166, 168
Data Clock Out Neg Pos softkey 193
Data Clock Polarity Neg Pos softkey 190, 192, 194
data files 165
data FSK 170
data IQ 171
Data Out Polarity Neg Pos softkey 193, 195
Data Polarity Neg Pos softkey 191, 192, 467
data questionable
calibration event register 205
calibration event register, setting 204, 205
calibration register 203
condition register 204, 205, 206, 208, 209, 210, 211
event register 206, 208, 209, 211, 212
frequency condition register 206, 207
frequency event register 206, 207
power condition register 210, 211
power event register 210, 211
status group summary bit 206
data subsystem keys
  Error Out 460
  PN9 460
  Reference Out 460
Data Type softkey 505, 507
DATA/CLK/SYNC Rear Outputs Off On softkey 194
date format, setting
display subsystem 149
dBm softkey 247
dBuV softkey 247
dBuVemf softkey 247
DC softkey 277
DCFM/DCΦM Cal softkey 134
decimal values 47
DECT softkey 332, 333, 334
DECT subsystem keys
  Sine 523
  User File 523
Dedicated softkey 119
Default Gateway softkey 141
Delay Bits softkey 473
Delete All BBG Segments softkey 184
Delete All NVWFM Files softkey 183
Delete File softkey 184
Delete softkeys
  Delete All ARB DMOD Files 177
  Delete All ARB MDMOD Files 178
  Delete All ARB MTONE Files 178
  Delete All Binary Files 176
  Delete All Bit Files 176
  Delete All Files 176
  Delete All FIR Files 177
  Delete All FSK Files 177
  Delete All I/Q Files 177
  Delete All List Files 177
  Delete All Sequence Files 178
  Delete All SHAPE Files 178
  Delete All State Files 179
  Delete All UFLT Files 179
  Delete File 179
Delta Markers softkey 97
Delta Ref Set softkey 97
Desired Delta softkey 108
Desired Flat Amplitude (Lmid) softkey 328, 372, 403, 425, 538, 551
Desired Flat Amplitude(Lmid) softkey 129
Desired Start Freq (f1) softkey 327, 371, 402, 424, 536, 550
Desired Start Freq(F1) softkey 128
Desired Start Freq(F2) softkey 128
Desired Stop Freq (f2) softkey 328, 371, 403, 425, 537, 550
DHCP 138
Diagnostic Info softkey 144, 146, 153
diagnostic subsystem keys
  Auxiliary Software Options 144
Diagnostic Info 144, 146
Instrument Options 146
Options Info 146
diagnostic subsystem softkeys
  Waveform Licenses 145, 147
Diff Data Encode Off On softkey 525
Diff. Mode I Offset softkey 62
Diff. Mode Q Offset softkey 62
digital clock, setting
  display subsystem 149
digital formats, disabling 310, 512
Digital Modulation Off On softkey 343
digital modulation subsystem keys
  Burst Envelope Off On 56
  Common Mode I/Q Offset 61
  Common Mode I/Q Offset Range 61
  Diff. Mode I Offset 62
  Diff. Mode Q Offset 62
  Ext Input Level (nnn mV) default Man Meas 58
  External 68
  External Input I Offset 63
  External Input I/Q Gain Balance 63
  External Input Q Offset 63
  I Offset 65, 66
  I/Q Off On 69
  I/Q Adjustments Off On 68
  I/Q Correction Optimized Path 56
  I/Q Delay 61
  I/Q Gain Balance 65
  I/Q internal channel optimization 59
  I/Q internal equalization 60
  I/Q Skew 67
  Int Channel Correction 59
  Int Phase Polarity Normal Invert 58, 68
  Internal 68
  Modulator Atten Manual Auto 56, 57, 58
  Q Offset 66
  Quadrature Angle Adjustment 64
  Quadrature Skew 67
  Sum 68
  Summing Ratio (SRC1/SRC2) x.xx dB 69
digital signal interface module 478
digital subsystem softkeys 502
  Bit Order 481
  Clock Per Sample 478
  Clock Phase 478
  Clock Polarity 479
  Clock Rate 479
Clock Skew 480
Clock Source 481
Data Type 505, 507
Direction 482
Frame Polarity 503
I Gain 502
IQ Polarity 506
Logic Type 509
Loop Back Test Type 508
N5102A Off On 510
Negate I 482, 483, 484, 485, 486, 487, 488, 489, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501
Negate Q 507
Pass Through Preset 510
Port Config 509
Q Gain 503
Q Offset 502, 504
Reference Frequency 480
Rotation 504
Scaling 505
Signal Type 506
Swap IQ 501
Word Alignment 481
Word Size 507
Direction softkey 482
directory structure 44
discrete response data 41
discrete SCPI parameters 39
display
  restricted mode 238
  secure mode 238
display blanking, setting
display subsystem 151
display capture, setting
display subsystem 150
display subsystem
  amplitude state, setting 148
  amplitude units, setting 148
  color palette, setting 150
  date format, setting 149
  digital clock, setting 149
  display blanking, setting 151
display capture 150
  frequency state, setting 148
display subsystem keys
  Brightness 149
  Update in Remote Off On 150
DMOD softkey 159
Dmodulation subsystem keys
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Carriers</td>
<td>333, 336</td>
</tr>
<tr>
<td>1024QAM</td>
<td>319</td>
</tr>
<tr>
<td>128QAM</td>
<td>319</td>
</tr>
<tr>
<td>16PSK</td>
<td>319</td>
</tr>
<tr>
<td>16QAM</td>
<td>319</td>
</tr>
<tr>
<td>256QAM</td>
<td>319</td>
</tr>
<tr>
<td>2-Lvl FSK</td>
<td>319</td>
</tr>
<tr>
<td>32QAM</td>
<td>319</td>
</tr>
<tr>
<td>4-Lvl FSK</td>
<td>319</td>
</tr>
<tr>
<td>4QAM</td>
<td>319</td>
</tr>
<tr>
<td>64QAM</td>
<td>319</td>
</tr>
<tr>
<td>8PSK</td>
<td>319</td>
</tr>
<tr>
<td>APCO 25 C4FM</td>
<td>311</td>
</tr>
<tr>
<td>APCO 25 w/C4FM</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>APCO 25 w/C4QPSK</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>ARB Sample Clock</td>
<td>332</td>
</tr>
<tr>
<td>ASK</td>
<td>318, 528</td>
</tr>
<tr>
<td>Baseband Frequency Offset</td>
<td>311</td>
</tr>
<tr>
<td>Baseband Frequency Offset Phase Reset</td>
<td>311, 516</td>
</tr>
<tr>
<td>BPSK</td>
<td>319</td>
</tr>
<tr>
<td>Bus</td>
<td>340</td>
</tr>
<tr>
<td>Carrier Bandwidth</td>
<td>322</td>
</tr>
<tr>
<td>Carrier Bit Rate</td>
<td>322</td>
</tr>
<tr>
<td>Carrier Phases Fixed Random</td>
<td>334</td>
</tr>
<tr>
<td>Carrier Power</td>
<td>324</td>
</tr>
<tr>
<td>Carrier to Noise Ratio</td>
<td>323</td>
</tr>
<tr>
<td>Carrier to Noise Ratio Eo/No</td>
<td>324</td>
</tr>
<tr>
<td>Carrier to Noise Ratio Format</td>
<td>323</td>
</tr>
<tr>
<td>Carrier+Noise (output Eb/No)</td>
<td>324</td>
</tr>
<tr>
<td>CDPD</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>Clear Header</td>
<td>314</td>
</tr>
<tr>
<td>Continuous</td>
<td>337</td>
</tr>
<tr>
<td>Custom Digital Mod State</td>
<td>333, 334</td>
</tr>
<tr>
<td>D8PSK</td>
<td>319</td>
</tr>
<tr>
<td>DECT</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>Desired Flat Amplitude (Lmid)</td>
<td>328</td>
</tr>
<tr>
<td>Desired Start Freq (f1)</td>
<td>327</td>
</tr>
<tr>
<td>Desired Stop Freq (f2)</td>
<td>328</td>
</tr>
<tr>
<td>Digital Modulation Off On</td>
<td>343</td>
</tr>
<tr>
<td>EDGE</td>
<td>311, 332, 333, 334</td>
</tr>
<tr>
<td>EDGE EHSR</td>
<td>311</td>
</tr>
<tr>
<td>EDGE wide</td>
<td>311</td>
</tr>
<tr>
<td>Ext</td>
<td>340</td>
</tr>
<tr>
<td>Ext Delay Off On</td>
<td>342</td>
</tr>
<tr>
<td>Ext Delay Time</td>
<td>341</td>
</tr>
<tr>
<td>Ext Polarity Neg Pos</td>
<td>342</td>
</tr>
<tr>
<td>Filter Alpha</td>
<td>313</td>
</tr>
<tr>
<td>Filter BbT</td>
<td>313</td>
</tr>
<tr>
<td>Free Run</td>
<td>339</td>
</tr>
<tr>
<td>Freq Dev</td>
<td>318</td>
</tr>
<tr>
<td>Freq Spacing</td>
<td>333</td>
</tr>
<tr>
<td>Gate Active Low High</td>
<td>339</td>
</tr>
<tr>
<td>Gated</td>
<td>337</td>
</tr>
<tr>
<td>Gaussian</td>
<td>311</td>
</tr>
<tr>
<td>Gray Coded QPSK</td>
<td>319</td>
</tr>
<tr>
<td>GSM</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>I Gain</td>
<td>320</td>
</tr>
<tr>
<td>I/Q Atten Manual Auto</td>
<td>314, 315</td>
</tr>
<tr>
<td>Initialize Table</td>
<td>334</td>
</tr>
<tr>
<td>Insert Row</td>
<td>334</td>
</tr>
<tr>
<td>IS-95</td>
<td>311</td>
</tr>
<tr>
<td>IS-95 Mod</td>
<td>311</td>
</tr>
<tr>
<td>IS-95 Mod w/EQ</td>
<td>311</td>
</tr>
<tr>
<td>IS-95 QPSK</td>
<td>319</td>
</tr>
<tr>
<td>IS-95 w/EQ</td>
<td>311</td>
</tr>
<tr>
<td>Load/Store</td>
<td>334</td>
</tr>
<tr>
<td>Marker 1</td>
<td>315, 316</td>
</tr>
<tr>
<td>Marker 1 Polarity Neg Pos</td>
<td>321</td>
</tr>
<tr>
<td>Marker 2</td>
<td>315, 316</td>
</tr>
<tr>
<td>Marker 2 Polarity Neg Pos</td>
<td>321</td>
</tr>
<tr>
<td>Marker 3</td>
<td>315, 316</td>
</tr>
<tr>
<td>Marker 3 Polarity Neg Pos</td>
<td>321</td>
</tr>
<tr>
<td>Marker 4</td>
<td>315, 316</td>
</tr>
<tr>
<td>Marker 4 Polarity Neg Pos</td>
<td>321</td>
</tr>
<tr>
<td>Markers</td>
<td>317</td>
</tr>
<tr>
<td>MSK</td>
<td>319</td>
</tr>
<tr>
<td>Multicarrier Off On</td>
<td>332</td>
</tr>
<tr>
<td>NADC</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>Noise Bandwidth</td>
<td>321</td>
</tr>
<tr>
<td>None</td>
<td>315, 316, 317</td>
</tr>
<tr>
<td>Nyquist</td>
<td>311</td>
</tr>
<tr>
<td>Optimize FIR For EVM ACP</td>
<td>314</td>
</tr>
<tr>
<td>OQPSK</td>
<td>319</td>
</tr>
<tr>
<td>π/4 DQPSK</td>
<td>319</td>
</tr>
<tr>
<td>Patt Trig In 1</td>
<td>342</td>
</tr>
<tr>
<td>Patt Trig In 2</td>
<td>342</td>
</tr>
<tr>
<td>PDC</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>Phase Noise Off On</td>
<td>329</td>
</tr>
<tr>
<td>PHS</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>Power Control Mode</td>
<td>325</td>
</tr>
<tr>
<td>PWT</td>
<td>332, 333, 334</td>
</tr>
<tr>
<td>QPSK</td>
<td>319</td>
</tr>
<tr>
<td>Real-Time AWGN Off On</td>
<td>327</td>
</tr>
<tr>
<td>Rectangle</td>
<td>311</td>
</tr>
<tr>
<td>Reset &amp; Run</td>
<td>339</td>
</tr>
<tr>
<td>Root Nyquist</td>
<td>311</td>
</tr>
<tr>
<td>Save Setup To Header</td>
<td>314</td>
</tr>
</tbody>
</table>
Select File 332
Select User FSK 320
Select User I/Q 320
Single 337
Store Custom Dig Mod State 336
Symbol Rate 336
TETRA 332, 333, 334
Total Noise 326
Trigger & Run 339
Trigger Key 340
UN3/4 GSM Gaussian 311
Unbalanced QPSK 319
User FIR 311
WCDMA 311
DNS Server softkey 140
Do External Input Level Measurement softkey 58
Do Power Search softkey 100, 101, 102, 103
documentation 29
Domain Name softkey
communication subsystem 140
dual ARB subsystem
generate sine 348
generate test waveforms 349
initiate sync 361
listen for sync 360
markers, See markers
master/slave num inst 359, 360
master/slave selection 358
phase noise impairment 371, 536
runtime scaling 376
scaling waveform files 376
segment, selecting 388
sequence, selecting 388
slave position 361
status register 374
dual ARB subsystem keys
# Skipped Points 356
APCO 25 C4FM 347
Apply to Waveform 353, 356
ARB Off On 389
ARB Sample Clock 377
Baseband Frequency Offset 344
Baseband Frequency Offset Phase Reset 344
Buffered Trig 375, 539
Build New Waveform Sequence 377
Bus 384
Carrier Bandwidth 366, 532
Carrier Bit Rate 366, 531
Carrier Power 368, 534
Carrier to Noise Ratio 367, 532
Carrier to Noise Ratio Eb/No 367, 533
Carrier to Noise Ratio Format 367, 533
Carrier+Noise (output mux) 368, 533
Clear Header 350
Clipping Type ||+jQ|| ||,|Q| 344
Continuous 380, 383
DAC Over range Protection Off On 345
Desired Flat Amplitude (Lmid) 372, 538
Desired Start Freq (f1) 371, 536
Desired Stop Freq (f2) 371, 537
EDGE 347
EDGE EHSR 347
EDGE Wide 347
Edit Noise RMS Override 350
Edit Repetitions 377
Ext
Delay Off On 386
Delay Time 385
Polarity Neg Pos 386
subsystem key 384
Filter Alpha 345
Filter BbT 346
First Mkr Point 353, 356
Free Run 381
Gate Active Low High 382
Gated 380
Gaussian 347
Header RMS 350, 351
Insert Waveform 377
IS-95 347
IS-95 Mod 347
IS-95 Mod w/EQ 347
IS-95 w/EQ 347
Last Mkr Point 353, 356
Listen for Sync 360
Marker 1 362
Marker 1 2 3 4 353
Marker 2 362
Marker 3 362
Marker 4 362
Marker Polarity Neg Pos 365
Markers 356, 364
Master 358
Modulation Filter Off On 348
Modulator Atten Manual Auto 353, 527
Name and Store 377
No Retrigger 375, 539
Noise Bandwidth 365, 531
None 362, 364
Nyquist 347
Off 358
Optimize FIR For EVM ACP 346
Patt Trig In 1 387
Patt Trig In 2 387
Phase Noise Off On 373, 538
Power Control Mode 369, 535
Real-Time AWGN Off On 370, 536
Rectangle 347
Reset & Run 381
Restart on Trig 375, 539
Save Setup To Header 352
Scale Waveform Data 376
Scaling 376
Segment Advance 380
Select Waveform 387
Set Marker
  Off All Points 355
  Off Range Of Points 353
  On Range Of Points 356
Single 380, 383
Slave 358
Slave Position 361
Sync Slaves 361
Toggle Marker 1 2 3 4 377
Total Noise 370, 535
Trigger & Run 381
Trigger Key 384
UN3/4 GSM Gaussian 347
User FIR 347
  Waveform Runtime Scaling 376
  WCDMA 347
dual arb subsystem keys
  Root Nyquist 347
Dual-Sine softkey 277
DWELL 85
dwell time, list sweep
  list sweep, dwell time 84
dwell time, list sweep points 84
dwell time, querying number of points 84
Dwell Type List Step softkey 85
Dynamic DNS Naming Off On softkey 140

E
E4428C or E4438C softkeys 217, 232
E442XB or E443XB softkeys 217, 232
E8241A or E8244A softkeys 217, 232
E8247C or E8257C or E8267C softkeys 217, 232
E8251A or E8254A softkeys 217, 232
E8257D or E8267D softkeys 217, 232
Eb/No softkey 121
EDGE EHSS softkey
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
EDGE softkey 332, 333, 334
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
EDGE Wide softkey
  See dual ARB subsystem keys
EDGE wide softkey
  See Dmodulation subsystem keys
Edit Description softkey 185
Edit Noise RMS Override softkey 350
Edit Repetitions softkey 377
er 360
Erase All softkey 239
Erase and Sanitize All softkey 239
Error Count softkey
  See sense subsystem keys
Error Info softkey 213, 214
Error Out softkey 460
EVENT 1 BNC softkey 109
Execute ALC Modulator Bias Adjustment 134
Execute Cal softkey 134, 135, 137
Execute User Preset softkey 235
Ext
  Delay Time softkey 385
Ext ALC Hold Off On softkey
  See power subsystem keys
Ext Data Clock Normal Symbol softkey
  See custom subsystem keys
Ext Delay Bits softkey
  See custom subsystem keys
Ext Delay Off On softkey
  See custom subsystem keys
Ext Delay Time softkey 130, 341
Ext Detector Coupling Factor softkey 103, 104, 105, 106
Ext Polarity Neg Pos softkey 130
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
Ext Polarity Normal Inverted softkey
  Pulse modulation subsystem 298
EXT softkey
See power subsystem keys
See trigger subsystem keys
Ext softkey 131
List/Sweep subsystem 90
See amplitude modulation subsystem keys
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See frequency modulation subsystem keys
See phase modulation subsystem keys
See sense subsystem keys
Ext softkeys
Ext Coupling DC AC 251, 252, 263, 286
Ext Impedance 263, 286
Ext Impedance 263, 286
Ext Pulse 306
Ext Source softkey 130
extended numeric SCPI parameter 39
External Input I Offset softkey 63
External Input I/Q Gain Balance softkey 63
External Input Q Offset softkey 63
External softkey 68

F
Fail Hold softkey 120, 458
Fall Delay softkey
  See custom subsystem keys
Fall Time softkey
  See custom subsystem keys
file
  names 165
  systems 45
types 45
file headers, editing 185
file types 44
filename
  memory size 181
Filter Alpha softkey
  See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
Filter BbT softkey
  See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
filter state softkey 60
FIR data 169
FIR softkey 159
First Mkr Point softkey 353, 356
FIX4 softkey
See custom subsystem keys
Flat Noise Bandwidth softkey 121
Flatness Off On softkey 55
fm modulation subsystem keys
Incr Set 273
ΦM Rate
  softkeys 289
FM Rate softkey 266
FM softkeys
  EXT 270
  FM Dev 273
  FM Off On 272
  FM Phase Offset 266
  FM Source 272
  FM Start Freq 267
  FM Stop Freq 267
  FM Sweep Rate 268, 269
  FM Sweep Shape 269
  FM Sweep Times Coupled Off On 269
  FM Sweep Waveform 268
  FM Tone 1 Freq 264
  FM Tone 1 Waveform 264
  FM Tone 2 Amp % of Peak 263
  FM Tone 2 Freq 264
  FM Tone 2 Phase Offset 264
  FM Tone 2 Waveform 264
  Int/Ext Trigger Polarity Neg Pos softkey 271
  Neg Ramp 265, 267, 268, 291
  Noise Gen 1 267
  Noise Gen 2 267
  Pos Ramp 265, 267, 268
  Pulse 270
  Pulse Sync 271
  Pulse Video 271
  Trigger 1 270
  Trigger 2 270
ΦM softkeys
  EXT 294
  ΦM Phase Offset 289
  ΦM Source 295
  ΦM Start Freq 290
  ΦM Stop Freq 291
  ΦM Sweep Shape 292
  ΦM Sweep Times Coupled Off On 292
  ΦM Sweep Waveform 291
  ΦM Tone 1 Freq 287
  ΦM Tone 1 Waveform 288
  ΦM Tone 2 Amp % of Peak 287
  ΦM Tone 2 Freq 287
Forgiving listening and precise talking 37
Frame Polarity softkey 503
Free Run softkey 129
See amplitude modulation subsystem keys
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See frequency modulation subsystem keys
See phase modulation subsystem keys
See trigger subsystem keys
Freq
  frequency subsystem 74
Freq Channels Off On
  frequency subsystem 73
Freq Channels softkey 70,72
Freq Dev softkey
  See custom subsystem keys
FREQ key 75
Freq Separation softkey 412
Freq softkeys
  Freq Spacing 333,406,407
  Freq Start 52
  Freq Stop 52
frequency
  internal modulation 276
Frequency Deviation softkey 318
Frequency key 74
frequency modulation subsystem
  Sine 266
frequency modulation subsystem keys
  Bus 270
  EXT 270
  Ext 270
  Ext Coupling DC AC 263
Ext Impedance 263
FM Dev 273
FM deviation 273
FM Off On 272
FM Phase Offset 266
FM Rate 266
FM Source 272
FM Start Freq 267
FM Stop Freq 267
FM Sweep Rate 268,269
FM Sweep Shape 269
FM Sweep Times Coupled Off On 269
FM Sweep Waveform 268
FM Tone 1 Freq 264
FM Tone 1 Waveform 264
FM Tone 2 Ampl % of Peak 263
FM Tone 2 Freq 264
FM Tone 2 Phase Offset 264
FM Tone 2 Waveform 264
Free Run 270
Incr Set 265
Int 270
Int/Ext Trigger Polarity Neg Pos 271
Neg Ramp 265,267,268,291
Noise Gen 1 267
Noise Gen 2 267
Pos Ramp 265,267,268
Pulse 270
Pulse Sync 271
Pulse Video 271
Trigger 1 270
Trigger 2 270
Trigger Key 270
frequency points, list sweep, number of 85
Frequency softkeys
  Freq 83
  Freq & Ampl 83
  Freq Multiplier 76
  Freq Offset 76,77
  Freq Ref Off On 77
  Freq Ref Set 77
  Freq Span 78
  Freq Start 78,83
  Freq Stop 78,83
Frequency state, setting
display subsystem 148
frequency subsystem keys
  Adjust Phase 79
  Freq 74
Freq Center 70
Freq Channel 70, 72
Freq Channels Off On 73
FREQ key 75
Freq Multiplier 76
Freq Offset 76, 77
Freq Ref Off On 77
Freq Ref Set 77
Freq Span 78
Freq Start 78, 83
Freq Stop 78, 83
Frequency 74, 83
Off 83
Oven Oscillator On Off 80
Oven Oscillator Tune 81, 82
Phase Ref Set 79
Ref Oscillator Ext Bandwidth 79
Ref Oscillator Ext Freq 80
Ref Oscillator Source Auto Off On 81
FSK softkey 159
Function Generator softkey 280

G
Gate Active Low High softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
Gate Ck Delay softkey 463
Gate Delay Off On softkey 464
Gate Mode Time Ck softkey 463
Gate Off On softkey 465
Gate Polarity Neg Pos softkey 464
Gate Time Delay softkey 464
Gated softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
Gaussian softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
generate sine 348
generate test waveforms 349
Goto Row softkey 409
GPIB Address softkey 138
Gray Coded QPSK softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
GSM softkey 332, 333, 334

guides, content of 29

H
hexadecimal values 47
Hostname softkey 141

I
I Gain softkey 320, 502
I Offset softkey 65, 66
I/Q
  Adjustments Off On softkey 68
  Correction Optimized Path softkey 56
  Delay softkey 61
  Gain Balance softkey 65
  Skew softkey 67
I/Q Atten Manual Auto softkey 314, 315
I/Q Gain Balance Source 65
I/Q Off On softkey 69
I/Q Scaling softkey
  See custom subsystem keys
I/Q skew
  calibrate 134
IEEE 488.2 common command keys
  Diagnostic Info 153
  RECALL Reg 154
  Run Complete Self Test 157
  Save Reg 155
  Save Seq[n] Reg[nn] 155
  Select Seq 154
  Select Seq softkey 154
IEEE 488.2 common commands 152, 153, 154, 155, 156
ILS Localizer Commands 439
ILS Marker Beacon Commands 453
Immediate softkey
  See sense subsystem keys
impairments, real-time phase noise 550
Incr Set key 298
  See fm modulation subsystem keys
  See frequency modulation subsystem keys
  See phase modulation subsystem keys
Initialize Phase Fixed Random softkey 408
Initialize Table softkey 334
Input Strobe Free Run User softkey 118
Input Strobe Polarity Neg Pos softkey 118
input subsystem keys
  Clock Delay Off On 466
  Clock Polarity Neg Pos 466
  Clock Time Delay 466
Data Polarity Neg Pos 467
Gate Clk Delay 463
Gate Delay Off On 464
Gate Mode Time Clk 463
Gate Off On 465
Gate Polarity Neg Pos 464
Gate Time Delay 464
Resolution 465, 468, 469
Insert Row softkey 334
Insert Waveform softkey 377
installation guide content 29
Instrument Options softkey 146
instruments, number of 359, 360
INT softkey
See trigger subsystem keys
INT softkey
See amplitude modulation subsystem keys
Int softkey
See frequency modulation subsystem keys
Int softkeys
Adjustable Doublet 306
Free-Run 306
Gated 306
Int Channel Correction 59
Int Phase Polarity Normal Invert 58, 68
Triggered 306
Triggered Doublet 306
Int/Ext Trigger Polarity Neg Pos softkey 89, 244
integer response data 41
Integration Bandwidth softkey 122
Internal softkey 68
Internal softkeys
Internal Monitor 280
Square 306
IP address 138
IP Address softkey 142
IQ Polarity softkey 506
IS-95 Mod softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
IS-95 Mod w/EQ softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
IS-95 OQPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
IS-95 QPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
IS-95 w/EQ softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
K
key field
key and data field reference 32
L
LAN Config softkey 138
LAN identify
communication subsystem 141
LARB subsystem keys
Waveform Off On 390
Last Mkr Point softkey 353, 356
Leveling Mode softkey 103
LF Out softkeys
Bus 283
EXT 284
Ext 283
Free Run 283
Gaussian 278
Int 283
Int Monitor 280
Int/Ext Trigger Polarity Neg Pos softkey 285
LF Out Amplitude 274
LF Out DC Offset Into 1 MOhms 278
LF Out DC Offset Into 50 Ohms 278
LF Out Off On 280
LF Out Period 276
LF Out Phase Offset 276
LF Out Source 279
LF Out Start Freq 281
LF Out Stop Freq 276, 281
LF Out Sweep Rate 282, 283
LF Out Sweep Shape 282
LF Out Sweep Times Coupled Off On 282
LF Out Sweep Waveform 281
LF Out Tone 1 Freq 275
LF Out Tone 1 Waveform 275
LF Out Tone 2 Ampl % of Peak 274
LF Out Tone 2 Freq 275, 276
LF Out Tone 2 Phase Offset 274
LF Out Tone 2 Waveform 275
LF Out Width 277
Neg Ramp 275, 281
Pos Ramp 275, 281
Pulse 284
Pulse Sync 284
Pulse Video 284
Trigger 1 284
Trigger 2 284
Trigger Key 283
Uniform 278
LF Out softkeys
   Load Impedance 50 Ohm 1 MOhm 278
List softkey 160, 182
List sweep options 86
List sweep options, points 86
List sweep points, dwell time 84
List sweep, number of frequency points 85
List/sweep subsystem 83, 85, 88, 91, 92, 93
List/sweep subsystem keys
   # Points 94
   Ampl Start 83
   Ampl Stop 83
   Amplitude 83
   Amsptd Start 116
   Amsptd Stop 116
   Dwell Type List Step 85
   Freq & Ampl 83
   Freq Start 78, 83
   Freq Stop 78, 83
   Frequency 83
   Load List From Step Sweep 91
   LOG Freq Step 93, 94
   Manual Mode Off On 86
   Manual Point 85
   Off 83
   Preset List 91
   Step Dwell 93
   Step Spacing 94
   Sweep Direction Down Up 84
   Sweep Retrace Off On 88
   Sweep Type List Step 90
   Listen for Sync softkey 360
   Load Cal Array From Step Array softkey 50
   Load From Selected File softkey 50, 181, 186, 405
   Load List From Step Sweep softkey 91
   Load/Store softkey 334
   Local key
communication subsystem 138
LOG Freq Step softkey 93, 94
Logic Type softkey 509
Loop Back Test Type softkey 508
low frequency output subsystem keys
   Bus 283
   DC 277
   Dual-Sine 277
   EXT 284
   Ext 283
   Free Run 283
   Function Generator 280
   Gaussian 278
   Int 283
   Int Monitor 280
   Int/Ext Trigger Polarity Neg Pos 285
   Internal Monitor 280
   LF Out Amplitude 274
   LF Out DC Offset Into 1 MOhms 278
   LF Out DC Offset Into 50 Ohms 278
   LF Out Off On 280
   LF Out Period 276
   LF Out Phase Offset 276
   LF Out Source 279
   LF Out Start Freq 281
   LF Out Stop Freq 276, 281
   LF Out Sweep Rate 282, 283
   LF Out Sweep Shape 282
   LF Out Sweep Times Coupled Off On 282
   LF Out Sweep Waveform 281
   LF Out Tone 1 Freq 275
   LF Out Tone 1 Waveform 275
   LF Out Tone 2 Ampl % of Peak 274
   LF Out Tone 2 Freq 275, 276
   LF Out Tone 2 Phase Offset 274
   LF Out Tone 2 Waveform 275
   LF Out Width 277
   Load Impedance 50 Ohm 1 MOhm 278
   Neg Ramp 275, 281
   Negative 278
   Noise 277
   Pos Ramp 275, 281
   Positive 278
   Pulse 284
   Pulse Sync 284
   Pulse Video 284
   Ramp 277
   Sine 277
   Square 277
Swept-Sine 277
Triangle 277
Trigger 1 284
Trigger 2 284
Trigger Key 283
Uniform 278

M
Manual Mode Off On softkey 86
Manual Point softkey 85
manuals, content of 29
Marker
1 2 3 4 softkey 356
1 Polarity Neg Pos softkey
dual ARB subsystem 365
1 softkey 316,362
Dmodulation subsystem 317
dual ARB subsystem 364
2 Polarity Neg Pos softkey
dual ARB subsystem 365
2 softkey 316,362
Dmodulation subsystem 317
dual ARB subsystem 364
3 Polarity Neg Pos softkey
dual ARB subsystem 365
3 softkey 316,362
Dmodulation subsystem 317
dual ARB subsystem 364
4 Polarity Neg Pos softkey
dual ARB subsystem 365
4 softkey 316,362
Dmodulation subsystem 317
dual ARB subsystem 364
softkey 353
Marker 1 Polarity Neg Pos softkey 321
multitone subsystem 396
two tone subsystem 417
Marker 1 softkey 315,362,393,394,395
two tone subsystem 414,416
Marker 2 Polarity Neg Pos softkey 321
multitone subsystem 396
two tone subsystem 417
Marker 2 softkey 315,362,393,394,395
two tone subsystem 414,416
Marker 3 Polarity Neg Pos softkey 321
multitone subsystem 396
two tone subsystem 417
Marker 3 softkey 315,362,393,394,395
two tone subsystem 414,416
Marker 4 Polarity Neg Pos softkey 321
multitone subsystem 396
two tone subsystem 417
Marker 4 softkey 315,362,393,394,395
two tone subsystem 414,416
Marker Beacon Commands 453
Marker Delta Off On softkey 97
Marker On Off softkey 98
marker polarity 417
marker subsystem 96
marker subsystem keys
Amplitude Markers Off On 96
Delta Markers 97
Delta Ref Set 97
Marker Delta Off On 97
Marker On Off 98
Marker Value 96
Turn Off Markers 96
Marker Value softkey 96
Markers 96, 97, 98, 353
markers
ALC hold
two tone subsystem 414
alc hold
Dmodulation subsystem 316
dual ARB subsystem 362
multitone subsystem 394, 395
alternate amplitude
Dmodulation subsystem 315
dual ARB subsystem 362
multitone subsystem 393
clearing 353
marker polarity
Dmodulation subsystem 321
dual ARB subsystem 365
multitone subsystem 396
two tone subsystem 417
RF blanking/pulse
Dmodulation subsystem 317
dual ARB subsystem 364
two tone subsystem 416
setting 356
shifting points 355
mass memory subsystem
RF output blanking 188
waveform ID 186
mass memory subsystem keys
Binary 182
Clear Header 185
Copy File 183
Delete All BBG Segments 184
Delete All NVWFM Files 183
Delete File 184
Edit Description 185
List 182
Load From Selected File 186
Rename File 186
State 182
Store To File 186,187
User Flatness 182
mass storage unit specifier, variable 45
Master softkey 358
MDMOD softkey 161
mDNS/DNS-SD Off On softkey 142
memory size 181
memory subsystem 166,168,170,171
memory subsystem keys 174,175
Add Comment To Seq[n] Reg[nn] 182
All 164,180
Binary 158
Bit 158
Copy File 164
Data PRAM 173
Delete All ARB DMOD Files 177
Delete All ARB MTONE Files 178
Delete All Binary Files 176
Delete All Bit Files 176
Delete All Files 176
Delete All FIR Files 177
Delete All FSK Files 177
Delete All I/Q Files 177
Delete All List Files 177
Delete All MDMOD Files 178
Delete All Sequence Files 178
Delete All SHAPE Files 178
Delete All State Files 179
Delete All UFLT Files 179
Delete File 179
DMOD 159
FIR 159
FSK 159
List 160
Load From Selected File 181
MDMOD 161
MTONE 161
Oversample Ratio 169
Rename File 181
SEQ 162
SHAPE 162
State 163
Store To File 182
User Flatness 163
Minimum Power Low High softkey 113
Mod On/Off key 189
Modulation Filter Off On softkey 348
Modulator Atten (nnn dB) Manual Auto softkey 58
Modulator Atten Manual Auto 513
Modulator Atten Manual Auto softkey 56, 57, 353, 392,393,413,514,527
Modulator I/Q Output Atten softkey 57
MSK softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
MSUS variable 45
MTONE softkey 161
Multicarrier Off On softkey 332
multiple BBG sync
  initiate sync 361
  listen for sync 360
  master/slave selection 358
  number of instruments 359,360
  slave position 361
  status 374
Multiplexed softkey 119
Multitone Off On softkey 410
multitone subsystem keys
  Alignment Left Cent Right 391
  ARB Sample Clock 405
  Baseband Frequency Offset 391
  Baseband Frequency Offset Phase Reset 392
  Carrier Bandwidth 397
  Carrier Bit Rate 397
  Carrier Power 400
  Carrier to Noise Ratio 398
  Carrier to Noise Ratio Eb/No 399
  Carrier to Noise Ratio Format 398
  Carrier+Noise (output mux) 399
  Clear Header 392
  Desired Flat Amplitude (Lmid) 403
  Desired Start Freq (f1) 402
  Desired Stop Freq (f2) 403
  Freq Spacing 406,407
  Goto Row 409
  Initialize Phase Fixed Random 408
  Load From Selected File 405
  Marker 1 393,394,395
  Marker 2 393,394,395
Marker 3 393, 394, 395
Marker 4 393, 394, 395
Marker Polarity Neg Pos 396
Modulator Atten Manual Auto 392, 393
Multitone Off On 410
Noise Bandwidth 396
None 393, 394, 395
Number Of Tones 406, 408
Phase Noise Off On 404
Power Control Mode 400
Random Seed Fixed Random 409
Real-Time AWGN Off On 402
Save Setup To Header 392
Store To File 406
Toggle State 406, 409
Total Noise 401
mV softkey 247
mVemf softkey 247

N
N5102A 478
See digital subsystem
N5102A Off On softkey 510
N5181A or N5182A softkeys 217, 232
NADC softkey 332, 333, 334
Name and Store softkey 377
Negate I softkey 482, 483, 484, 485, 486, 487, 488, 489, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501
Negate Q softkey 507
Negative softkey 278
No Retrigger softkey 375, 539
No Thresholds softkey
See sense subsystem keys
Noise Bandwidth 321, 365, 396, 418, 531
Noise Power In Channel softkey 125
Noise softkey 277
None softkey 315, 316, 317, 362, 364, 393, 394, 395, 414, 416, 542
Normal Inverted Polarity 298
number of MXG-A slaves 359
number of slaves 360
Number Of Tones softkey 406, 408
numeric boolean response data 41
Numeric Format 502
Numeric Format softkey 502
numeric SCPI parameter 38
numeric, extended SCPI parameter 39
Nyquist softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys

O
octal values 47
Off softkey 83, 358
Operating Mode softkey 119
Optimize FIR For EVM ACP softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
Optimize Int I/Q Channel EVM ACP softkey 59
Optimize S/N Off On softkey 114
Optimize Signal to Noise 114
options
302 Avionics 429
N510403B AWGN 513
N5180431B 516
N5180432B phase noise 550
N5180UN7B calculate subsystem 458
data subsystem 460
input subsystem 463
Options Info softkey 146
OQPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
Output Blanking Off On Auto softkey 188
Output Mux softkey 122
Output Strobe Polarity Neg Pos softkey 119
output subsystem keys
Mod On/Off 189
Output Blanking Off On Auto 188
RF On/Off 189
Oven Oscillator On Off softkey 80
Oven Oscillator Tune softkey 81, 82
Oversample Ratio softkey 169

P
π/4 DQPSK softkey
See custom subsystem keys
See Dmodulation subsystem keys
parameter types. See SCPI commands parameter
types
Pass Through Preset softkey 510
Pass/Fail Limits softkey 458
Pass/Fail Off On softkey 459
PAT TRIG BNC softkey 109
paths, SCPI command tree 37
Patt Trig In 1 softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
Patt Trig In 2 softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
PDC softkey 332, 333, 334
Phase Dev softkey
  See custom subsystem keys
phase modulation subsystem keys
  ΦM Sweep Time 292
  ΦM Sweep Time softkey 293
phase modulation subsystem
Sine 290
phase modulation subsystem keys
  FM ΦM Normal High BW softkey 286
  ΦM Dev softkey 297
  ΦM Off On softkey 296
Bus 293
EXT 294
Ext 293
Ext Coupling DC AC 286
Ext Impedance 286
ΦM Phase Offset 289
ΦM Source 295
ΦM Start Freq 290
ΦM Stop Freq 291
ΦM Sweep Shape 292
ΦM Sweep Times Coupled Off On 292
ΦM Sweep Waveform 291
ΦM Tone 1 Freq 287
ΦM Tone 1 Waveform 288
ΦM Tone 2 Ampl % of Peak 287
ΦM Tone 2 Freq 287
ΦM Tone 2 Phase Offset 287
ΦM Tone 2 Waveform 288
Free Run 293
Incr Set 288, 297
Int/Ext Trigger Polarity Neg Pos 295
Neg Ramp 288, 290
Noise Gen 1 290
Noise Gen 2 290
Pos Ramp 288, 290, 291
Pulse 294
Pulse Sync 294
Pulse Video 294
Trigger 1 294
Trigger 2 294
Trigger Key 293
Phase Noise Off On softkey 329, 373, 404, 426, 538, 552
phase noise subsystem, real-time 550
Phase Polarity Normal Invert softkey
  See custom subsystem keys
Phase Ref Set softkey 79
PHS softkey 332, 333, 334
PN11 softkey
  See custom subsystem keys
  See sense subsystem keys
PN15 softkey
  See custom subsystem keys
  See sense subsystem keys
PN20 softkey
  See custom subsystem keys
  See sense subsystem keys
PN23 softkey
  See custom subsystem keys
  See sense subsystem keys
PN9 softkey
  See custom subsystem keys
  See sense subsystem keys
polarity
I/Q 58
markers
  dmodulation subsystem 321
dual ARB subsystem 365
  multitone subsystem 396
two tone subsystem 417
Port Config softkey 509
Positive softkey 278
Power Control Mode 325, 369, 400, 422, 535
Power Control Mode softkey 123
Power Meter
  Dual Display 224, 225, 226, 227, 228
  replaced by command 53, 54
  replaced command 53
  softkey 224, 225, 226, 227, 228
Power Meter softkey 53, 54, 224, 225, 226, 227, 228
Power On Last Preset softkey 230
Power Search Manual Auto softkey 100
Power Search Manual Level softkey 102
Power Search Reference Fixed Mode softkey 101
power subsystem
  Power Search span 103
power subsystem keys 99
  2 kHz 99
  20 kHz 99
  200 Hz 99
  ALC Off On 106, 107
  Alt Ampl Off On 110
  Alt Ampl Trigger 109
  Ampl Start 83
  Ampl Stop 83
  Amplitude 83, 113
  Amptd Offset 112
  Amptd Ref Off On 116
  Amptd Ref Set 115
  Amptd Start 116
  Amptd Stop 116
  Atten Bypass Off On 111, 112
  Atten Hold Off On 111, 122
  Auto 99
  BB TRIG 1 BNC 109
  BB TRIG 2 BNC 109
  Desired Delta 108
  Do Power Search 100, 101, 102, 103
  EVENT 1 BNC 109
  EXT 107
  Ext ALC Hold Off On 108
  Ext Detector Coupling Factor 103, 104, 105, 106
  Free Run 129
  Leveling Mode 103
  Minimum Power Low High 113
  Off 83
  Output Mux 122
  PAT TRIG BNC 109
  Power Control Mode 123
  Power Search Manual Auto 100
  Power Search Manual Level 102
  Power Search Reference Fixed Mode 101
  Pulse 107
  RF During Power Search 115
  Set ALC Level 100
  Set Atten 110
  Signal to Noise Off On 114
  Span Type User Full 103
  Start Frequency 102
  SWEEP Amptd Off On 114
  Trigger 1 107
  Trigger 2 107
  Trigger and Run 129
  User Max Power 117
  User Max Power enable 117

PRAM
  downloads 173
  list 174
  pram files
    CUSTOM subsystem keys 525
    precise talking and forgiving listening 37
  Preset key 231, 234
  Preset List softkey 51, 91
  presetting registers 201
  presetting, transition filters 201
  programming guide content 29
  protection state
    power subsystem keys 115
  pulse modulation subsystem 298
  pulse modulation subsystem keys 301
    Adjustable Doublet 306
    Delay Step 298
    Ext Pulse 306
    Free-Run 306
    Gated 306
    Pulse Delay 298
    Pulse Off On 307
    Pulse Period 300
    Pulse Rate 299
    Pulse Width 302
    Square 306
    Trig Out BNC Video Polarity 305
    Triggered 306
    Triggered Doublet 306
    Pulse Period Increment 301
    Pulse Period softkey 300
    Pulse Rate softkey, pulse frequency 299
    Pulse softkey
      See power subsystem keys
      See trigger subsystem keys
    Pulse Sync softkey
      See trigger subsystem keys
    Pulse Video softkey
      See trigger subsystem keys
    Pulse Width softkey 302
    Pulse/RF blanking 317, 364
    pulse/RF blanking markers
      Dmodulation subsystem 317
      dual ARB subsystem 364
      two tone subsystem 416
    PWT softkey 332, 333, 334

Q
  Q Gain softkey 503
Q Offset softkey 66, 502, 504
QPSK softkey
   See custom subsystem keys
   See Dmodulation subsystem keys
Quadrature Angle Adjustment softkey 64, 67
   quadrature angle, I/Q
   adjustment 67
queries
   operation complete
      *OPC 153
options
   *OPT? 153
power-on status clear
   *PSC 154
read status byte
   *STB? 156
service request enable
   *SRE? 156
standard event status enable
   *ESE? 152
standard event status register
   *ESR? 152
querying
   data questionable calibration event register 205
   data questionable calibration register 203
   data questionable condition register 205
   data questionable event register 212
   data questionable frequency condition register 206
   data questionable frequency event register 207
   data questionable power condition register 210
   data questionable power event register 211
   standard operation event register 201
   standard operation status group 200
   querying, signal generator capabilities 213
quotes, SCPI command use of 46

R
Ramp softkey 277
ramp sweep
   range 78
   span 78
ramp, low frequency 278
Random Seed Fixed Random softkey 409
real response data 40
Real-Time AWGN Off On 327, 370, 424, 536
Real-time AWGN Off On 515
Real-Time AWGN Off On softkey 402
Real-time AWGN Off On subsystem keys
Real-time AWGN Off On 515
real-time phase noise subsystem 550
real-time phase noise subsystem keys
   Desired Flat Amplitude (Lmid) 551
   Desired Start Freq (f1) 550
   Desired Stop Freq (f2) 550
   Phase Noise Off On 552
RECALL Reg softkey 154
Rectangle softkey
   See custom subsystem keys
   See Dmodulation subsystem keys
   See dual ARB subsystem keys
Ref Oscillator Ext Bandwidth softkey 79
Ref Oscillator Ext Freq softkey 80
Ref Oscillator Source Auto Off On softkey 81
Reference Frequency softkey 480
reference oscillator source 81
Reference Out softkey 460
references, content of 29
register
   presetting 201
   status
      dual ARB 374
      dual ARB trigger 374
      multiple BBG sync 374
Rename File 181
Rename File softkey 186
Reset & Run softkey
   See custom subsystem keys
   See Dmodulation subsystem keys
   See dual ARB subsystem keys
Resolution softkey 465, 468, 469
response data types
   See SCPI commands response data types
Restart on Trig softkey 375, 539
Restore LAN Settings to Default Values softkey
   communication subsystem 139, 143
Restore System Settings to Default Values softkey 234
Resync Limits softkey 471
Revert to Default Cal Settings softkey 135
rf blanking 317, 364
RF blanking/pulse markers
   Dmodulation subsystem 317
dual ARB subsystem 364
two tone subsystem 416
RF During Power Search softkey
   power subsystem keys 115
RF On/Off key 189
RF output blanking state 188
Rise Delay softkey
  See custom subsystem keys
Rise Time softkey
  See custom subsystem keys
RMS header info 350, 351
RMS noise header info 350
Root Nyquist softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
rotate markers 355
Rotation softkey 504
route subsystem keys
  Burst Gate In Polarity Neg Pos 190, 191
  Data Clock Out Neg Pos 193
  Data Clock Polarity Neg Pos 190, 192, 194
  Data Out Polarity Neg Pos 193, 195
  Data Polarity Neg Pos 191, 192
  DATA/CLK/SYNC Rear Outputs Off On 194
  Route Sweep Out (n5181a/82a) 197
  Route to Event 1 BNC 195, 196
  Route Trig Out 197, 198
  Symbol Sync Out Polarity Neg Pos 194, 195
  Symbol Sync Polarity Neg Pos 191, 193
  Route Sweep Out softkey (n5181a/82a) 197
  Route to Event 1 BNC softkey 195, 196
  Route Trig Out softkey 197, 198
  Run Complete Self Test softkey 157
runtime scaling 376

S
Save Reg softkey 155
Save Seq[n] Reg[nn] softkey 155
Save Setup To Header softkey 314, 352, 392, 413
Save User Preset softkey 235
Scale Waveform Data softkey 376
  scaling
    during playback 376
    waveform files 376
Scaling softkey 376, 505
SCPI
  power meter
    replaced by command 53, 54
  reference content 29
SCPI command subsystems
  all 310, 512, 549
  amplitude modulation 250
Avionics 429
AWGN 513
calculate 458
calibration 134
communication 138
correction 50
custom 516
data 460
diagnostic 144
digital 478
digital modulation 56
display 148
Dmodulation 311
dual ARB 344
frequency 70
frequency modulation 263
IEEE 488.2 common commands 152
input 463
LARB 390
list/sweep 83
low frequency output 274
marker 96
memory 158
multitone 391
N5102A 478
output 188
phase modulation 286
power 99
pulse modulation 298
real-time phase noise 550
route 190
status 200
system 213
Trigger 246
trigger 242
two tone 411
unit 247
vector modulation 118
SCPI commands
  command tree paths 37
  parameter and response types 37
parameter types
  boolean 40
  discrete 39
  extended numeric 39
  numeric 38
  string 40
response data types
  discrete 41
  integer 41
numeric boolean 41
real 40
string 41
root command 37
SCPI softkey 217,232
SCPI version, querying 241
Screen Saver Delay
 1 hr softkey 240
Screen Saver Mode softkeys 240
Screen Saver Off On softkeys 240
security functions
  erase 239
  restricted display 238
  sanitize 239
  secure display 238
segment advance
  trigger response 383
Segment Advance softkey 380
segment, selecting 388
Select File softkey 332
Select Filter softkey 60
Select Seq softkey 154
Select User FSK softkey 320
Select User I/Q softkey 320
Select Waveform softkey 387
sense subsystem keys
  Aux 475
  Aux I/O Trigger Polarity Pos Neg 474
BERT Off On 472
BERT Resync Off On 471
Bit Delay Off On 473
Bus 475
Cycle Count 474
Delay Bits 473
Error Count 472
Ext 475
Immediate 475
No Thresholds 472
PN11 471
PN15 471
PN20 471
PN23 471
PN9 471
Resync Limits 471
Spcl Pattern 0’s 1’s 470
Spcl Pattern Ignore Off On 470
Total Bits 473
Trigger Key 475
SEQ softkey 162
sequence, creating 377
sequence, selecting 388
service
guide content 29
Set ALC Level softkey 100
Set Atten softkey 110
Set Marker Off All Points softkey 355
Set Marker Off Range Of Points softkey 353
Set Marker On Range Of Points softkey 356
setting bits
data questionable
calibration event register 204, 205
count register 204, 206, 210
event register 208, 209, 211
frequency event register 207
power event register 210, 211
status group summary bit 206
dual ARB subsystem status register 374
standard operation event register 200, 201
standard operation status summary bit 200
setting markers 356
setup sweep 83
SHAPE softkey 162
shift markers 355
signal analyzer
softkey 235, 236, 237
signal generator capabilities, querying 213
Signal Power softkey 126
Signal Type softkey 506
Sine softkey
  See DECT subsystem keys
  See low frequency output subsystem keys
Sine, frequency modulation 266
sine, phase modulation subsystem 290
single
  segment advance 383
Single softkey
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
Single Sweep softkey 242, 246
skew 67
skew, I/Q
  adjustment 64
Slave Position softkey 361
Slave softkey 358
slaves, number of 360
slaves, number of MXG-A 359
SMATE200A softkey 217, 232
SMIQ softkey 217,232
SMIQ system subsystem keys 217,232
SMJ100A softkey 217,232
SML softkey 217,232
SMU200A softkey 217,232
SMV softkey 217,232
softkey 181
software options 144
source
reference oscillator 81
Span Type User Full softkey 103
Spcl Pattern 0’s 1’s softkey 470
Spcl Pattern Ignore Off On softkey 470
special characters
command syntax 34
Square softkey 277
standard operation
condition register 201
event register 200,201
status group 200
status summary bit 200
Start Frequency softkey 102,136
State softkey 163,182
status byte register 206
status register
dual ARB 374
dual ARB trigger 374
multiple BBG sync 374
Step Dwell softkey 93
Step Spacing softkey 94
Stop Frequency softkey 102,136
Storage Type Int Ext Auto softkey 216
Store Custom Dig Mod State softkey 336
Store To File softkey 52,182,186,187,406
string response data 41
string SCPI parameter 40
strings, quote usage 46
Subnet Mask softkey 143
subsystems
marker 96
subsystems, SCPI commands
See SCPI command subsystems
Sum softkey 68
Summing Ratio (SRC1/SRC2) x.xx dB softkey 69
supported field 32
suppressing
standard operation condition register 201
Swap IQ softkey 501
sweep
Time Manual Auto softkey 92
SWEEP Amptd Off On softkey 114
Sweep Direction Down Up softkey 84
Sweep Repeat Single Cont softkey 242
Sweep Retrace Off On softkey 88
sweep setup 83
Sweep Type List Step softkey 90
sweep/list subsystem keys
Load From Selected File
Store to File 83
Swept-Sine softkey 277
Symbol Out Polarity Neg Pos softkey 194
Symbol Rate softkey 336
Symbol Sync Out Polarity Neg Pos softkey 195
Symbol Sync Polarity Neg Pos softkey 191,193
Sync Slaves softkey 361
synchronization, multiple BBG
initiate sync 361
listen for sync 360
master/slave selection 358
number of instruments 359,360
slave position 361
system subsystem
identification string 216
instrument, power down 224
license removing 222,223
license slots used 221
license, add waveform 220
license, clear waveform 220
license, install 221
license, internal lists 222
license, Keysight Upgrade Service 220
license, lock waveform slot 221
license, replace waveform slot contents 221
license, waveform free slots 220
license, waveform ID list 220
option string 223
SCPI version 241
USB media path, selecting directories 215
USB media querying 214
system subsystem keys
3410 217,232
8662 or 8663 217,232
8663B 217,232
Activate Restricted Display 238
Activate Secure Display 238
E4428C or E4438C 217,232
E442XB or E443XB 217,232
E8241A or E8244A 217.232
E8247C or E8257C or E8267C 217.232
E8251A or E8254A 217.232
E8257D or E8267D 217.232
Erase All 239
Erase and Sanitize All 239
Error Info 213, 214
Execute User Preset 235
N5181A or N5182A 217.232
Power On Last Preset 230
Preset 231, 234
Restore System Settings to Default Values 234
Save User Preset 235
SCPI 217.232
Screen Saver Delay 240
Screen Saver Mode 240
Screen Saver Off On 240
SMATE200A 217.232
SMIQ 217.232
SMJ100A 217.232
SML 217.232
SMU200A 217.232
SMV 217.232
Storage Type Int Ext Auto 216
Time/Date 213.241
View Next Error Message 213.214

T
TETRA softkey 332, 333, 334
Time/Date softkey 213.241
Timer Trigger softkey 90
  list trigger source 90
  See trigger subsystem keys
Toggle Marker 1 2 3 4 softkey 377
Toggle State softkey 406, 409
Total Bits softkey 473
Total Noise 326, 370, 401, 423, 535
transition filters, presetting 201
Triangle softkey 277
Trig Out BNC Video Polarity softkey 305
Trigger & Run softkey 129
  See custom subsystem keys
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
Trigger 1 softkey 131
  See power subsystem keys
  See trigger subsystem keys
Trigger 2 softkey 132
  See power subsystem keys
See trigger subsystem keys
Trigger and Run softkey 129
Trigger Key softkey 131
list/sweep subsystem 90
See amplitude modulation subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
See frequency modulation subsystem keys
See phase modulation subsystem keys
See sense subsystem keys
See trigger subsystem keys
Trigger Out 1 Polarity Neg Pos softkey 89, 244, 260, 271, 285, 295
Trigger Out 2 Polarity Neg Pos softkey 244
trigger source, list sweep 90
trigger subsystem keys
  Bus 245
  EXT 88, 243, 245
  Free Run 245
  INT 89, 243, 245
  Int/Ext Trigger Polarity Neg Pos 89, 244
  Pulse 88, 243
  Pulse Sync 89, 243
  Pulse Video 89, 243
  Single Sweep 242
  Sweep Repeat Single Cont 242
  Timer Trigger 245
  Trigger 1 88, 243
  Trigger 2 88, 243
  Trigger Key 245
  Trigger Out 1 Polarity Neg Pos 89, 244, 260, 271, 285, 295
  Trigger Out 2 Polarity Neg Pos 244
triggers
  master/slave setup 361
  response selection
    segment advance mode, dual ARB 383
  status, dual ARB 374
TSWEep
  Single Sweep 246
tsweep subsystem keys
  single sweep 246
Turn Off Markers softkey 96
two tone markers, See markers
Two Tone Off On 427
two tone subsystem keys
  Alignment Left Cent Right 411
Apply Settings 411
ARB Sample Clock 427
Index

Baseband Frequency Offset 411
Baseband Frequency Offset Phase Reset 412
Carrier Bandwidth 419
Carrier Bit Rate 418
Carrier Power 421
Carrier to Noise Ratio 419
Carrier to Noise Ratio Eb/No 420
Carrier to Noise Ratio Format 420
Carrier+Noise (output mux) 421
Clear Header 412
Desired Flat Amplitude (Lmid) 425
Desired Start Freq (f1) 424
Desired Stop Freq (f2) 425
Freq Separation 412
Marker 1 414, 416
Marker 1 Polarity Neg Pos 417
Marker 2 414, 416
Marker 2 Polarity Neg Pos 417
Marker 3 414, 416
Marker 3 Polarity Neg Pos 417
Marker 4 414, 416
Marker 4 Polarity Neg Pos 417
Modulator Atten Manual Auto 413
Noise Bandwidth 418
None 414, 416
Phase Noise Off On 426
Power Control Mode 422
Real-Time AWGN Off On 424
Save Setup To Header 413
Total Noise 423
Two Tone Off On 427

U
UN3/4 GSM Gaussian softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
Unbalanced QPSK softkey
See Dmodulation subsystem keys
unit subsystem keys
dBm 247
dBuV 247
dBuVemf 247
mV 247
mVemf 247
uV 247
uVemf 247
unspecied RMS 350, 351
unspecied RMS noise 350
Update Display Cycle End Cont softkey 459
Update in Remote Off On softkey 150
USB device 55
USB media path, selecting directories 215
USB media, querying 214
user
documentation content 29
User File softkey
See custom subsystem keys
User FIR softkey
See custom subsystem keys
See Dmodulation subsystem keys
See dual ARB subsystem keys
user flatness power meter channel 53
User Flatness softkey 163, 182
User FSK softkey
See custom subsystem keys
User I/Q softkey
See custom subsystem keys
User setttable maximum output power 117
uV softkey 247
uVemf softkey 247

V
variable, mass storage unit specifier 45
variable, MSUS 45
vector modulation subsystem keys
Bus 131
Dedicated 119
Desired Flat Amplitude(Lmid) 129
Desired Start Freq(F1) 128
Desired Start Freq(F2) 128
Eb/No 121
Ext 131
Ext Delay Time 130
Ext Polarity Neg Pos 130
Ext Source 130
Flat Noise Bandwidth 121
Input Strobe Free Run User 118
Input Strobe Polarity Neg Pos 118
Integration Bandwidth 122
Multiplexed 119
Noise Power In Channel 125
Operating Mode 119
Output Strobe Polarity Neg Pos 119
Signal Power 126
Trigger Key 131
VOR 430
View Next Error Message softkey 213, 214
Waveform sequence, dual ARB 377
waveform ID 186
waveform license time remaining 147
Waveform Licenses
  add license 220
  clear license 220
  free slots 220
  license ID 220
  license used 221
  lock waveform slot 221
  replace waveform slot contents 221
  status waveform slot contents 221
Waveform Licenses softkey 145, 147
Waveform Off On softkey 390
Waveform Runtime Scaling softkey 376
waveform scaling
  during playback 376
  files 376
waveform, creating a multitone 391
WCDMA softkey
  See Dmodulation subsystem keys
  See dual ARB subsystem keys
web description command
  communication subsystem 139
Word Alignment softkey 481
Word Size softkey 507