Keysight N2795/6A
Single-Ended Probes

User’s Guide
U.S. Government Rights
The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight:

1. Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

CAUTION. A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING. A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Contents

1 Using the Probes
 Oscilloscope Compatibility / 7
 Supplied Accessories / 8
 Probe Headlight / 11
 Using the Accessory Tips and Grounds / 12
 Dynamic Range and Offset Voltage Limitations / 19
 Functional Test / 20
 Inspecting the Probe / 21
 Returning the Probe for Service / 22
 Safety Information / 23

2 Characteristics and Specifications
 Dimensions / 27

3 Performance Data Plots

4 Performance Verification
 Test 1. DC Input Resistance / 35
 Test 2. Bandwidth / 36
 Performance Test Record / 45
1 Using the Probes

The N2795/6A are 1 and 2 GHz single-ended active probes with the AutoProbe interface (compatible with Keysight’s InfiniVision and Infiniium family of oscilloscopes). These probes integrate many of the characteristics needed for today’s general-purpose, high-speed probing, component design/characterization, and educational research applications. Its 1MΩ input resistance and extremely low input capacitance (1 pF) provide ultra low loading of the DUT. This, accompanied with superior signal fidelity, makes these probes useful for most of today’s digital logic voltages. And with their wide dynamic range (±8V) and offset range (±12V for N2796A, ±8V for N2795A), these probes can be used in a wide variety of applications.

For high signal integrity probing, the N2795A 1 GHz and N2796A 2 GHz active probes are perfect complements to Keysight’s 500 MHz – 600 MHz and 1 GHz bandwidth oscilloscopes, respectively. The
1 Using the Probes

N2796A 2 GHz probe can also be used with Keysight’s 2.5 GHz or higher bandwidth Infiniium scope as a low cost alternative to the InfiniiMax probes.

The N2795/6A probes are powered directly by the InfiniiVision and Infiniium AutoProbe interface, eliminating the need for an additional power supply. The probes also come with a number of accessories that allow for easy connections to the circuit under test. Refer to “Supplied Accessories” on page 8.

WARNING Handle the probe with care to avoid injury, especially when it is fitted with the sharp spring or rigid tip.

CAUTION This probe is an ESD sensitive devices, particularly at the probe tips. Follow standard ESD precautions when handling. Remove tip accessories when storing the probe.

CAUTION Before using the probe, refer to “Safety Information” on page 23.

CAUTION Handle the probe cable carefully to avoid damaging it through excessive bending or pulling. Avoid any mechanical shocks to the probe in order to guarantee accurate performance and protection.

Cleaning the Probe

Disconnect the probe from the oscilloscope and clean the probe with a soft cloth dampened with a mild soap and water solution. Make sure the probe is completely dry before reconnecting it to an oscilloscope.
Oscilloscope Compatibility

The N2795/6A probes are compatible with the Keysight oscilloscopes shown in Table 1 (those with the Keysight AutoProbe Interface). The table also lists the minimum required firmware version for the oscilloscope.

Table 1 Compatible Oscilloscopes and Probe Support

<table>
<thead>
<tr>
<th>Oscilloscope</th>
<th>Software Version</th>
<th>Maximum Number of Probes Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiniium Z-Series a</td>
<td>>=5.0</td>
<td>Four probes per scope</td>
</tr>
<tr>
<td>Infiniium V-Series a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiniium S-Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiniium 90000 X-Series a</td>
<td>All</td>
<td>Four probes on 4-channel scope.</td>
</tr>
<tr>
<td>Infiniium 90000 Q-Series a</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Infiniium 90000 Series</td>
<td>>=2.50</td>
<td></td>
</tr>
<tr>
<td>Infiniium 90000 H-Series</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Infiniium 90000A-Series</td>
<td>>=2.50</td>
<td></td>
</tr>
<tr>
<td>InfiniiVision 7000 Series</td>
<td>>= 6.10</td>
<td>Two probes on 2 or 4-channel scopes.</td>
</tr>
<tr>
<td>InfiniiVision 6000 Series (except 100 MHz model)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InfiniiVision 5000 Series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>InfiniiVision 4000 X-Series</td>
<td>All</td>
<td>Four probes on 4-channel scope. Two probes on 2-channel scope.</td>
</tr>
<tr>
<td>InfiniiVision 3000 X-Series</td>
<td>All</td>
<td>Two probes on 2 or 4-channel scopes.</td>
</tr>
</tbody>
</table>

a Requires N5442A adapter.
Supplied Accessories

The probes come with the accessories shown in Figure 2 on page 9 and listed in Table 2 on page 9. Table 3 on page 10 shows the replacement accessories available in the replacement accessory kit.

Attaching Probe Accessories

It’s easy to change the probe tip and ground accessories. Figure 1 shows locations for inserting the tip and the ground accessory. To change an accessory, gently pull it straight out of its contact socket along the axis of the probe. Once the accessory is removed, insert the new accessory until it is seated in the contact socket. In order to insert the probe tip completely into the housing, carefully press the probe tip against a hard surface.

Figure 1 Tip and Grounding Connections
Table 2
Supplied Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Quantity</th>
<th>Accessory</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex Nose Clip (red)</td>
<td>1</td>
<td>Right-Angle Ground (10 cm)</td>
<td>1</td>
</tr>
<tr>
<td>Flex Nose Clip (black)</td>
<td>1</td>
<td>Ground Blade</td>
<td>2</td>
</tr>
<tr>
<td>Rigid Probe Tip</td>
<td>2</td>
<td>Offset Ground</td>
<td>1</td>
</tr>
<tr>
<td>Spring Probe Tip</td>
<td>2</td>
<td>Flex Ground</td>
<td>1</td>
</tr>
<tr>
<td>Y-Lead Adapter (10 cm)</td>
<td>1</td>
<td>Copper Pads</td>
<td>10</td>
</tr>
<tr>
<td>Right-Angle Ground (5 cm)</td>
<td>1</td>
<td>Channel-Identification Rings</td>
<td>4 of each color</td>
</tr>
</tbody>
</table>
Channel-Identification Rings

When multiple probes are connected to the oscilloscope, the channel identification rings allow you to quickly determine which channel input is associated with each probe. On the probe, place one colored ring near the probe’s channel connector and place an identical color ring near the probe head.
Probe Headlight

The probe is equipped with a white LED headlight to illuminate the area around the probe tip. This headlight has a fixed intensity and is turned on and off by pressing the button that is located on the probe’s body.

Figure 3 Headlight and Button
Using the Accessory Tips and Grounds

This section presents the various probe accessory configurations listed in order of available bandwidth for your measurements. Select the configuration to match your measurement needs, including ease of use.

<table>
<thead>
<tr>
<th>Recommended Order of Use</th>
<th>Probe Configuration Topic</th>
<th>Typical Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Rigid or Spring Tips with Offset Ground or Ground Blade” on page 13</td>
<td>1 GHz (N2795A) 2 GHz (N2796A)</td>
</tr>
<tr>
<td>2</td>
<td>“Copper Pads with Flex Ground” on page 15</td>
<td>900 MHz (N2795A) 1.8 GHz (N2796A)</td>
</tr>
<tr>
<td>3</td>
<td>“Y-Leads Adapter with 0.1” Headers” on page 16</td>
<td>750 MHz (N2795A) 1 GHz (N2796A)</td>
</tr>
<tr>
<td>4</td>
<td>“Flexible Nose Clips” on page 17</td>
<td>500 MHz (N2795A) 500 MHz (N2796A)</td>
</tr>
<tr>
<td>5</td>
<td>“Ground Leads and Right-Angle Ground Leads” on page 18</td>
<td>Unspecified</td>
</tr>
</tbody>
</table>
These rigid and spring-loaded tips are replaceable. To change the probe tip, pull it straight out of its contact socket along the axis of the probe. Once the probe tip is removed, the new tip can be inserted into the contact socket along the axis of the probe. In order to insert the probe tip completely into the housing, carefully press the probe tip against a hard surface.

It is recommended that the spring tips be used with the ground blade as both the tips and ground blade are spring-loaded and will maintain contact with the device under test even when your hand moves slightly.

The rigid/spring tips and grounds can be mixed with no effect on performance. It is simply a matter of personal preference. Spring loaded probe tips offer a method of probing signals that is less susceptible to vibration or movement than traditional rigid tips. Many users find it easier to use this type of tip. The spring loaded tips work when they are either partially or fully compressed and are protected against over compression damage. The recommended grounding accessory for the rigid probe tip is the offset ground.

![Spring Tip](image1.png) ![Ground Blade](image2.png) ![Rigid Tip](image3.png) ![Offset Ground](image4.png)

Figure 4 Sprint and Rigid Tips with Offset and Blade Ground
WARNING Handle the probe with care to avoid injury, especially when it is fitted with the sharp rigid or spring tip.

When inserting the tip, insert the end with the ridge into the probe head as shown in Figure 5.

![Figure 5: Inserting the Tips and Grounds](image)
Copper Pads with Flex Ground

These self adhesive copper pads can be attached on top of an IC and connected to its ground pins to create a convenient ground plane for the probe to connect to.

When used with the flex ground, this method provides an ideal ground connection for probing signals with high frequency content. However, to maximize the performance of this setup, you need to solder as many jumper wires as is practical from the ground pins of the package to the copper pad. The more ground connections, the less inductance in the ground path and the higher the bandwidth capability of the measurement. Insert the Flex Ground and bend it into a shape that makes it easy to contact the copper ground pad on top of the package.

NOTE The bandwidth is highly dependent on the number of ground connections between the copper pad and the device under test.
Y-Leads Adapter with 0.1” Headers

The Y-lead adapter offers a convenient and reliable method to connect both the probe signal and ground to probe points on the board or other probe accessories. For example, this can be used to connect to connector headers or other accessories like the Flex Nose Clip Adapter as seen in the following pictures.

The sockets accept 0.56-0.86 mm round and 0.64 mm square (0.022 - 0.034 inch round and 0.025 inch square) diameter pins. The maximum insertion depth is 7.5 mm (0.295 inch) and the outer insulation of the socket is less than 2.54 mm. You can use it for 2.54 mm pitch (0.1 inch) terminals.

Figure 7 Probe with Y-Leads Attached
Flexible Nose Clips

You can use flexible nose clips to make connections to components or wires with leads that are 1.01 mm (0.04 inches) in diameter or smaller. With today’s miniature IC- and component-packaging techniques, these clips can make probing challenging devices much easier. Most users prefer to attach the clips to the probe via the Y-lead adapter as shown in the picture below. Press the back of the flex nose clip to extend the grasping hook and then release to tighten the hook around the component you are testing.

Figure 8 Probe with Flexible Nose Clips Attached
Ground Leads and Right-Angle Ground Leads

These ground leads can be used to reach grounding locations that are farther away from the probing location than can be reached by either the ground blade or offset ground. However, the longer leads mean they have a larger inductance in the ground return path which corresponds to a lower performance than the ground blade and offset ground.

NOTE The straight leads are not included with the probe. They must be ordered as a replacement kit. For more information about the replacement kits, refer to Table 3 on page 10.

Figure 9 Straight and Right-Angle Ground Leads
Dynamic Range and Offset Voltage Limitations

With $16V_{pp}$ ($\pm8V$) of dynamic range and $\pm8V$ (N2795A) or $\pm12V$ (N2796A) of offset range, the probes have a wide measuring range of $\pm20V$, which allows them to be used for a wide variety of applications. For example, if you wanted to measure small AC noise riding on top of a $+10V$ DC signal, you could use DC offset to position the signal at the center of the screen to keep the probe within its dynamic range. You could then zoom in to see the detail at a higher resolution. Trying to measure a signal out of the dynamic range may result in a clipped or distorted waveform.

![Dynamic Range and Offset Limits](image)

Figure 10 Dynamic Range and Offset Limits
1 Using the Probes

Functional Test

Use the following generic measurement procedure to ensure that your probe is functioning properly.

1 Connect the probe to an oscilloscope channel input and ensure the input impedance of the oscilloscope matches the output impedance of the probe (50Ω).

2 Connect a grounding accessory to the probe and connect the ground to the ground terminal on the oscilloscope.

3 Connect the probe tip to the oscilloscope’s probe compensation output.

4 Enable autoscale on the oscilloscope.

5 A square wave should now be displayed on the oscilloscope, if the probe is functioning properly.
Inspecting the Probe

- Inspect the shipping container for damage.
 Keep the damaged shipping container or cushioning material until the contents of the shipment have been checked for completeness and the probe has been checked mechanically and electrically.
- Check the accessories.
- If the contents are incomplete or damaged, notify your Keysight Technologies Sales Office.
- Inspect the probe.
 If there is mechanical damage or defect, or if the probe does not operate properly or pass calibration tests, notify your Keysight Technologies Sales Office.
 If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier as well as your Keysight Technologies Sales Office. Keep the shipping materials for the carrier’s inspection. The Keysight Technologies office will arrange for repair or replacement at Keysight Technologies’ option without waiting for claim settlement.
Returning the Probe for Service

If the probe is found to be defective we recommend sending it to an authorized service center for all repair and calibration needs. Perform the following steps before shipping the probe back to Keysight Technologies for service.

1. Contact your nearest Keysight sales office for information on obtaining an RMA number and return address.
2. Write the following information on a tag and attach it to the malfunctioning equipment.
 - Name and address of owner
 - Product model number (for example, N2795A)
 - Product Serial Number (for example, MYXXXXXXXX)
 - Description of failure or service required

 NOTE Include probing and browsing tips if you feel the probe is not meeting performance specifications or a yearly calibration is requested.

3. Protect the probe by wrapping in plastic or heavy paper.
4. Pack the probe in the original carrying case or if not available use bubble wrap or packing peanuts.
5. Place securely in sealed shipping container and mark container as "FRAGILE".

 NOTE If any correspondence is required, refer to the product by serial number and model number.

Contacting Keysight Technologies

For technical assistance, contact your local Keysight Call Center.
- In the Americas, call 1 (800) 829-4444
- In other regions, visit http://www.keysight.com/find/assist

Before returning an instrument for service, you must first call the Call Center at 1 (800) 829-4444.
Safety Information

This apparatus has been designed and tested in accordance with IEC Publication 1010, Safety Requirements for Measuring Apparatus, and has been supplied in a safe condition. This is a Safety Class I instrument (provided with terminal for protective earthing). Before applying power, verify that the correct safety precautions are taken as described in the following warnings.

WARNING To avoid personal injury and to prevent fire or damage to this product or products connected to it, review and comply with the following safety precautions. Be aware that if you use this probe assembly in a manner not specified, the protection this product provides may be impaired.

WARNING Handle the probe with care to avoid injury, especially when it is fitted with the sharp spring or rigid tip.

WARNING Handle Probe Tips and Accessories Carefully. Some of the probe tips and accessories are very sharp (the browser tips, for example). You should handle these with care to avoid personal injury.

WARNING Use Only Grounded Instruments. Do not connect the probe’s ground lead to a potential other than earth ground. Always make sure the probe and the oscilloscope are grounded properly.

WARNING Connect and Disconnect Properly. Connect the probe to the oscilloscope and connect the ground lead to earth ground before connecting the probe to the circuit under test. Disconnect the probe input and the probe ground lead from the circuit under test before disconnecting the probe from the oscilloscope.

WARNING Observe Probe Ratings. Do not apply any electrical potential to the probe input which exceeds the maximum rating of the probe. Make sure to comply with the voltage versus frequency derating curve found in this manual.
WARNING Keep Away From Live Circuits.
Avoid open circuitry. Do not touch connections or components when power is present.

WARNING Indoor Use Only.
Do not operate in wet/damp environments. Keep product surfaces dry and clean.

WARNING Do Not Operate With Suspected Failures.
Refer to qualified service personnel.

CAUTION The probe cable is a sensitive part of the probe and, therefore, you should be careful not to damage it through excessive bending or pulling. Avoid any mechanical shocks to this product in order to guarantee accurate performance and protection.

WARNING Whenever it is likely that the ground protection is impaired, you must make the instrument inoperative and secure it against any unintended operation.

WARNING Service instructions are for trained service personnel. To avoid dangerous electric shock, do not perform any service unless qualified to do so. Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

WARNING Do not install substitute parts or perform any unauthorized modification to the instrument.

WARNING Capacitors inside the instrument may retain a charge even if the instrument is disconnected from its source of supply.

WARNING Do not operate the instrument in the presence of flammable gasses or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

WARNING Do not use the instrument in a manner not specified by the manufacturer.
Instrument Markings

The CE mark is a registered trademark of the European Community. ISM GRP 1-A denotes the instrument is an Industrial Scientific and Medical Group 1 Class A product. ICES/NMB-001 indicates product compliance with the Canadian Interference-Causing Equipment Standard.

This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste. Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as a “Monitoring and Control instrumentation” product. Do not dispose in domestic household. To return unwanted products, contact your local Keysight office, or refer to www.keysight.com for more information.

This symbol indicates the Environmental Protection Use Period (EPUP) for the product’s toxic substances for the China RoHS requirements.

Safety Notices

Instruction manual symbol: The product is marked with this symbol when it is necessary for you to refer to the instruction manual in order to protect against damage to the product or personal injury.

Earth terminal symbol: Used to indicate a circuit common connected to grounded chassis.

Hazardous voltage symbol.
1 Using the Probes
2 Characteristics and Specifications

This chapter provides the characteristics and specifications for the N2795/6A probes. The probe and oscilloscope should be warmed up for at least 20 minutes before any testing and the environmental conditions should not exceed the probe’s specified limits.

Table 5 Environmental Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>0°C to +50°C</td>
</tr>
<tr>
<td>Non-Operating Temperature</td>
<td>–40°C to +70°C (–40°F to +158°F)</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating; 4,000m (13,000 ft)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>95% room humidity at +40°C</td>
</tr>
<tr>
<td>Non-Operating Humidity</td>
<td>90% room humidity at +65°C</td>
</tr>
<tr>
<td>ESD</td>
<td>8 kV HBM</td>
</tr>
<tr>
<td>Use</td>
<td>indoor</td>
</tr>
</tbody>
</table>

Table 6 Electrical Characteristics and Specifications (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>N2795A</th>
<th>N2796A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation Ratio (at DC)</td>
<td>10:1 ± 0.5%</td>
<td>10:1 ± 0.5%</td>
</tr>
<tr>
<td>Bandwidth (–3 dB)A</td>
<td>1 GHz</td>
<td>2 GHz</td>
</tr>
<tr>
<td>Probe Risetime (calculated, 10% – 90%)</td>
<td>350 ps</td>
<td>175 ps</td>
</tr>
<tr>
<td>Input Dynamic Range</td>
<td>–8V to +8V (DC or Peak AC)</td>
<td>–8V to +8V (DC or Peak AC)</td>
</tr>
</tbody>
</table>
Characteristics and Specifications

Table 6 Electrical Characteristics and Specifications (Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Item</th>
<th>N2795A</th>
<th>N2796A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Resistance a</td>
<td>1 MΩ +0%, −2.5%</td>
<td>1 MΩ +0%, −2.5%</td>
</tr>
<tr>
<td>Non-Destructive Maximum Input Voltage</td>
<td>−20V to +20V</td>
<td>−20V to +20V</td>
</tr>
<tr>
<td>Offset Range</td>
<td>±8V</td>
<td>±12V</td>
</tr>
<tr>
<td>DC Offset Error (Output Zero)</td>
<td>< ±1 mV</td>
<td>< ±1 mV</td>
</tr>
<tr>
<td>Flatness (both models)</td>
<td>Typical 0.4 dB (100 kHz – 100 MHz)
Typical 0.6 dB (100 MHz – 500 MHz)
Typical 0.8 dB (500 MHz – 1 GHz)
Typical 1.3 dB (1 GHz – 2 GHz)b</td>
<td>< ±1 mV</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>1 pF</td>
<td>1 pF</td>
</tr>
<tr>
<td>Probe Noise (Referred to Input)</td>
<td>< 2.5 mV$_{\text{rms}}$</td>
<td>< 2.5 mV$_{\text{rms}}$</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>50Ω</td>
<td>50Ω</td>
</tr>
<tr>
<td>Internal Power</td>
<td>Keysight AutoProbe Interface from scope (InfiniiVision and Infinium models)</td>
<td></td>
</tr>
</tbody>
</table>

a Denotes warranted electrical specification after 20 minute warm-up. All others are typical.

b N2796A only

Table 7 Mechanical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate Weight (probe only)</td>
<td>100g</td>
</tr>
<tr>
<td>Cable Length</td>
<td>1.3m</td>
</tr>
</tbody>
</table>
Dimensions
2 Characteristics and Specifications
3 Performance Data Plots

Figure 11 Frequency Response of N2796A (Vout/Vin)

NOTE Figure 11 is for the spring/rigid probe tip and an offset ground or ground blade.
Figure 12 Input Impedance Over Frequency
(Red = measured, Blue = model)
Figure 13 Input Impedance Equivalent Model

Figure 14 Typical Input Impedance Plot
3 Performance Data Plots
These procedures are used to test the warranted specifications for the N2795/6A single-ended active probes. The recommended calibration test interval is once a year or as required. Use the equipment listed in.

CAUTION Electrostatic discharge (ESD) can quickly and imperceptibly damage or destroy high performance probes, resulting in costly repairs. Always wear a wrist strap when handling probe components and insure that cables are discharged before being connected.
<table>
<thead>
<tr>
<th>Test Equipment</th>
<th>Critical Specification</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Multimeter (DMM)</td>
<td>Resistance ±1%</td>
<td>Keysight 34401A</td>
</tr>
<tr>
<td>Vector Network Analyzer (VNA)</td>
<td>13 GHz sweep range full 2 port cal Option 1D5</td>
<td>Keysight 8720ES</td>
</tr>
<tr>
<td>Calibration Standards</td>
<td>No Substitute</td>
<td>Keysight 85052D</td>
</tr>
<tr>
<td>External Power Supply</td>
<td>No Substitute</td>
<td>Keysight 1143A</td>
</tr>
<tr>
<td>AutoProbe Interface Adapter</td>
<td>No Substitute</td>
<td>Keysight N1022A/B</td>
</tr>
<tr>
<td>Outside thread 3.5 mm (male) to 3.5 mm (female) adapter</td>
<td>No Substitute</td>
<td>Keysight 5062-1247</td>
</tr>
<tr>
<td>Cable (2)</td>
<td>3.5 mil; SMA; High Quality</td>
<td>Keysight 8120-4948</td>
</tr>
<tr>
<td>Cable</td>
<td>1.5 mil Probe Power Extension No Substitute</td>
<td>Keysight 01143-61602</td>
</tr>
<tr>
<td>PV/DS Test Board</td>
<td>No Substitute (In E2655B Kit)</td>
<td>Keysight E2655-66503</td>
</tr>
</tbody>
</table>
Test 1. DC Input Resistance

Procedure

1. Connect the DMM probes between the probe tip and ground at the tip of the probe.
2. Set up the DMM to measure resistance. The resistance should read $1 \text{ M}\Omega \pm 0\%, \pm 2.5\%$.
3. Record the resistance in Table 9 on page 47.
Test 2. Bandwidth

This test ensures that the Probe meets its specified bandwidth.

N2795A bandwidth: .. 1 GHz
N2796A bandwidth: .. 2 GHz

NOTE Allow the probe to warm up for at least 20 minutes.

Using the 8720ES VNA successfully

Remember these simple guidelines when working with the 8720ES VNA during this procedure.

• Sometimes it may take a few seconds for the waveforms to settle completely. Allow time for waveforms to settle before continuing.
• Make sure all connections are tight and secure. If needed, use a vise to hold the cables and test board stable while making measurements.
• Be careful not to cross thread or force any connectors. This could be a very costly error to correct.

Procedure

Initial Setup

1 Turn on the 8720ES VNA and let warm up for 20 minutes.
2 Press the green [Preset] key on the 8720ES VNA.
3 On the VNA, press the [Power] key and set the power to 0 dBm.
4 On the VNA, press the [AVG] key and then select the Averaging Factor screen key. Set averaging to 4.
5 On the VNA, press the [Sweep Setup] key and then press the sweep type menu screen key. Select the log freq screen key.
6 Connect the probe under test to the Auto Probe Adapter and power the probe using the 1143A power supply. Install the outside thread adapter to the Auto Probe Adapter.
Calibrating a Reference Plane

To get a reliable measurement from the VNA you must calibrate a reference plane so that the VNA knows where the probe under test is located along the transmission line.

7 On the VNA, press the [Cal] key.
Figure 16 PV/DS Test Board Connected to VNA

8 Press the cal menu screen key.
9 Press the full 2 port screen key.
10 Connect one of the high quality SMA cables to port one and to the pincher side of PV/DS test board.
11 The calibration reference plane is at the other end of PV/DS test board.
12 Perform a Calibration for the PORT 1 side of the Reference plane.
 a. Press the reflection screen key.
 b. Connect the open end of 85052D Calibration Standard to the non-pincher side of the PV/DS test board.
 c. Select the open screen key under the Forward group.
 d. Wait until the VNA beeps indicating that it has completed the task.
 e. Connect short end of Calibration Standard to the non-pincher side of the PV/DS test board.
 f. Select short screen key under the Forward group.
 g. Wait until the VNA beeps indicating that it has completed the task.
 h. Connect load end of Calibration Standard to the non-pincher side of the PV/DS test board.
 i. Select the loads screen key under the Forward group.
 j. Press broadband screen key selection.
 k. Wait until the VNA beeps indicating that it has completed the task.
 l. Press the done loads screen key.
 m. You have just calibrated one side of the reference plane.

13 Connect the other high quality SMA cable to the VNA's PORT 2.
Get the opposite sex of the Calibration Standards for the next step.
15 Perform Calibration for the PORT 2 side of the Reference plane.
 a Press the reflection screen key.
 b Connect the open end of Calibration Standard to the available end of the PORT 2 SMA cable.
 c Select the open screen key under the Reverse group.
 d Wait until the VNA beeps indicating that it has completed the task.
 e Connect short end of Calibration Standard to the available end of the PORT 2 SMA cable.
 f Select short screen key the Reverse group.
 g Wait until the VNA beeps indicating that it has completed the task.
 h Connect load end of Calibration Standard to the available end of the PORT 2 SMA cable.
 i Select the loads screen key the Reverse group.
 j Press broadband screen key selection.
 k Wait until the VNA beeps indicating that it has completed the task.
 l Press the done loads screen key.
 m You have just calibrated the other side of the reference plane.

16 Press standards done key.

17 Connect port two SMA cable to the non-pincher side of PV/DS test board.
Performance Verification

Figure 18 Forward and Reverse Setup

18 Press the transmission screen key.
19 Press the do both fwd and reverse screen key.
20 Wait until the VNA beeps four times indicating that it has completed the task.
21 Press the isolation screen key.
22 Press the omit isolation screen key.
23 Press done 2 port cal screen key.
24 Set the VNA’s averaging to off.
25 Save the reference plane cal by pressing the [save recall] key then the [save state] key.
26 You may change name if you wish.
27 Press the [scale reference] key. Then set the scale to 1 dB per division and the reference position for 7 divisions.
28 Set reference value for 0 dB.
29 Press the [measure] key.
30 Press the s21 screen key.
31 Ensure s21 response on screen is flat out to 1 GHz (N2795A) or 2 GHz (N2796A).

Measuring Vin Response

32 Position the probe conveniently to allow the probe tip to be normal to the PV/DS board.

33 Hold the probe in position, or use a positioner, so that the signal and ground are making contact and are perpendicular to the fixture.

34 Press the [Sweep Setup] key on the VNA. Then press the trigger menu screen key. Select the continuous screen key.

35 You should now have the V_{in} waveform on screen.

36 Select [display] key then data->memory screen key.

37 You have now saved V_{in} waveform into the VNA's memory for future use.

Measuring Vout Response

38 Disconnect the PORT 2 cable from PV/DS test board and attach to probe output on the AutoProbe Adapter.

39 Connect the Calibration Standard load to PV/DS test board (non-pincher side).

40 Press [scale reference] key on the VNA.

41 Set reference value to –20 dB.

42 Hold probe in place as described previously.

43 The display on screen is V_{out}.

Displaying Vout/Vin Response on the VNA

44 Press the [Display] key.

45 Then select the Data/Memory screen key. You may need to adjust the Reference Value, located under the Scale Ref key, slightly to position the waveform at center screen.

46 Press marker key and position the marker to the first point that the signal is –3 dB below center screen.
47 Read marker frequency measurement and record it in the test record located later in this chapter.

48 The bandwidth test passes if the frequency measurement is greater than the probe's bandwidth limit.

N2795A bandwidth: .. 1 GHz
N2796A bandwidth: .. 2 GHz
Performance Test Record

Table 9 Performance Test Record

<table>
<thead>
<tr>
<th>Probe Amplifier</th>
<th>Test Limits</th>
<th>Result</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1. DC Input Resistance</td>
<td>1 MΩ + 0%, –2.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test 2. Bandwidth</td>
<td>≥ 1 GHz (N2795A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 2 GHz (N2796A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Verification
Index

A
accessories
 attaching, 8
 supplied, 8
accessory kit, 10
altitude, 27
attenuation ratio, 27

B
bandwidth, 12, 27

C
cable, 6
CE mark, 25
channel identification rings, 10
cleaning, 6
compatibility, 7
compatible oscilloscopes, 7
copper pads, 9, 15

D
dimensions, 29
dynamic range, 19, 27

E
environmental specifications, 27
ESD, 6

F
flex ground, 9
flex nose clip, 9, 10
flexible nose clips, 17
frequency response, 31
functional test, 20

G
ground blade, 9, 13
ground leads, 18

H
headlight, 11
humidity, 27

I
Infinium, 7
input capacitance, 28
input impedance over frequency, 33
input resistance, 28
inspecting, 21
ISM1-A, 25

K
Keysight Technologies, contacting, 22

N
N5442A adapter, 7

O
offset ground, 9, 13
offset range, 19
operating temperature
 probe, 27
oscilloscope
 compatible, 7
 software version, 7
oscilloscope compatibility, 7
output impedance, 28

P
performance test record, 47
performance verification, 35
probe
 cleaning, 6
 configurations, 12
 dimensions, 29
 handling, 23
 inspecting, 21
 service, 22
 probe accessories, 12

R
probe, inspecting, 21
returning for service, 22
right angle ground, 9, 10
right-angle ground, 13, 18
rigid probe tip, 9, 10
rigid tips, 13

S
safety information, 23
service, 22
solderable tip, 18
specifications, 27
spring probe tip, 9, 10
spring tips, 13
supplied accessories, 8

T
temperature, 27

W
weight, 28

Y
Y-lead adapter, 9, 10, 16
Y-lead with clips, 17
Y-leads, 15, 16